A Novel Method Based on Hydrodynamic Cavitation for Improving Nitric Oxide Removal Performance of NaClO2
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Materials
2.2. Experimental
2.3. Nomenclature and Calculation of Removal Efficiency
2.4. Measurement of Gas Concentration and pH
3. Results and Discussion
3.1. NO Removal Enhanced by HC Mechanism
3.1.1. Effect of HC on NO Removal
3.1.2. Effect of ∆P on NO Removal
3.2. Effect of Initial pH of NaClO2 Solution on NO Removal
3.3. Effect of Reaction Temperature on NO Removal
3.4. Effect of NaClO2 Concentration on NO Removal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maritime Knowledge Centre. International Shipping Facts and Figures–Information Resources on Trade, Safety, Security, and the Environment. Available online: https://vdocument.in/international-shipping-facts-and-figures-56264a5f6198f.html?page=1 (accessed on 5 August 2022).
- Zhao, J.; Wei, Q.; Wang, S.; Ren, X. Progress of ship exhaust gas control technology. Sci. Total Environ. 2021, 799, 149437. [Google Scholar] [CrossRef]
- Tong, D.; Zhang, Q.; Davis, S.J.; Liu, F.; Zheng, B.; Geng, G.N.; Xue, T.; Li, M.; Hong, C.P.; Lu, Z.F.; et al. Targeted emission reductions from global super-polluting power plant units. Nat. Sustain. 2018, 1, 59–68. [Google Scholar] [CrossRef] [Green Version]
- De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F.; et al. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int. 2019, 125, 320–333. [Google Scholar] [CrossRef]
- Perera, F.P. Multiple threats to child health from fossil fuel combustion: Impacts of air pollution and climate change. Environ. Health Perspect. 2017, 125, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.C.; Klemes, J.J.; Dong, X.B.; Fan, W.G.; Xu, Z.H.; Wang, Y.T.; Varbanov, P.S. Air pollution terrain nexus: A review considering energy generation and consumption. Renew. Sustain. Energy Rev. 2019, 105, 71–85. [Google Scholar] [CrossRef]
- Hao, R.; Wang, X.; Zhao, X.; Xu, M.; Zhao, Y.; Mao, X.; Yuan, B.; Zhang, Y.; Gao, K. A novel integrated method of vapor oxidation with dual absorption for simultaneous removal of SO2 and NO: Feasibility and prospect. Chem. Eng. J. 2018, 333, 583–593. [Google Scholar] [CrossRef]
- Si, M.; Shen, B.; Adwek, G.; Xiong, L.; Liu, L.; Yuan, P.; Gao, H.; Liang, C.; Guo, Q. Review on the NO removal from flue gas by oxidation methods. J. Environ. Sci. 2021, 101, 49–71. [Google Scholar] [CrossRef]
- Lehtoranta, K.; Vesala, H.; Koponen, P.; Korhonen, S. Selective Catalytic Reduction Operation with Heavy Fuel Oil: NOx, NH3, and Particle Emissions. Environ. Sci. Technol. 2015, 49, 4735–4741. [Google Scholar] [CrossRef]
- Summary for Policymakers. In Climate Change 2013–The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1–30.
