Acute Effect of Short Intensive Self-Myofascial Release on Jump Performance in Amateur Athletes: A Randomized Cross-Over Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention
2.3. Measurements
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, L.M.; Neiva, H.P.; Marques, M.C.; Izquierdo, M.; Marinho, D.A. Effects of Warm-Up, Post-Warm-Up, and Re-Warm-Up Strategies on Explosive Efforts in Team Sports: A Systematic Review. Sport. Med. 2018, 48, 2285–2299. [Google Scholar] [CrossRef] [PubMed]
- Maulder, P.; Cronin, J. Horizontal and vertical jump assessment: Reliability, symmetry, discriminative and predictive ability. Phys. Ther. Sport 2005, 6, 74–82. [Google Scholar] [CrossRef]
- Morin, J.-B.; Samozino, P. Biomechanics of Training and Testing. Biomechanics of Training and Testing: Innovative Concepts and Simple Field Methods; Morin, J.-B., Samozino, P., Eds.; Springer: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Physical fitness, injuries, and team performance in soccer. Med. Sci. Sport. Exerc. 2004, 36, 278–285. [Google Scholar] [CrossRef]
- Brumitt, J.; Heiderscheit, B.C.; Manske, R.C.; E Niemuth, P.; Rauh, M.J. Off-season training habits and preseason functional test measures of division III collegiate athletes: A descriptive report. Int. J. Sport. Phys. Ther. 2014, 9, 447–455. [Google Scholar]
- Duncan, M.J.; Lyons, M.; Nevill, A.M. Evaluation of Peak Power Prediction Equations in Male Basketball Players. J. Strength Cond. Res. 2008, 22, 1379–1381. [Google Scholar] [CrossRef]
- Ramírez-Campillo, R.; Álvarez, C.; Henríquez-Olguín, C.; Baez, E.B.; Martínez, C.; Andrade, D.C.; Izquierdo, M. Effects of Plyometric Training on Endurance and Explosive Strength Performance in Competitive Middle- and Long-Distance Runners. J. Strength Cond. Res. 2014, 28, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Koźlenia, D.; Struzik, A.; Domaradzki, J. Force, Power, and Morphology Asymmetries as Injury Risk Factors in Physically Active Men and Women. Symmetry 2022, 14, 787. [Google Scholar] [CrossRef]
- Sayers, S.P.; Harackiewicz, D.V.; Harman, E.A.; Frykman, P.N.; Rosenstein, M.T. Cross-validation of three jump power equations. Med. Sci. Sport. Exerc. 1999, 31, 572–577. [Google Scholar] [CrossRef]
- Devereux, F.; O’Rourke, B.; Byrne, P.J.; Byrne, D.; Kinsella, S. Effects of Myofascial Trigger Point Release on Power and Force Production in the Lower Limb Kinetic Chain. J. Strength Cond. Res. 2019, 33, 2453–2463. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Li, C.; Zhu, D.; Hu, Y.; Fu, H.; Zhai, H.; Wang, Y. Acute effects of vibration foam rolling and local vibration during warm-up on athletic performance in tennis players. PLoS ONE 2022, 17, e0268515. [Google Scholar] [CrossRef]
