Highly Efficient Treatment of Oily Sludge by a Novel High-Speed Stirring Method at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. High-Speed Stirring (HSS) Cleaning Device
2.3. Procedure
3. Results and Discussion
3.1. Single-Factor Experiment
3.2. Effects of Rotor Combination Mode on Residual Oil Rate of Oily Sludge
3.3. Response Surface Method to Determine the Optimal Cleaning Time of the Combined Rotor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, G.J.; Li, J.B.; Zeng, G.M. Recent Development in the Treatment of Oily Sludge from Petroleum Industry: A Review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef] [PubMed]
- Su, B.Y.; Huang, L.; Li, S.J.; Ding, L.Q.; Liu, B.; Zhang, A. Chemical-Microwave-Ultrasonic Compound Conditioning Treatment of Highly-Emulsified Oily Sludge in Gas Fields. Nat. Gas Ind. B 2019, 6, 412–418. [Google Scholar] [CrossRef]
- Yang, J.P.; Wang, W.J.; Yang, J. Development and Prospect of Oily Sludge Treatment. Oxid. Commun. 2015, 38, 2216–2224. [Google Scholar]
- Wang, Y.H.; Zhang, X.M.; Pan, Y.Y.; Chen, Y. Analysis of Oil Content in Drying Petroleum Sludge of Tank Bottom. Int. J. Hydrog. Energy 2017, 42, 18681–18684. [Google Scholar] [CrossRef]
- Chen, H.S.; Zhang, Q.M.; Yang, Z.J.; Liu, Y.S. Research on Treatment of Oily Sludge from the Tank Bottom by Ball Milling Combined with Ozone-Catalyzed Oxidation. ACS Omega 2020, 5, 12259–12269. [Google Scholar] [CrossRef]
- Chen, M.Y.; Liu, Z.; Wang, X.D.; Xu, Z.B. New Harmless and Recycling Treatment Technology and Development Direction of the Oily Sludge. Chem. Eng. Oil Gas 2011, 40, 313–317. [Google Scholar]
- Li, G.; Guo, S.H.; Ye, H.F. Thermal Treatment of Heavy Oily Sludge: Resource Recovery and Potential Utilization of Residual Asphalt-Like Emulsion as a Stabilization/Solidification Material. RSC Adv. 2015, 5, 105299–105306. [Google Scholar] [CrossRef]
- Hu, G.J.; Feng, H.B.; He, P.W.; Li, J.B.; Hewage, K.S.; Sadiq, R.H. Comparative Life-Cycle Assessment of Traditional and Emerging Oily Sludge Treatment Approaches. J. Clean. Prod. 2020, 251, 119594. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.B.; Thring, R.W.; Hu, X.; Song, X.Y. Oil Recovery from Refinery Oily Sludge via Ultrasound and Freeze/Thaw. J. Hazard. Mater. 2012, 203, 195–203. [Google Scholar] [CrossRef] [PubMed]
- He, S.L.; Tan, X.C.; Hu, X.; Gao, Y.X. Effect of Ultrasound on Oil Recovery from Crude Oil Containing Sludge. Environ. Technol. 2019, 40, 1401–1407. [Google Scholar] [CrossRef]
- Wang, L.T.; Sun, L.P.; Kang, J.C.; Wang, Y.F. Experimental Study on the Chemical Cleaning Technology of Oil Sludge in Offshore Oil Tank. Fresen. Environ. Bull. 2020, 29, 544–550. [Google Scholar]
- Al-Doury, M.M.I. Treatment of Oily Sludge Using Solvent Extraction. Petrol. Sci. Technol. 2019, 37, 190–196. [Google Scholar] [CrossRef]