- Zheng, M.; Reader, G.T.; Hawley, J.G. Diesel engine exhaust gas recirculation––A review on advanced and novel concepts. Energy Convers. Manag. 2004, 45, 883–900. [Google Scholar] [CrossRef]
- Sharif, H.M.A.; Mahmood, N.; Wang, S.; Hussain, I.; Hou, Y.-N.; Yang, L.-H.; Zhao, X.; Yang, B. Recent advances in hybrid wet scrubbing techniques for NOx and SO2 removal: State of the art and future research. Chemosphere 2021, 273, 129695. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, B.; Hao, R.; Zhao, Y.; Wang, X. A critical review on the method of simultaneous removal of multi-air-pollutant in flue gas. Chem. Eng. J. 2019, 378, 122155. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, T.; Guo, Y.; Wang, J.; Wei, J.; Yu, Q. Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics. Chem. Eng. J. 2021, 420, 127588. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Yin, Y.; Pan, J.; Zhang, J. Advanced oxidation removal of NO and SO2 from flue gas by using ultraviolet/H2O2/NaOH process. Chem. Eng. Res. Des. 2014, 92, 1907–1914. [Google Scholar] [CrossRef]
- Gogate, P.R.; Patil, P.N. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes. Ultrason. Sonochem. 2015, 25, 60–69. [Google Scholar] [CrossRef]
- Saxena, S.; Saharan, V.K.; George, S. Enhanced synergistic degradation efficiency using hybrid hydrodynamic cavitation for treatment of tannery waste effluent. J. Clean. Prod. 2018, 198, 1406–1421. [Google Scholar] [CrossRef]
- Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.T.; Černík, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Adewuyi, Y.G.; Khan, M.A. Nitric oxide removal by combined persulfate and ferrous–EDTA reaction systems. Chem. Eng. J. 2015, 281, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-H.; Xu, H.-Z.; Li, Y.-B.; Luo, Y.; Zhang, L.-L.; Chu, G.-W. Nox removal from gas mixture intensified by rotating packed bed with NaClO2 preoxidation. Chem. Eng. J. 2022, 430, 132671. [Google Scholar] [CrossRef]
- Guo, R.-T.; Yu, Y.-L.; Pan, W.-G.; Ding, H.-L.; Xin, Z.-L.; Zhang, X.-B.; Jin, Q.; Ding, C.-G.; Guo, S.-Y. Absorption of NO by Aqueous Solutions of KMnO4/H2SO4. Sep. Sci. Technol. 2014, 49, 2085–2089. [Google Scholar] [CrossRef]
- Hao, R.; Zhang, Y.; Wang, Z.; Li, Y.; Yuan, B.; Mao, X.; Zhao, Y. An advanced wet method for simultaneous removal of SO2 and NO from coal-fired flue gas by utilizing a complex absorbent. Chem. Eng. J. 2017, 307, 562–571. [Google Scholar] [CrossRef]
- Hao, R.; Wang, X.; Liang, Y.; Lu, Y.; Cai, Y.; Mao, X.; Yuan, B.; Zhao, Y. Reactivity of NaClO2 and HA-Na in air pollutants removal: Active species identification and cooperative effect revelation. Chem. Eng. J. 2017, 330, 1279–1288. [Google Scholar] [CrossRef]
- Hao, R.; Yang, S.; Zhao, Y.; Zhang, Y.; Yuan, B.; Mao, X. Follow-up research of ultraviolet catalyzing vaporized H2O2 for simultaneous removal of SO2 and NO: Absorption of NO2 and NO by Na-based WFGD byproduct (Na2SO3). Fuel Process. Technol. 2017, 160, 64–69. [Google Scholar] [CrossRef]
- Kang, M.S.; Shin, J.; Yu, T.U.; Hwang, J. Simultaneous removal of gaseous NOx and SO2 by gas-phase oxidation with ozone and wet scrubbing with sodium hydroxide. Chem. Eng. J. 2020, 381, 122601. [Google Scholar] [CrossRef]