- Beardsley, C.; Skarabot, J.Š. Effects of self-myofascial release: A systematic review. J. Bodyw. Mov. Ther. 2015, 19, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.; Diggin, D.; King, D.L.; Sforzo, G.A. Effect of Varying Self-myofascial Release Duration on Subsequent Athletic Performance. J. Strength Cond. Res. 2021, 35, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.A.; Ramer, L.M. Duration of Myofascial Rolling for Optimal Recovery, Range of Motion, and performance: A Systematic Review of the Literature. Int. J. Sport. Phys. Ther. 2019, 14, 845–859. [Google Scholar] [CrossRef]
- Wiewelhove, T.; Döweling, A.; Schneider, C.; Hottenrott, L.; Meyer, T.; Kellmann, M.; Pfeiffer, M.; Ferrauti, A. A Meta-Analysis of the Effects of Foam Rolling on Performance and Recovery. Front. Physiol. 2019, 10, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, B.L.; Harter, R.A.; Farnsworth, J. L, II. The Acute Effects of Foam Rolling and Dynamic Stretching on Athletic Performance: A Critically Appraised Topic. J. Sport Rehabil. 2021, 30, 501–506. [Google Scholar] [CrossRef]
- Giovanelli, N.; Vaccari, F.; Floreani, M.; Rejc, E.; Copetti, J.; Garra, M.; Biasutti, L.; Lazzer, S. Short-Term Effects of Rolling Massage on Energy Cost of Running and Power of the Lower Limbs. Int. J. Sport. Physiol. Perform. 2018, 13, 1337–1343. [Google Scholar] [CrossRef]
- Kalichman, L.; Ben David, C. Effect of self-myofascial release on myofascial pain, muscle flexibility, and strength: A narrative review. J. Bodyw. Mov. Ther. 2017, 21, 446–451. [Google Scholar] [CrossRef]
- Peacock, C.A.; Krein, D.D.; Silver, T.A.; Sanders, G.J.; Von Carlowitz, K.-P.A. An Acute Bout of Self-Myofascial Release in the Form of Foam Rolling Improves Performance Testing. Int. J. Exerc. Sci. 2014, 7, 202–211. [Google Scholar]
- Aboodarda, S.J.; Spence, A.J.; Button, D.C. Pain pressure threshold of a muscle tender spot increases following local and non-local rolling massage. BMC Musculoskelet. Disord. 2015, 16, 265. [Google Scholar] [CrossRef] [Green Version]
- Cavanaugh, M.T.; Döweling, A.; Young, J.D.; Quigley, P.J.; Hodgson, D.D.; Whitten, J.H.D.; Reid, J.C.; Aboodarda, S.J.; Behm, D.G. An acute session of roller massage prolongs voluntary torque development and diminishes evoked pain. Eur. J. Appl. Physiol. 2016, 117, 109–117. [Google Scholar] [CrossRef]
- Fritz, M.S.; MacKinnon, D.P. Required Sample Size to Detect the Mediated Effect. Psychol. Sci. 2007, 18, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Cheatham, S.W.; Stull, K.R.; Kolber, M.J. Roller massage: Is the numeric pain rating scale a reliable measurement and can it direct individuals with no experience to a specific roller density? J. Can. Chiropr. Assoc. 2018, 62, 161–169. [Google Scholar] [PubMed]
- Balsalobre-Fernández, C.; Glaister, M.; Lockey, R.A. The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sport. Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, S.; Gonzalez, M.P.; Dietze-Hermosa, M.S.; Eggleston, J.D.; Dorgo, S. Common Vertical Jump and Reactive Strength Index Measuring Devices: A Validity and Reliability Analysis. J. Strength Cond. Res. 2021, 35, 1234–1243. [Google Scholar] [CrossRef]
