Microplastics as Emerging Food Contaminants: A Challenge for Food Safety
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Location | Food | Total Count of MPs | Estimated Intake of MPs When Drinking 2 L Water/Day | MPs Size | Composition of MPs | MPs Shape | Reference |
---|---|---|---|---|---|---|---|
Germany | Reusable plastic bottled water | 3633 particles/L | 7266 particles/day | 90% < 5 μm | PET, PE, PP | Not specified | [56] |
Single use plastic bottled water | 2649 ± 2857 particles/L | 5298 ± 5714 particles/day | |||||
Glass bottled water | 3074 ± 2531 particles/L | 6148 ± 5062 particles/day | |||||
Asia, Australia, Europe, and North America | Bottled water | 4–16,813 particles/L | 8–33,626 particles/day | 1- > 5000 μm. | PE, PP, PS, PVC, PET | Fragments Fibres Films Foam Pellets | [53] |
Tap water | 10−4–100 particles/L | 2 × 10−4–200 particles/day | |||||
Germany | Raw water (ground water) | 7 particles/m3 (7 × 10−3 particles/L) | 0.014 particles/day | 50–150 μm | PE, PA, PS, PVC | Fibres | [83] |
Saudi Arabia | Drinking water | 1.9–4.7 particles/L | 3.8–9.4 particles/day | 25–500 μm. | PE, PS, PET. | Not specified | [84] |
Location | Total Count of MPs | Estimated Intake (EDI) When a 70.68 g/day Edible Portion Is Ingested | MPs Size | Composition of MPs | MPs Shape | Reference |
---|---|---|---|---|---|---|
Germany | 0.36–0.47 particles/g w.w. | 25.44–33.22 particles/day | 5–25 µm | Not specified | Fibres Particles | [89] |
English Channel and Southern North Sea | 0.68 ± 0.55 particles/g w.w. | 48.06 ± 38.87 particles/day | 200–1000 μm | Not specified | Fibres | [90] |
Coast of Scotland | 3.0 ± 0.9 particles/g w.w. | 212.04 ± 63.612 particles/day | Not specified | PET, PU | Fibres | [51] |
3.2 ± 0.52 particles/mussel | - | |||||
South Korea | 0.15 ± 0.20 particles/g | 10.60 ± 14.14 particles/day | 43–4720 µm 65% < 300 µm | PE, PP. PS, PES | Fragments: 78% Fibres: 23% | [50] |
0.97 ± 0.74 particles/individual | - | |||||
China | 0.5–3.3 particles/individual | - | 7–5000 µm | CPE, PET, PVDF, PVDC-PE, PVE, Nylon, PE, PEI, PVDC-PAN, PVC, CPE, Rayon. | Fibres Fragments Films Granules | [91] |
South Korea | 1.21–2.19 particles/individual | - | 50–5000 µm | PP, PES, PET, PE, PS, PA, PVA, PU, PVC, PTFE. | Fragments Fibres Films Granules | [86] |
India | 0–0.008 particles/g | 0–0.565 particles/g | 100–300 µm | PS, PP, PE. | Fragments Sheets Fibres | [92] |
Location | Total Count of MPs | Estimated Daily Intake (EDI) When a 70.68 g/day Edible Portion Is Ingested | MPs Size | Composition of MPs | MPs Shape | Reference |
---|---|---|---|---|---|---|
Portuguese coast | 0.27 ± 0.63 particles/fish | - | 217–4810 µm | PP, PE | Fibres: 65.8% Fragments: 34.2% | [48] |
Portugal, Mondego estuary | 1.67 ± 0.27 particles/fish | - | <1000–5000 µm | PES, PP | Fibres Fragments | [93] |
Ireland | 103 ± 41–183 ± 51 particles/fish | - | 100–5000 µm | EVA, EPDM, PVF, PS, PTFE, PET, PP | Fibres Fragments Films | [88] |
Adriatic Sea | 2014: 1.73 ± 0.05 particles/fish | - | <100–500 µm | PVC, PP, PE, PES, PA | Fragments: 78% Fibres: 28% | [46] |
2015: 1.64 ± 0.1 particles/fish | - | [87] | ||||
Egypt | 28–7527 particles/fish | - | ≤25–≤2000 µm | PEVA, LDPE, HDPE, PET, PP, Nylon | Fragments Fibres Foam | [87] |