- Hao, R.; Mao, X.; Wang, Z.; Zhao, Y.; Wang, T.; Sun, Z.; Yuan, B.; Li, Y. A novel method of ultraviolet/NaClO2-NH4OH for NO removal: Mechanism and kinetics. J. Hazard. Mater. 2019, 368, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Deshwal, B.R.; Kundu, N. Comparing Acidic Sodium Hypochlorite and Sodium Chlorite Solutions for Controlling Nitrogen Oxides Emission. Environ. Eng. Sci. 2018, 35, 430–436. [Google Scholar] [CrossRef]
- Deshwal, B.R.; Lee, S.H.; Jung, J.H.; Shon, B.H.; Lee, H.K. Study on the removal of NOx from simulated flue gas using acidic NaClO2 solution. J. Environ. Sci. 2008, 20, 33–38. [Google Scholar] [CrossRef]
- Han, Z.; Lan, T.; Han, Z.-T.; Yang, S.; Dong, J.M.; Sun, D.D.; Yan, Z.; Pan, X.; Song, L. Simultaneous Removal of NO and SO2 from Exhaust Gas by Cyclic Scrubbing and Online Supplementing pH-Buffered NaClO2 Solution. Energy Fuels 2019, 33, 6591–6599. [Google Scholar] [CrossRef]
- Hao, R.; Yang, S.; Yuan, B.; Zhao, Y. Simultaneous desulfurization and denitrification through an integrative process utilizing NaClO2/Na2S2O8. Fuel Process. Technol. 2017, 159, 145–152. [Google Scholar] [CrossRef]
- Charpentier, J.-C. Mass-Transfer Rates in Gas-Liquid Absorbers and Reactors. In Advances in Chemical Engineering; Drew, T.B., Cokelet, G.R., Hoopes, J.W., Vermeulen, T., Eds.; Academic Press: Cambridge, MA, USA, 1981; Volume 11, pp. 1–133. [Google Scholar]
- Ge, M.; Sun, C.; Zhang, G.; Coutier-Delgosha, O.; Fan, D. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification. Ultrason. Sonochemistry 2022, 86, 106035. [Google Scholar] [CrossRef]
- Sun, X.; Liu, S.; Zhang, X.; Tao, Y.; Boczkaj, G.; Yoon, J.Y.; Xuan, X. Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization. Bioresour. Technol. 2022, 345, 126251. [Google Scholar] [CrossRef]
- Song, L.G.; Yang, J.G.; Yu, S.B.; Xu, M.Y.; Liang, Y.C.; Pan, X.X.; Yao, L. Ultra-high efficient hydrodynamic cavitation enhanced oxidation of nitric oxide with chlorine dioxide. Chem. Eng. J. 2019, 373, 767–779. [Google Scholar] [CrossRef]
- Yang, J.; Song, L.; Wei, Y.; Sui, H.; Deng, C.; Zhang, B.; Lu, K.; Xu, M.; Han, Z.; Pan, X. A novel one-step wet denitration method by hydrodynamic cavitation and chlorine dioxide. J. Environ. Chem. Eng. 2022, 10, 107897. [Google Scholar] [CrossRef]
- Yang, J.; Song, L.; Deng, C.; Sui, H.; Dionysiou, D.D.; Han, Z.; Xu, M.; Pan, X. A new multi-component marine exhaust cleaning method using combined hydrodynamic cavitation and chlorine dioxide. Sep. Purif. Technol. 2023, 306, 122573. [Google Scholar] [CrossRef]
- Song, L.; Yang, J.; Sui, H.; Wei, Y.; Deng, C.; Meng, L.; Guo, F.; Han, Z.; Pan, X.; Dionysiou, D.D. A novel method based on hydrodynamic cavitation to effectively remove NO2. Chem. Eng. J. 2023, 453, 139562. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, R.; Yuan, B.; Jiang, J. Simultaneous removal of SO2, NO and Hg0 through an integrative process utilizing a cost-effective complex oxidant. J. Hazard. Mater. 2016, 301, 74–83. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, T.-X.; Chen, Z.-Y.; Du, Y.-R. Simultaneous removal of SO2 and NO using M/NaClO2 complex absorbent. Chem. Eng. J. 2010, 160, 42–47. [Google Scholar] [CrossRef]
- Gogate, P.R.; Pandit, A.B. A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrason. Sonochemistry 2005, 12, 21–27. [Google Scholar] [CrossRef]