- Chen, Z.; Bian, C.; Liao, K.; Bishop, C.; Li, Y. Validity and Reliability of a Phone App and Stopwatch for the Measurement of 505 Change of Direction Performance: A Test-Retest Study Design. Front. Physiol. 2021, 12, 743800. [Google Scholar] [CrossRef]
- Haynes, T.; Bishop, C.; Antrobus, M.; Brazier, J. The validity and reliability of the My Jump 2 app for measuring the reactive strength index and drop jump performance. J. Sport. Med. Phys. Fit. 2019, 59, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Bogataj, Š.; Pajek, M.; Hadžić, V.; Andrašić, S.; Padulo, J.; Trajković, N. Validity, Reliability, and Usefulness of My Jump 2 App for Measuring Vertical Jump in Primary School Children. Int. J. Environ. Res. Public Health 2020, 17, 3708. [Google Scholar] [CrossRef]
- Ávila-Carvalho, L.; Conceição, F.; Escobar-Álvarez, J.A.; Gondra, B.; Leite, I.; Rama, L. The Effect of 16 Weeks of Lower-Limb Strength Training in Jumping Performance of Ballet Dancers. Front. Physiol. 2022, 12, 774327. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A Simple Method for Measurement of Mechanical Power in Jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Kuitunen, S.; Kyröläinen, H.; Avela, J.; Komi, P.V. Leg stiffness modulation during exhaustive stretch-shortening cycle exercise. Scand. J. Med. Sci. Sport. 2007, 17, 67–75. [Google Scholar] [CrossRef]
- Struzik, A. Measuring Leg Stiffness During Vertical Jumps: Theory and Methods; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- McGuigan, M.R.; Doyle, T.L.; Newton, M.; Edwards, D.J.; Nimphius, S.; Newton, R.U. Eccentric Utilization Ratio: Effect of Sport and Phase of Training. J. Strength Cond. Res. 2006, 20, 992–995. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.-B.; Dalleau, G.; Kyröläinen, H.; Jeannin, T.; Belli, A. A Simple Method for Measuring Stiffness during Running. J. Appl. Biomech. 2005, 21, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Pocock, S.J. Clinical Trials: A Practical Approach; John Wiley and Sons: Chichester, UK, 1983. [Google Scholar]
- Mills, E.J.; Chan, A.-W.; Wu, P.; Vail, A.; Guyatt, G.H.; Altman, D.G. Design, analysis, and presentation of crossover trials. Trials 2009, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Chow, S.C.; Liu, J.-P. Design and Analysis of Bioavailability and Bioequivalence Studies; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Laffaye, G.; Da Silva, D.T.; Delafontaine, A. Self-Myofascial Release Effect With Foam Rolling on Recovery After High-Intensity Interval Training. Front. Physiol. 2019, 10, 1287. [Google Scholar] [CrossRef]
- Sulowska-Daszyk, I.; Skiba, A. The Influence of Self-Myofascial Release on Muscle Flexibility in Long-Distance Runners. Int. J. Environ. Res. Public Health 2022, 19, 457. [Google Scholar] [CrossRef]
- Zhang, Q.; Trama, R.; Fouré, A.; Hautier, C.A. The Immediate Effects of Self-Myofacial Release on Flexibility, Jump Performance and Dynamic Balance Ability. J. Hum. Kinet. 2020, 75, 139–148. [Google Scholar] [CrossRef]