USA, Charleston Harbour | 5.8 ± 1.6 particles/g | 409.94 ± 113.09 particles/day | Not specified | HDPE, LDPE, PS | Fibres Fragments Foam | [22] |
Location | Food | Total Count of MPs | Estimated Intake (EDI) When a 9.4 g/day Portion Is Ingested | MPs Size | Composition of MPs | MPs Shape | Reference |
---|---|---|---|---|---|---|---|
China | Sea Salt | 550–681 particles/kg | 5.17–6.40 particles/day | 45–4300 μm | PE, PET, cellophane | Fragments Fibres Pellets | [95] |
Rock Salt | 7–204 particles/kg | 0.07–1.92 particles/day | |||||
Lake Salt | 43–364 particles/kg | 0.40–3.42 particles/day | |||||
Spain | Table Salt | 50–280 particles/kg | 0.47–2.63 particles/day | 10–3500 μm | PET, PP, PE | Fibres | [96] |
Italy | Sea Salt | 1.57–8.23 particles/g | 0.015–0.08 particles/day | 4–2100 µm | Not specified | Fragments Fibres Granules Films Foam | [94] |
Croatia | Sea Salt | 27.13–31.68 particles/g | 0.26–0.29 particles/day | 15–4628 µm | |||
India (Gujarat) | Salt | 46–115 particles/200 g | 0.43–1.08 particles/day | 100–1000 µm | PE, PVC, PS. | Fragments Fibres Films | [97] |
India (Tamil Nadu) | 23–101 particles/200 g | 0.22–0.95 particles/day | |||||
India | Salt | 5–21 particles/10 g | 0.05–0.20 particles/day | Not specified | LDPE, PP, PET, Nylon. | Fibres | [98] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Polyethylene | PE |
Polypropylene | PP |
Polyvinyl chloride | PVC |
Polystyrene | PS |
Polyethylene terephthalate | PET |
Polyurethane | PU |
Polyacrylonitrile | PAN |
Polycarbonate | PC |
Polyester | PES |
Acrylonitrile butadiene styrene | ABS |
Polyphenylene sulfide | PPS |
Polyamide | PA |
Ethylene vinyl acetate | EVA |
Chlorinated polyethylene | CPE |
Polyvinylidene fluoride | PVDF |
Polyvinylidene chloride | PVDC |
Polyvinyl ethers | PVE |
Polyethylenimine | PEI |
Polyvinyl alcohol | PVA |
Polytetrafluoroethylene | PTFE |
High-density polyethylene | HDPE |
Low-density polyethylene | LDPE |
Ethylene propylene diene monomer | EPDM |
Polyvinyl fluoride | PVF |
References
- Jambeck Jenna, R.; Roland, G.; Chris, W.; Siegler Theodore, R.; Miriam, P.; Anthony, A.; Ramani, N.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Alexy, P.; Anklam, E.; Emans, T.; Furfari, A.; Galgani, F.; Hanke, G.; Koelmans, A.; Pant, R.; Saveyn, H.; Sokull Kluettgen, B. Managing the analytical challenges related to micro- and nanoplastics in the environment and food: Filling the knowledge gaps. Food Addit. Contam. Part A 2020, 37, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrício Silva, A.L.; Prata, J.C.; Walker, T.R.; Duarte, A.C.; Ouyang, W.; Barcelò, D.; Rocha-Santos, T. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J. 2021, 405, 126683. [Google Scholar] [CrossRef]
- Jennifer, S.; Adyel Tanveer, M. Accumulation of plastic waste during COVID-19. Science 2020, 369, 1314–1315. [Google Scholar] [CrossRef]
- Akhbarizadeh, R.; Dobaradaran, S.; Nabipour, I.; Tangestani, M.; Abedi, D.; Javanfekr, F.; Jeddi, F.; Zendehboodi, A. Abandoned COVID-19 personal protective equipment along the Bushehr shores, the Persian Gulf: An emerging source of secondary microplastics in coastlines. Mar. Pollut. Bull. 2021, 168, 112386. [Google Scholar] [CrossRef]
- Microplásticos. Available online: https://echa.europa.eu/es/hot-topics/microplastics (accessed on 21 September 2021).