- Jasmine, J.; Mukherji, S. Impact of Bioremediation Strategies on Slurry Phase Treatment of Aged Oily Sludge from a Refinery. J. Environ. Manag. 2019, 246, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.S. Several Technical Solutions to Oil Sludge Treatment in Oil Enterprises. Petrochem. Saf. Technol. 2012, 28, 61–64. [Google Scholar]
- Pu, Y.Q.; Yu, C.; Li, Z.L.; Wang, Y.H.; Chen, Y. Study of Thermo-Chemical Washing for Oily Sludge with Rhamnolipid. J. Zhejiang Ocean. Univ. Nat. Sci. 2014, 33, 572–575. [Google Scholar]
- Liu, X.N.; Yao, T.T.; Lai, R.Q.; Xiu, J.L.; Huang, L.X.; Sun, S.S.; Luo, Y.J.; Song, Z.Z.; Zhang, Z.Z. Recovery of Crude Oil from Oily Sludge in an Oilfield by Sophorolipid. Petrol. Sci. Technol. 2019, 37, 1582–1588. [Google Scholar] [CrossRef]
- Liao, C.J.; Cao, F.S.; Dai, S.J.; Zhao, Z.Y.; Liang, J.Y.; Lu, Y.Z. Experiment Study on Thermochemical Cleaning Process for Aged Oily Sludge in the Oilfield. Mod. Chem. Ind. 2021, 41, 159–162. [Google Scholar]
- Sun, B.Z.; Bai, L.F.; Wang, Q.; Zhang, X.X. Experiment Research on Washing Oil Shale Sludge by Thermochemical Method. Chem. Ind. Eng. Prog. 2014, 33, 1596–1600. [Google Scholar]
- Zhao, H.R.; Su, Y.J.; Ye, Y.; Ma, W.C.; Liu, G.Q. Study of Harmless Treatment of Oily Sludge in Refinery Works. Chem. Eng. Oil Gas 2003, 32, 396–398. [Google Scholar]
- Ramirez, D.; Collins, C.D. Maximisation of Oil Recovery from an Oil-Water Separator Sludge: Influence of Type, Concentration, and Application Ratio of Surfactants. Waste Manag. 2018, 82, 100–110. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, N.; Liu, S.J.; Miao, C.; Liu, X.L. Performance and Mechanism of Thermochemical Technology for Oily Sludge Cleaning. Chem. Ind. Eng. Prog. 2022, 41, 3333–3340. [Google Scholar]
- Yu, L.L.; Song, J.; Zheng, K.; Guo, L. Research on Hot Washing Treatment Process of Oily Sludge. Sci. Technol. Chem. Ind. 2014, 22, 29–33. [Google Scholar]
- Wu, Y.; Zhu, Y.; Sun, Y.; Wang, F.; Tian, X. Oily Sludge Separation Process on Condition of Washing. J. Liaoning Norm. Univ. Nat. Sci. Ed. 2011, 34, 192–194. [Google Scholar]
- Duan, M.; Wang, X.D.; Fang, S.W.; Zhao, B.; Li, C.C.; Xiong, Y. Treatment of Daqing Oily Sludge by Thermochemical Cleaning Method. Colloids Surf. A 2018, 554, 272–278. [Google Scholar] [CrossRef]
- Li, B.Y.; Liu, D.C.; Yin, T.; He, H.B.; Tang, X. Study on the Relationships between Linear Velocity and Shear Force on the Particle Size Distribution of Coarse Emulsion. Chin. J. Pharm. 2021, 19, 67–73. [Google Scholar]
- Badve, M.P.; Alpar, T.; Pandit, A.B.; Gogate, P.R.; Csoka, L. Modeling the Shear Rate and Pressure Drop in a Hydrodynamic Cavitation Reactor with Experimental Validation Based on KI Decomposition Studies. Ultrason. Sonochem. 2015, 22, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.L.; Chen, T.R.; Wang, G.Y.; Huang, B. Numerical Study on the Cavitation Flow in a Rotary Cavitation Generator. Trans. Beijing Inst. Technol. 2017, 37, 5–8. [Google Scholar]