- Klich, S.; Smoter, M.; Michalik, K.; Bogdański, B.; Valera Calero, J.A.; Manuel Clemente, F.; Makar, P.; Mroczek, D. Foam rolling and tissue flossing of the triceps surae muscle: An acute effect on Achilles tendon stiffness, jump height and sprint performance–A randomized controlled trial. Res. Sport. Med. 2022. [Google Scholar] [CrossRef]
- Sullivan, K.M.; Silvey, D.B.J.; Button, D.C.; Behm, D.G. Roller-massager application to the hamstrings increases sit-and-reach range of motion within five to ten seconds without performance impairments. Int. J. Sport. Phys. Ther. 2013, 8, 228–236. [Google Scholar]
- MacDonald, G.Z.; Penney, M.D.; Mullaley, M.E.; Cuconato, A.L.; Drake, C.D.; Behm, D.G.; Button, D.C. An Acute Bout of Self-Myofascial Release Increases Range of Motion Without a Subsequent Decrease in Muscle Activation or Force. J. Strength Cond. Res. 2013, 27, 812–821. [Google Scholar] [CrossRef] [Green Version]
- Richman, E.D.; Tyo, B.M.; Nicks, C.R. Combined Effects of Self-Myofascial Release and Dynamic Stretching on Range of Motion, Jump, Sprint, and Agility Performance. J. Strength Cond. Res. 2019, 33, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Godwin, M.; Stanhope, E.; Bateman, J.; Mills, H. An Acute Bout of Self-Myofascial Release Does Not Affect Drop Jump Performance despite an Increase in Ankle Range of Motion. Sports 2020, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, A.; Brown, L.E.; Coburn, J.W.; Noffal, G.J. Effects of Foam Rolling on Vertical Jump Performance. Int. J. Kinesiol. Sport. Sci. 2015, 3, 38–42. [Google Scholar] [CrossRef]
- Lim, J.-H.; Park, C.-B. The immediate effects of foam roller with vibration on hamstring flexibility and jump performance in healthy adults. J. Exerc. Rehabil. 2019, 15, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Samanes, A.; Del Coso, J.; Hernández-Davó, J.L.; Moreno-Pérez, D.; Romero-Rodriguez, D.; Madruga-Parera, M.; Muñoz, A.; Moreno-Pérez, V. Acute effects of dynamic versus foam rolling warm-up strategies on physical performance in elite tennis players. Biol. Sport 2021, 38, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.; Beardsley, C. Specific and Cross-Over Effects of Foam Rolling on Ankle Dorsiflexion Range of Motion. Int. J. Sport. Phys. Ther. 2016, 11, 544–551. [Google Scholar]
- Jo, E.; Juache, G.A.; Saralegui, D.E.; Weng, D.; Falatoonzadeh, S. The Acute Effects of Foam Rolling on Fatigue-Related Impairments of Muscular Performance. Sports 2018, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Weerapong, P.; Hume, P.A.; Kolt, G.S. The Mechanisms of Massage and Effects on Performance, Muscle Recovery and Injury Prevention. Sport. Med. 2005, 35, 235–256. [Google Scholar] [CrossRef]
Group | General | Men | Women |
---|---|---|---|
Variable | Mean ± sd (95% CI) | Mean ± sd (95% CI) | Mean ± sd (95% CI) |
Age (years) | 21.8 ± 1.15 (21.36–22.23) | 22.14 ± 1.41 (21.33–22.95) | 21.50 ± 0.82 (21.06–21.94) |
Body height (m) | 1.74 ± 0.09 (1.71–1.78) | 1.82 ± 0.08 (1.77–1.87) | 1.69 ± 0.04 (1.671.71) |
Body mass (kg) | 70.06 ± 13.25 (65.11–75.01) | 80.18 ± 11.83 (73.35–87.01) | 61.22 ± 6.3 (57.86–64.57) |