- Guerranti, C.; Martellini, T.; Perra, G.; Scopetani, C.; Cincinelli, A. Microplastics in cosmetics: Environmental issues and needs for global bans. Environ. Toxicol. Pharmacol. 2019, 68, 75–79. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Fotopoulou, K.; Karapanagioti, H. Degradation of Various Plastics in the Environment; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shruti, V.C.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Kutralam-Muniasamy, G. Reusable masks for COVID-19: A missing piece of the microplastic problem during the global health crisis. Mar. Pollut. Bull. 2020, 161, 111777. [Google Scholar] [CrossRef] [PubMed]
- Fadare, O.O.; Okoffo, E.D. COVID-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef]
- Aragaw, T.A. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar. Pollut. Bull. 2020, 159, 111517. [Google Scholar] [CrossRef]
- Holmes, R.; Ma, J.; Andra, S.S.; Wang, H. Effect of common consumer washing methods on bisphenol A release in tritan drinking bottles. Chemosphere 2021, 277, 130355. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Lehmann, A.; Ryo, M.; Bergmann, J. Shaping Up: Toward Considering the Shape and Form of Pollutants. Environ. Sci. Technol. 2019, 53, 7925–7926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Costa, J.P.; Santos, P.S.M.; Duarte, A.C.; Rocha-Santos, T. (Nano)plastics in the environment—Sources, fates and effects. Sci. Total Environ. 2016, 566–567, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Lehtiniemi, M.; Hartikainen, S.; Näkki, P.; Engström-Öst, J.; Koistinen, A.; Setälä, O. Size matters more than shape: Ingestion of primary and secondary microplastics by small predators. Food Webs 2018, 17, e00097. [Google Scholar] [CrossRef]
- Desforges, J.; Galbraith, M.; Dangerfield, N.; Ross, P. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 2014, 79, 94–99. [Google Scholar] [CrossRef]
- Sul, J.; Costa, M. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2013, 185, 352–364. [Google Scholar] [CrossRef]
- Acosta-Coley, I.; Olivero-Verbel, J. Microplastic resin pellets on an urban tropical beach in Colombia. Environ. Monit. Assess. 2015, 187, 435–437. [Google Scholar] [CrossRef]
- Napper, I.; Thompson, R. Plastic Debris in the Marine Environment: History and Future Challenges. Global Chall. 2020, 4, 1900081. [Google Scholar] [CrossRef]
- Parker, B.W.; Beckingham, B.A.; Ingram, B.C.; Ballenger, J.C.; Weinstein, J.E.; Sancho, G. Microplastic and tire wear particle occurrence in fishes from an urban estuary: Influence of feeding characteristics on exposure risk. Mar. Pollut. Bull. 2020, 160, 111539. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Dick Vethaak, A.; Lavorante, B.R.B.O.; Lundebye, A.; Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toussaint, B.; Raffael, B.; Angers-Loustau, A.; Gilliland, D.; Kestens, V.; Petrillo, M.; Rio-Echevarria, I.; Van den Eede, G. Review of micro- and nanoplastic contamination in the food chain. Food Addit. Contam. Part A 2019, 36, 639–673. [Google Scholar] [CrossRef]
- Waring, R.H.; Harris, R.M.; Mitchell, S.C. Plastic contamination of the food chain: A threat to human health? Maturitas 2018, 115, 64–68. [Google Scholar] [CrossRef]
- Gallo, F.; Fossi, C.; Weber, R.; Santillo, D.; Sousa, J.; Ingram, I.; Nadal, A.; Romano, D. Marine litter plastics and microplastics and their toxic chemicals components: The need for urgent preventive measures. Environ. Sci. Europe 2018, 30, 13. [Google Scholar] [CrossRef] [PubMed]
- Rubio Armendáriz, C.; Daschner, Á.; González Fandos, E.; González Muñoz, M.J.; Moreno-Arribas, M.V.; Talens Oliag, P.; de Castro, G.; Bustos, J. Informe del comité científico de la agencia española de seguridad alimentaria y nutrición (AESAN) sobre la presencia y la seguridad de los plásticos como contaminantes en los alimentos. Agencia Española Segur. Aliment. Nutr. (AESAN) 2019, 30, 49–84. [Google Scholar]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef] [Green Version]
- Hantoro, I.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Widianarko, B.; Ragas, A.M.J. Microplastics in coastal areas and seafood: Implications for food safety. Food Addit. Contam. Part A 2019, 36, 674–711. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain, (CONTAM) Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016, 14, e04501. [CrossRef] [Green Version]
- SAPEA. Working Group on Microplastics a Scientific Perspective on Microplastics in Nature and Society; SAPEA: Berlin, Germany, 2019; Available online: https://doi.org/10.26356/microplastics (accessed on 19 August 2021). [CrossRef]
- Skåre, J.U.; Alexander, J.; Haave, M.; Jakubowicz, I.; Knutsen, H.K.; Lusher, A.; Ogonowski, M.; Rakkestad, K.E.; Skaar, I.; Sverdrup, L.E.; et al. Microplastics; Occurrence, Levels and Implications for Environment and Human Health Related to Food; Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment: Oslo, Norway, 2019; Available online: http://hdl.handle.net/11250/2627485 (accessed on 19 August 2021).