Experiment Number | Combination | Stirring Speed (r/min) | Residual Oil Rate% | RSD (%) | Average Residual Oil Rate (%) | Petroleum Hydrocarbon Removal Rate (%) |
---|---|---|---|---|---|---|
1 | Rotor-C and then Rotor-V | 6000 | 1.26 | 4.360 | 1.26 | 88.0 |
1.32 | ||||||
1.21 | ||||||
2 | Rotor-V and then Rotor-C | 6000 | 3.57 | 2.241 | 3.54 | 66.3 |
3.45 | ||||||
3.60 |
Variables | Factors | Range and Level | ||||
---|---|---|---|---|---|---|
−1.414 | −1 | 0 | 1 | 1.414 | ||
Rotor-V cleaning time | A | 3.172 | 4 | 6 | 8 | 8.828 |
Rotor-C cleaning time | B | 3.172 | 4 | 6 | 8 | 8.828 |
Run Number | Rotor-V Cleaning Time (min) | Rotor-C Cleaning Time (min) | Residual Oil Rate (%) | |
---|---|---|---|---|
Actual | Predicted | |||
1 | 0 | 1.414 | 1.66 | 1.57 |
2 | 0 | −1.414 | 1.75 | 1.58 |
3 | −1 | 1 | 1.43 | 1.54 |
4 | −1 | −1 | 1.64 | 1.70 |
5 | 0 | 0 | 1.53 | 1.58 |
6 | −1.414 | 0 | 1.61 | 1.51 |
7 | 0 | 0 | 1.75 | 1.74 |
8 | 0 | 0 | 1.62 | 1.58 |
9 | 1 | −1 | 1.41 | 1.40 |
10 | 1 | 1 | 1.28 | 1.32 |
11 | 1.414 | 0 | 1.15 | 1.15 |
12 | 0 | 0 | 1.54 | 1.58 |
13 | 0 | 0 | 1.46 | 1.58 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 0.29 | 5 | 0.058 | 4.81 | 0.0316 | significant |
A-A | 0.13 | 1 | 0.13 | 10.96 | 0.0129 | |
B-B | 0.027 | 1 | 0.027 | 2.25 | 0.1771 | |
AB | 1.600 × 10−3 | 1 | 1.600 × 10−3 | 0.13 | 0.7270 | |
A2 | 0.11 | 1 | 0.11 | 9.06 | 0.0197 | |
B2 | 9.459 × 10−3 | 1 | 9.459 × 10−3 | 0.78 | 0.4063 | |
Residual | 0.085 | 7 | 0.012 | |||
Lack of Fit | 0.036 | 3 | 0.012 | 0.97 | 0.4878 | not significant |
Pure Error | 0.049 | 4 | 0.012 | |||
Cor Total | 0.38 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Li, K.; Wang, Y.; Zhao, J.; Tang, X.; Li, T.; Zhang, C. Highly Efficient Treatment of Oily Sludge by a Novel High-Speed Stirring Method at Room Temperature. Int. J. Environ. Res. Public Health 2022, 19, 16817. https://doi.org/10.3390/ijerph192416817
Zhu Y, Li K, Wang Y, Zhao J, Tang X, Li T, Zhang C. Highly Efficient Treatment of Oily Sludge by a Novel High-Speed Stirring Method at Room Temperature. International Journal of Environmental Research and Public Health. 2022; 19(24):16817. https://doi.org/10.3390/ijerph192416817
Chicago/Turabian StyleZhu, Yimin, Keqing Li, Yin Wang, Jiao Zhao, Xiaojia Tang, Tie Li, and Chenming Zhang. 2022. "Highly Efficient Treatment of Oily Sludge by a Novel High-Speed Stirring Method at Room Temperature" International Journal of Environmental Research and Public Health 19, no. 24: 16817. https://doi.org/10.3390/ijerph192416817
APA StyleZhu, Y., Li, K., Wang, Y., Zhao, J., Tang, X., Li, T., & Zhang, C. (2022). Highly Efficient Treatment of Oily Sludge by a Novel High-Speed Stirring Method at Room Temperature. International Journal of Environmental Research and Public Health, 19(24), 16817. https://doi.org/10.3390/ijerph192416817