Body Mass Index (kg/m2) | 22.72 ± 2.52 (21.78–23.66) | 24.08 ± 2.16 (22.84–25.33) | 21.54 ± 2.25 (20.34–22.74) |
Training sessions per week (n) | 3.76 ± 1.73 (3.11–4.41) | 3.79 ± 1.63 (2.85–4.72) | 3.75 ± 1.88 (2.75–4.75) |
Single training session duration (min) | 104.83 ± 26.01 (95.11–114.54) | 98.21 ± 25.09 (83.73–112.70) | 110.63 ± 26.20 (96.67–124.58) |
Weekly training volume (hours/week) | 6.48 ± 3.12 (5.31–7.64) | 6.28 ± 3.23 (4.42–8.14) | 6.66 ± 3.12 (4.99–8.32) |
Sport experience (years) | 8.9 ± 3.79 (7.48–10.31) | 8.36 ± 4.29 (5.88–10.83) | 8.06 ± 4.04 (5.91–10.22) |
Test (Jump) | Variable | Mean ± SD 95% CI | Mean ± SD 95% CI | Mean ± SD 95% CI | Effect Size | t | p |
---|---|---|---|---|---|---|---|
NO SI-SMR | SI-SMR | Difference | |||||
Squat Jump (SJ) | Jump height [cm] | 27.39 ± 6.46 25.10–29.69 | 28.35 ± 6.86 25.91–30.79 | 0.96 ± 2.63 0.02–1.89 | 0.14 | −2.09 | 0.0443 * |
Relative force [N/kg] | 18.30 ± 1.84 17.65–18.95 | 18.50 ± 2.43 17.64–19.36 | 0.20 ± 1.84 −0.45–0.85 | 0.09 | −0.63 | 0.5321 | |
Relative power [W/kg] | 21.29 ± 4.47 19.70–22.87 | 21.92 ± 5.33 20.03–23.81 | 0.63 ± 2.84 −0.37–1.64 | 0.13 | −1.28 | 0.2091 | |
Counteromovemnt Jump (CMJ) | Jump height [cm] | 28.21 ± 6.67 25.84–30.57 | 28.59 ± 6.61 26.25–30.94 | 0.39 ± 1.80 −0.25–1.03 | 0.06 | −1.24 | 0.2243 |
Relative force [N/kg] | 18.57 ± 1.99 17.86–19.27 | 18.56 ± 2.27 17.75–19.36 | 0.00 ± 1.75 17.76–19.37 | 0.00 | 0.01 | 0.9911 | |
Relative power [W/kg] | 21.93 ± 4.78 20.23–23.62 | 22.06 ± 4.95 20.30–23.82 | 0.13 ± 2.35 −0.70–0.96 | 0.03 | −0.31 | 0.7569 | |
CMJ height/ SJ height | Eccentric Utilization Ratio | 1.03 ± 0.09 1.00–1.06 | 1.01 ± 0.07 0.98–1.03 | 0.02 ± 0.09 0.01–0.05 | 0.02 | 1.23 | 0.2273 |
Drop Jump (DJ) | Jump height [cm] | 28.32 ± 6.62 25.97–30.67 | 29.11 ± 6.05 26.9731.26 | 0.80 ± 2.72 −0.017–1.76 | 0.12 | −1.69 | 0.1017 |
Relative force [N/kg] | 18.65 ± 2.13 17.89–19.40 | 18.75 ± 2.22 17.97–19.54 | 0.11 ± 1.97 −0.59–0.80 | 0.05 | −0.31 | 0.7605 | |
Relative power [W/kg] | 22.06 ± 4.95 20.31–23.82 | 22.48 ± 4.71 20.81–24.15 | 0.42 ± 3.08 −0.67–1.51 | 0.08 | −0.77 | 0.4445 | |
Reactive Strength Index | 1.46 ± 0.41 1.31–1.60 | 1.52 ± 0.52 1.33–1.70 | 0.06 ± 0.34 −0.05–0.18 | 0.13 | −1.05 | 0.3026 | |
Stiffness [kN/m] | 10.36 ± 4.32 8.82–11.89 | 11.06 ± 6.85 8.64–13.49 | 0.71 ± 5.35 −2.60–1.19 | 0.12 | −0.76 | 0.4535 |
Jump Test | Parameters | Group | NO SI-SMR | SI-SMR | Differences | F | p | η2 |
---|---|---|---|---|---|---|---|---|
Mean ± SD 95% CI | Mean ± SD 95% CI | |||||||
Squat Jump (SJ) | Jump height [cm] | A | 27.04 ± 1.77 (23.48–30.61) | 28.74 ± 1.77 (25.18–32.30) | 1.70 | 0.004 | 0.9490 | 0.01 |
B | 27.72 ± 1.90 (23.91–31.53) | 27.83 ± 1.90 (24.02–31.63) | 0.11 | |||||
Relative force [N/kg] | A | 18.40 ± 0.56 (17.26–19.54) | 18.90 ± 0.56 (17.76–20.04) | 0.5 | 0.904 | 0.3459 | 0.01 | |
B | 18.02 ± 0.60 (16.80–19.24) | 18.16 ± 0.60 (16.94–19.38) | 0.14 | |||||
Relative power [W/kg] | A | 21.25 ± 1.30 (18.63–23.87) | 22.57 ± 1.30 (19.95–25.19) | 1.32 | 0.268 | 0.6066 | 0.01 | |