- Polyrisk. Polyrisk—Understanding Human Exposure and Health Hazard of Micro- and Nanoplastic Contaminants in our Environment. Available online: https://cordis.europa.eu/project/id/964766/es (accessed on 21 September 2021).
- Plasticfate Plasticsheal. Plastics Fate and Effects in the Human Body. Available online: https://cordis.europa.eu/project/id/965367/es (accessed on 21 September 2021).
- Imptox. An Innovative Analytical Platform to Investigate the Effect and Toxicity of Micro and Nano Plastics Combined with Environmental Contaminants on the Risk of Allergic Disease in Preclinical and Clinical. Available online: https://cordis.europa.eu/project/id/965173 (accessed on 21 September 2021).
- Plasticsheal. Innovative Tools to Study the Impact and Mode of Action of Micro and Nanoplastics on Human Health: Towards a Knowledge Base for Risk Assessment. Available online: https://cordis.europa.eu/project/id/965196/es (accessed on 20 November 2021).
- EFSA Panel on Dietetic Products, Nutrition, and Allergies, (NDA) Scientific Opinion on Dietary Reference Values for water. EFSA J. 2010, 8, 1459. [CrossRef] [Green Version]
- Directorate-General for Maritime Affairs and Fisheries (European Commision). EUMOFA EU Consumer Habits Regarding Fishery and Aquaulture Products-Final Report; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Directorate-General Health and Consumers (European Commision). Implementation of the EU Salt Reduction Framework Results of Member States survey Health and Consumers; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- EFSA. Glossary. Hazar Identification. Available online: https://www.efsa.europa.eu/en/glossary/hazard-identification (accessed on 30 August 2021).
- Kwon, J.; Kim, J.; Pham, T.D.; Tarafdar, A.; Hong, S.; Chun, S.; Lee, S.; Kang, D.; Kim, J.; Kim, S.; et al. Microplastics in Food: A Review on Analytical Methods and Challenges. Int. J. Environ. Res. Public Health 2020, 17, 6710. [Google Scholar] [CrossRef] [PubMed]
- Ivleva, N.P. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem. Rev. 2021, 121, 11886–11936. [Google Scholar] [CrossRef]
- Bai, C.; Liu, L.; Hu, Y.; Zeng, E.Y.; Guo, Y. Microplastics: A review of analytical methods, occurrence and characteristics in food, and potential toxicities to biota. Sci. Total Environ. 2022, 806, 150263. [Google Scholar] [CrossRef] [PubMed]
- Vivekanand, A.C.; Mohapatra, S.; Tyagi, V.K. Microplastics in aquatic environment: Challenges and perspectives. Chemosphere 2021, 282, 131151. [Google Scholar] [CrossRef] [PubMed]
- Pellini, G.; Gomiero, A.; Fortibuoni, T.; Ferrà, C.; Grati, F.; Tassetti, A.N.; Polidori, P.; Fabi, G.; Scarcella, G. Characterization of microplastic litter in the gastrointestinal tract of Solea solea from the Adriatic Sea. Environ. Pollut. 2018, 234, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.; Ŝtindlová, A.; Martínez, I.; Rapp, J.; Romero-Kutzner, V.; Samper, M.D.; Montoto, T.; Aguiar-González, B.; Packard, T.; Gómez, M. Microplastic ingestion by Atlantic chub mackerel (Scomber colias) in the Canary Islands coast. Mar. Pollut. Bull. 2019, 139, 127–135. [Google Scholar] [CrossRef]
- Neves, D.; Sobral, P.; Ferreira, J.L.; Pereira, T. Ingestion of microplastics by commercial fish off the Portuguese coast. Mar. Pollut. Bull. 2015, 101, 119–126. [Google Scholar] [CrossRef]
- Renzi, M.; Guerranti, C.; Blašković, A. Microplastic contents from maricultured and natural mussels. Mar. Pollut. Bull. 2018, 131, 248–251. [Google Scholar] [CrossRef]
- Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ. Pollut. 2019, 245, 1107–1116. [Google Scholar] [CrossRef]
- Catarino, A.I.; Macchia, V.; Sanderson, W.G.; Thompson, R.C.; Henry, T.B. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ. Pollut. 2018, 237, 675–684. [Google Scholar] [CrossRef]