- McNamara, W.B.; Didenko, Y.T.; Suslick, K.S. Sonoluminescence temperatures during multi-bubble cavitation. Nature 1999, 401, 772–775. [Google Scholar] [CrossRef]
- Xu, H.; Glumac, N.G.; Suslick, K.S. Temperature inhomogeneity during multibubble sonoluminescence. Angew. Chem. (Int. Ed. Engl.) 2010, 49, 1079–1082. [Google Scholar] [CrossRef]
- Flannigan, D.J.; Suslick, K.S. Plasma formation and temperature measurement during single-bubble cavitation. Nature 2005, 434, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; You, W.; Xuan, X.; Ji, L.; Xu, X.; Wang, G.; Zhao, S.; Boczkaj, G.; Yoon, J.Y.; Chen, S. Effect of the cavitation generation unit structure on the performance of an advanced hydrodynamic cavitation reactor for process intensifications. Chem. Eng. J. 2021, 412, 128600. [Google Scholar] [CrossRef]
- Xuan, X.; Wang, M.; You, W.; Manickam, S.; Tao, Y.; Yong Yoon, J.; Sun, X. Hydrodynamic cavitation-assisted preparation of porous carbon from garlic peels for supercapacitors. Ultrason. Sonochemistry 2023, 106333. [Google Scholar] [CrossRef]
- Suslick, K.S.; Eddingsaas, N.C.; Flannigan, D.J.; Hopkins, S.D.; Xu, H.X. The chemical history of a bubble. Accounts Chem. Res. 2018, 51, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
- McNamara, W.B.; Didenko, Y.T.; Suslick, K.S. Pressure during sonoluminescence. J. Phys. Chem. B 2003, 107, 7303–7306. [Google Scholar] [CrossRef] [Green Version]
- Crum, L.A. Resource paper: Sonoluminescence. J. Acoust. Soc. Am. 2015, 138, 2181–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adewuyi, Y.G. Sonochemistry: Environmental science and engineering applications. Ind. Eng. Chem. Res. 2001, 40, 4681–4715. [Google Scholar] [CrossRef]
- Pereira, M.C.; Oliveira, L.C.A.; Murad, E. Iron oxide catalysts: Fenton and Fenton-like reactions—A review. Clay Miner. 2012, 47, 285–302. [Google Scholar] [CrossRef]
- Didenko, Y.T.; Suslick, K.S. The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 2002, 418, 394–397. [Google Scholar] [PubMed]
- Gagol, M.; Przyjazny, A.; Boczkaj, G. Wastewater treatment by means of advanced oxidation processes based on cavitation—A review. Chem. Eng. J. 2018, 338, 599–627. [Google Scholar] [CrossRef]
- Rajoriya, S.; Bargole, S.; George, S.; Saharan, V.K. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents. J. Hazard. Mater. 2018, 344, 1109–1115. [Google Scholar] [CrossRef]
- Fang, P.; Tang, Z.; Chen, X.; Huang, J.; Chen, D.; Tang, Z.; Cen, C. Split, partial oxidation and mixed absorption: A novel process for synergistic removal of multiple pollutants from simulated flue gas. Ind. Eng. Chem. Res. 2017, 56, 5116–5126. [Google Scholar] [CrossRef]
- Li, D.; Xiao, Z.; Bin Aftab, T.; Xu, S. Flue gas denitration by wet oxidation absorption methods: Current status and development. Environ. Eng. Sci. 2018, 35, 1151–1164. [Google Scholar] [CrossRef]
- Lin, F.; Wang, Z.; Ma, Q.; He, Y.; Whiddon, R.; Zhu, Y.; Liu, J. N2O5 Formation Mechanism during the Ozone-Based Low-Temperature Oxidation deNOx Process. Energy Fuels 2016, 30, 5101–5107. [Google Scholar] [CrossRef]
- Obvintseva, L.A.; Gubanova, D.P. Determination of chlorine and chlorine dioxide in air with semiconductor sensors. J. Anal. Chem. 2004, 59, 780–784. [Google Scholar] [CrossRef]
- Adewuyi, Y.G.; Sakyi, N.Y. Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature. Ind. Eng. Chem. Res. 2013, 52, 11702–11711. [Google Scholar] [CrossRef]