B | 21.13 ± 1.39 (18.33–23.93) | 21.29 ± 1.39 (18.49–24.09) | 0.16 | |||||
Counter-movemnt Jump (CMJ) | Jump height [cm] | A | 27.96 ± 1.77 (24.41–31.51) | 28.85 ± 1.77 (25.30–32.40) | 0.89 | 0.002 | 0.9602 | 0.001 |
B | 28.41 ± 1.89 (24.61–32.20) | 28.23 ± 1.89 (24.43–32.02) | −0.18 | |||||
Relative force [N/kg] | A | 18.67 ± 0.53 (17.54–19.80) | 18.90 ± 0.56 (17.77–20.03) | 0.23 | 0.724 | 0.3984 | 0.01 | |
B | 18.15 ± 0.60 (16.94–19.37) | 18.42 ± 0.60 (17.21–19.63) | 0.27 | |||||
Relative power [W/kg] | A | 21.96 ± 1.29 (19.36–24.56) | 22.57 ± 1.29 (19.97–25.16) | 0.61 | 0.213 | 0.6461 | 0.01 | |
B | 21.44 ± 1.38 (18.66–24.22) | 21.85 ± 1.38 (19.07–24.63) | 0.41 | |||||
CMJ height/ SJ height | Eccentric Utilization Ratio | A | 1.02 ± 0.02 (0.98–1.06) | 1.03 ± 0.02 (0.99–1.07) | 0.01 | 0.598 | 0.4427 | 0.01 |
B | 1.01 ± 0.02 (0.97–1.05) | 1.04 ± 0.02 (1–1.09) | 0.03 | |||||
Drop Jump (DJ) | Jump height [cm] | A | 28.03 ± 1.69 (24.64–31.43) | 29.14 ± 1.69 (25.75–32.53) | 1.11 | 0.014 | 0.9078 | 0.01 |
B | 28.56 ± 1.81 (24.93–32.19) | 29.02 ± 1.81 (25.39–32.65) | 0.46 | |||||
Relative force [N/kg] | A | 18.71 ± 0.57 (17.56–19.87) | 19.03 ± 0.57 (17.87–20.18) | 0.32 | 0.401 | 0.5293 | 0.01 | |
B | 18.43 ± 0.61 (17.19–19.67) | 18.55 ± 0.61 (17.32–19.79) | 0.12 | |||||
Relative power [W/kg] | A | 22.06 ± 1.28 (19.47–24.64) | 22.85 ± 1.28 (20.27–25.43) | 0.79 | 0.104 | 0.7486 | 0.01 | |
B | 22.02 ± 1.37 (19.21–24.92) | 22.12 ± 1.39 (19.26–24.78) | 0.10 | |||||
Reactive Strength Index | A | 1.43 ± 0.12 (1.18–1.67) | 1.40 ± 0.12 (1.16–1.65) | −0.03 | 1.235 | 0.2710 | 0.02 | |
B | 1.48 ± 0.13 (1.21–1.74) | 1.64 ± 0.13 (1.37–1.90) | 0.16 | |||||
Stiffness [kN/m] | A | 9.9 ± 1.48 (6.93–12.86) | 13.2 ± 1.58 (10.03–16.38) | 3.31 | 2.67 | 0.1075 | 0.04 | |
B | 9.14 ± 1.48 (6.18–12.11) | 10.85 ± 1.58 (7.68–14.03) | −1.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koźlenia, D.; Domaradzki, J. Acute Effect of Short Intensive Self-Myofascial Release on Jump Performance in Amateur Athletes: A Randomized Cross-Over Study. Int. J. Environ. Res. Public Health 2022, 19, 16816. https://doi.org/10.3390/ijerph192416816
Koźlenia D, Domaradzki J. Acute Effect of Short Intensive Self-Myofascial Release on Jump Performance in Amateur Athletes: A Randomized Cross-Over Study. International Journal of Environmental Research and Public Health. 2022; 19(24):16816. https://doi.org/10.3390/ijerph192416816
Chicago/Turabian StyleKoźlenia, Dawid, and Jarosław Domaradzki. 2022. "Acute Effect of Short Intensive Self-Myofascial Release on Jump Performance in Amateur Athletes: A Randomized Cross-Over Study" International Journal of Environmental Research and Public Health 19, no. 24: 16816. https://doi.org/10.3390/ijerph192416816
APA StyleKoźlenia, D., & Domaradzki, J. (2022). Acute Effect of Short Intensive Self-Myofascial Release on Jump Performance in Amateur Athletes: A Randomized Cross-Over Study. International Journal of Environmental Research and Public Health, 19(24), 16816. https://doi.org/10.3390/ijerph192416816