- Welle, F.; Franz, R. Microplastic in bottled natural mineral water—literature review and considerations on exposure and risk assessment. Food Addit. Contam. Part A 2018, 35, 2482–2492. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Danopoulos, E.; Jenner, L.C.; Twiddy, M.; Rotchell, J.M. Microplastic Contamination of Seafood Intended for Human Consumption: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2020, 128, 126002. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Wang, X.; Ren, T.; Wang, J.; Shan, J. Microplastics contamination in food and beverages: Direct exposure to humans. J. Food Sci. 2021, 86, 2816–2837. [Google Scholar] [CrossRef]
- Oßmann, B.E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Dekimpe, M.; De Witte, B.; Deloof, D.; Hostens, K.; Van Loco, J.; Andjelkovic, M.; Van Hoeck, E.; Robbens, J. Dietary Exposure of the Belgian Population to Microplastics Through a Diverse Food Basket. In Proceedings of the Scientific Colloquium N°25: A Coordinated Approach to Assess Human Health Risks of Micro-and Nanoplastics in Food, Parma, Italy, 6–7 May 2021. [Google Scholar]
- Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Shruti, V.C. Branded milks—Are they immune from microplastics contamination? Sci. Total Environ. 2020, 714, 6823. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chapman, J.; Deng, Y.; Cozzolino, D. Rapid measurement of microplastic contamination in chicken meat by mid infrared spectroscopy and chemometrics: A feasibility study. Food Control. 2020, 113, 107187. [Google Scholar] [CrossRef]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Shruti, V.C.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Kutralam-Muniasamy, G. First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks—Future research and environmental considerations. Sci. Total Environ. 2020, 726, 138580. [Google Scholar] [CrossRef]
- Campanale, C.; Galafassi, S.; Savino, I.; Massarelli, C.; Ancona, V.; Volta, P.; Uricchio, V.F. Microplastics pollution in the terrestrial environments: Poorly known diffuse sources and implications for plants. Sci. Total Environ. 2022, 805, 150431. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Glossary. Hazard Characterization. Available online: https://www.efsa.europa.eu/en/glossary/hazard-characterisation (accessed on 30 August 2021).
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Usman, S.; Abdull Razis, A.F.; Shaari, K.; Amal, M.N.; Saad, M.Z.; Mat Isa, N.; Nazarudin, M.F.; Zulkifli, S.Z.; Sutra, J.; Ibrahim, M.A. Microplastics Pollution as an Invisible Potential Threat to Food Safety and Security, Policy Challenges and the Way Forward. Int. J. Environ. Res. Public Health 2020, 17, 9591. [Google Scholar] [CrossRef]
- Mohsen, M.; Zhang, L.; Sun, L.; Lin, C.; Wang, Q.; Liu, S.; Sun, J.; Yang, H. Effect of chronic exposure to microplastic fibre ingestion in the sea cucumber Apostichopus japonicus. Ecotoxicol. Environ. Saf. 2021, 209, 111794. [Google Scholar] [CrossRef] [PubMed]
- Hodkovicova, N.; Hollerova, A.; Caloudova, H.; Blahova, J.; Franc, A.; Garajova, M.; Lenz, J.; Tichy, F.; Faldyna, M.; Kulich, P.; et al. Do foodborne polyethylene microparticles affect the health of rainbow trout (Oncorhynchus mykiss)? Sci. Total Environ. 2021, 793, 148490. [Google Scholar] [CrossRef]
- Alimba, C.G.; Faggio, C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environ. Toxicol. Pharmacol. 2019, 68, 61–74. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Fournier, S.B.; D’Errico, J.N.; Adler, D.S.; Kollontzi, S.; Goedken, M.J.; Fabris, L.; Yurkow, E.J.; Stapleton, P.A. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol. 2020, 17, 1–11. [Google Scholar] [CrossRef]