- Yang, C.-L.; Shaw, H. Aqueous absorption of nitric oxide induced by sodium chlorite oxidation in the presence of sulfur dioxide. Environ. Prog. 1998, 17, 80–85. [Google Scholar] [CrossRef]
- Gong, P.; Li, X. Promoting Effect of H+ and Other Factors on NO Removal by Using Acidic NaClO2 Solution. Energies 2019, 12, 2966. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-W.; Choi, S.; Park, D.-W. Simultaneous treatment of NO and SO2 with aqueous NaClO2 solution in a wet scrubber combined with a plasma electrostatic precipitator. J. Hazard. Mater. 2015, 285, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Deshwal, B.R.; Jo, H.-D.; Lee, H.-K. Reaction Kinetics of Decomposition of Acidic Sodium Chlorite. Can. J. Chem. Eng. 2004, 82, 619–623. [Google Scholar] [CrossRef]
- Flagiello, D.; Di Natale, F.; Erto, A.; Lancia, A. Wet oxidation scrubbing (WOS) for flue-gas desulphurization using sodium chlorite seawater solutions. Fuel 2020, 277, 118055. [Google Scholar] [CrossRef]
- Flagiello, D.; Erto, A.; Lancia, A.; Di Natale, F. Advanced Flue-Gas cleaning by wet oxidative scrubbing (WOS) using NaClO2 aqueous solutions. Chem. Eng. J. 2022, 447, 137585. [Google Scholar] [CrossRef]
- Chin, T.; Tam, I.C.K.; Yin, C.-Y. Comparison of various chemical compounds for the removal of SO2 and NOx with wet scrubbing for marine diesel engines. Environ. Sci. Pollut. Res. 2022, 29, 8873–8891. [Google Scholar] [CrossRef] [PubMed]
- Brogren, C.; Karlsson, H.T.; Bjerle, I. Absorption of NO in an aqueous solution of NaClO2. Chem. Eng. Technol. 1998, 21, 61–70. [Google Scholar] [CrossRef]
- Deshwal, B.R.; Jin, D.S.; Lee, S.H.; Moon, S.H.; Jung, J.H.; Lee, H.K. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor. J. Hazard. Mater. 2008, 150, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Petkovšek, M.; Dular, M. Cavitation dynamics in water at elevated temperatures and in liquid nitrogen at an ultrasonic horn tip. Ultrason. Sonochemistry 2019, 58, 104652. [Google Scholar] [CrossRef] [PubMed]
- Brennen, C.E. Cavitation and Bubble Dynamics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Hattori, S.; Taruya, K.; Kikuta, K.; Tomaru, H. Cavitation erosion of silver plated coatings considering thermodynamic effect. Wear 2013, 300, 136–142. [Google Scholar] [CrossRef]
- Wei, J.; Luo, Y.; Yu, P.; Cai, B.; Tan, H. Removal of NO from flue gas by wet scrubbing with NaClO2/(NH2)2CO solutions. J. Ind. Eng. Chem. 2009, 15, 16–22. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, W. Simultaneous desulfurization and denitrification of sintering flue gas via composite absorbent. Chin. J. Chem. Eng. 2016, 24, 1104–1111. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Hao, R.; Qi, M. Integrative process of preoxidation and absorption for simultaneous removal of SO2, NO and Hg0. Chem. Eng. J. 2015, 269, 159–167. [Google Scholar] [CrossRef]
- Fang, P.; Tang, Z.; Chen, X.; Zhong, P.; Huang, J.; Tang, Z.; Cen, C. Simultaneous removal of NOx and SO2 through a simple process using a composite absorbent. Sustainability 2018, 10, 4350. [Google Scholar] [CrossRef] [Green Version]
- Mazzei. A Injection Drawing of Model 287. Available online: https://mazzei.net/wp-content/uploads/2021/12/0287-REV-A-Inj_Drawing_2014-08-14_SECURED-1.pdf (accessed on 5 August 2022).