- Avio, C.G.; Gorbi, S.; Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 2017, 128, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Pedà, C.; Caccamo, L.; Fossi, M.C.; Gai, F.; Andaloro, F.; Genovese, L.; Perdichizzi, A.; Romeo, T.; Maricchiolo, G. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environ. Pollut. 2016, 212, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Seijo, A.; Lourenço, J.; Rocha-Santos, T.A.P.; da Costa, J.; Duarte, A.C.; Vala, H.; Pereira, R. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ. Pollut. 2017, 220, 495–503. [Google Scholar] [CrossRef]
- Guzzetti, E.; Sureda, A.; Tejada, S.; Faggio, C. Microplastic in marine organism: Environmental and toxicological effects. Environ. Toxicol. Pharmacol. 2018, 64, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gao, H.; Jin, S.; Li, R.; Na, G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicol. Environ. Saf. 2019, 173, 110–117. [Google Scholar] [CrossRef]
- Xie, X.; Deng, T.; Duan, J.; Xie, J.; Yuan, J.; Chen, M. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol. Environ. Saf. 2020, 190, 110133. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Zhu, F.; Zhou, S. Airborne Microplastics: A Review on the Occurrence, Migration and Risks to Humans. Bull. Environ. Contam. Toxicol. 2021, 657–664. [Google Scholar] [CrossRef]
- Karbalaei, S.; Hanachi, P.; Rafiee, G.; Seifori, P.; Walker, T.R. Toxicity of polystyrene microplastics on juvenile Oncorhynchus mykiss (rainbow trout) after individual and combined exposure with chlorpyrifos. J. Hazard. Mater. 2021, 403, 123980. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Chan, B.K.K. Intergenerational microplastics impact the intertidal barnacle Amphibalanus amphitrite during the planktonic larval and benthic adult stages. Environ. Pollut. 2020, 267, 115560. [Google Scholar] [CrossRef]
- Umamaheswari, S.; Priyadarshinee, S.; Bhattacharjee, M.; Kadirvelu, K.; Ramesh, M. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). Chemosphere 2021, 281, 128592. [Google Scholar] [CrossRef]
- Jin, Y.; Lu, L.; Tu, W.; Luo, T.; Fu, Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total Environ. 2019, 649, 308–317. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Glossary. Exposure Assessment. Available online: https://www.efsa.europa.eu/en/glossary/exposure-assessment (accessed on 30 August 2021).
- Mintenig, S.M.; Löder, M.G.J.; Primpke, S.; Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef]
- Almaiman, L.; Aljomah, A.; Bineid, M.; Aljeldah, F.M.; Aldawsari, F.; Liebmann, B.; Lomako, I.; Sexlinger, K.; Alarfaj, R. The occurrence and dietary intake related to the presence of microplastics in drinking water in Saudi Arabia. Environ. Monit. Assess. 2021, 193, 390–399. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea. Environ. Pollut. 2021, 270, 116175. [Google Scholar] [CrossRef]
- Shabaka, S.H.; Marey, R.S.; Ghobashy, M.; Abushady, A.M.; Ismail, G.A.; Khairy, H.M. Thermal analysis and enhanced visual technique for assessment of microplastics in fish from an Urban Harbor, Mediterranean Coast of Egypt. Mar. Pollut. Bull. 2020, 159, 111465. [Google Scholar] [CrossRef]
- O’Connor, J.D.; Murphy, S.; Lally, H.T.; O’Connor, I.; Nash, R.; O’Sullivan, J.; Bruen, M.; Heerey, L.; Koelmans, A.A.; Cullagh, A.; et al. Microplastics in brown trout (Salmo trutta Linnaeus, 1758) from an Irish riverine system. Environ. Pollut. 2020, 267, 115572. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef]
- Devriese, L.I.; van der Meulen, M.D.; Maes, T.; Bekaert, K.; Paul-Pont, I.; Frère, L.; Robbens, J.; Vethaak, A.D. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar. Pollut. Bull. 2015, 98, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Sun, C.; He, C.; Li, J.; Ju, P.; Li, F. Microplastics in four bivalve species and basis for using bivalves as bioindicators of microplastic pollution. Sci. Total Environ. 2021, 782, 146830. [Google Scholar] [CrossRef]
- Daniel, D.B.; Ashraf, P.M.; Thomas, S.N.; Thomson, K.T. Microplastics in the edible tissues of shellfishes sold for human consumption. Chemosphere 2021, 264, 128554. [Google Scholar] [CrossRef] [PubMed]
- Bessa, F.; Barría, P.; Neto, J.M.; Frias, J.P.G.L.; Otero, V.; Sobral, P.; Marques, J.C. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 2018, 128, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Renzi, M.; Blašković, A. Litter & microplastics features in table salts from marine origin: Italian versus Croatian brands. Mar. Pollut. Bull. 2018, 135, 62–68. [Google Scholar]
- Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic Pollution in Table Salts from China. Environ. Sci. Technol. 2015, 49, 13622–13627. [Google Scholar] [CrossRef]
- Iñiguez, M.E.; Conesa, J.A.; Fullana, A. Microplastics in Spanish Table Salt. Sci. Rep. 2017, 7, 8620. [Google Scholar] [CrossRef] [PubMed]
- Vidyasakar, A.; Krishnakumar, S.; Kumar, K.S.; Neelavannan, K.; Anbalagan, S.; Kasilingam, K.; Srinivasalu, S.; Saravanan, P.; Kamaraj, S.; Magesh, N.S. Microplastic contamination in edible sea salt from the largest salt-producing states of India. Mar. Pollut. Bull. 2021, 171, 112728. [Google Scholar] [CrossRef]
- Nithin, A.; Sundaramanickam, A.; Surya, P.; Sathish, M.; Soundharapandiyan, B.; Balachandar, K. Microplastic contamination in salt pans and commercial salts—A baseline study on the salt pans of Marakkanam and Parangipettai, Tamil Nadu, India. Mar. Pollut. Bull. 2021, 165, 112101. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Glossary. Risk Characterisation. Available online: https://www.efsa.europa.eu/en/glossary/risk-characterisation (accessed on 30 August 2021).
- Stock, V.; Böhmert, L.; Lisicki, E.; Block, R.; Cara-Carmona, J.; Pack, L.K.; Selb, R.; Lichtenstein, D.; Voss, L.; Henderson, C.J.; et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch. Toxicol. 2019, 93, 1817–1833. [Google Scholar] [CrossRef]
- Sana, S.S.; Dogiparthi, L.K.; Gangadhar, L.; Chakravorty, A.; Abhishek, N. Effects of microplastics and nanoplastics on marine environment and human health. Environ. Sci. Pollut. Res. 2020, 27, 44743–44756. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio-Armendáriz, C.; Alejandro-Vega, S.; Paz-Montelongo, S.; Gutiérrez-Fernández, Á.J.; Carrascosa-Iruzubieta, C.J.; Hardisson-de la Torre, A. Microplastics as Emerging Food Contaminants: A Challenge for Food Safety. Int. J. Environ. Res. Public Health 2022, 19, 1174. https://doi.org/10.3390/ijerph19031174
Rubio-Armendáriz C, Alejandro-Vega S, Paz-Montelongo S, Gutiérrez-Fernández ÁJ, Carrascosa-Iruzubieta CJ, Hardisson-de la Torre A. Microplastics as Emerging Food Contaminants: A Challenge for Food Safety. International Journal of Environmental Research and Public Health. 2022; 19(3):1174. https://doi.org/10.3390/ijerph19031174
Chicago/Turabian StyleRubio-Armendáriz, Carmen, Samuel Alejandro-Vega, Soraya Paz-Montelongo, Ángel J. Gutiérrez-Fernández, Conrado J. Carrascosa-Iruzubieta, and Arturo Hardisson-de la Torre. 2022. "Microplastics as Emerging Food Contaminants: A Challenge for Food Safety" International Journal of Environmental Research and Public Health 19, no. 3: 1174. https://doi.org/10.3390/ijerph19031174
APA StyleRubio-Armendáriz, C., Alejandro-Vega, S., Paz-Montelongo, S., Gutiérrez-Fernández, Á. J., Carrascosa-Iruzubieta, C. J., & Hardisson-de la Torre, A. (2022). Microplastics as Emerging Food Contaminants: A Challenge for Food Safety. International Journal of Environmental Research and Public Health, 19(3), 1174. https://doi.org/10.3390/ijerph19031174