Equipment | Equipment Type | Manufacturer |
---|---|---|
Flue gas analyzer | Gasboard-3000UV | Cubic-Ruiyi Co., Ltd., Wuhan, China |
High-speed camera | FASTCAM Mini UX50 | Photron, San Diego, CA, USA |
pH meter | S210 | Mettler-Toledo Instruments Co., Ltd., Columbus, OH, USA |
Dryer | XX100A-03 | Suzhou Xiaoxiong Electric Co., Ltd., Suzhou, China |
HC reactor | Model 287 | Mazzei Injector Company, LLC, Bakersfield, CA, USA |
Milli-Q Plus water purification system | Master-Q15 | Millipore, Burlington, MA, USA |
Reagent | Purity (Concentration) | Manufacturer |
---|---|---|
NaClO2 | AR | Sinopharm Chemical Reagent Co., Shanghai, China |
HCl | 36–38% | Sinopharm Chemical Reagent Co. |
N2 | 99.999% | Dalian Special Gases Co., Ltd., Baotou, China |
NO/N2 | 1000 ppmv | Dalian Special Gases Co., Ltd. |
HC | Hydrodynamic cavitation | TηNOx,100% | The time of ηNOx = 100% (min) |
∆P | Differential pressure (bar) | ηNOx | The removal efficiency of NOx (%) |
ηNO | The removal efficiency of NO (%) | η● | The removal efficiency of NOx when NO is initially detected by the flue gas analyzer (%) |
ηNOx initial | The initial removal efficiency of NOx with an initial pH of 4 − 7 (%) | ηNOx max | The maximum removal efficiency of NOx with an initial pH of 4 − 7 (%) |
TηNO,100% | The time of ηNO = 100% (min) | Cv | Cavitation number |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Wei, Y.; Deng, C.; Yang, J.; Sui, H.; Guo, F.; Meng, L.; Zhao, X.; Wei, S.; Sun, D.; et al. A Novel Method Based on Hydrodynamic Cavitation for Improving Nitric Oxide Removal Performance of NaClO2. Int. J. Environ. Res. Public Health 2023, 20, 3684. https://doi.org/10.3390/ijerph20043684
Song L, Wei Y, Deng C, Yang J, Sui H, Guo F, Meng L, Zhao X, Wei S, Sun D, et al. A Novel Method Based on Hydrodynamic Cavitation for Improving Nitric Oxide Removal Performance of NaClO2. International Journal of Environmental Research and Public Health. 2023; 20(4):3684. https://doi.org/10.3390/ijerph20043684
Chicago/Turabian StyleSong, Liguo, Yuhang Wei, Chengqi Deng, Jingang Yang, Hao Sui, Feng Guo, Lingrun Meng, Xingda Zhao, Shiping Wei, Deping Sun, and et al. 2023. "A Novel Method Based on Hydrodynamic Cavitation for Improving Nitric Oxide Removal Performance of NaClO2" International Journal of Environmental Research and Public Health 20, no. 4: 3684. https://doi.org/10.3390/ijerph20043684
APA StyleSong, L., Wei, Y., Deng, C., Yang, J., Sui, H., Guo, F., Meng, L., Zhao, X., Wei, S., Sun, D., Han, Z., Xu, M., & Pan, X. (2023). A Novel Method Based on Hydrodynamic Cavitation for Improving Nitric Oxide Removal Performance of NaClO2. International Journal of Environmental Research and Public Health, 20(4), 3684. https://doi.org/10.3390/ijerph20043684