Ambient UVR and Environmental Arsenic Exposure in Relation to Cutaneous Melanoma in Iowa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cases and Controls
2.2. Residential Histories and Ambient UVR Assessment
2.3. Arsenic Measurements
2.4. Statistical Analysis
3. Results
3.1. Ambient UVR and Cutaneous Melanoma
3.2. Environmental Arsenic Exposure and Cutaneous Melanoma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2017; National Cancer Institute: Bethesda, MD, USA, 2019. Available online: https://seer.cancer.gov/csr/1975_2017/ (accessed on 1 January 2021).
- Armstrong, B.K.; Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B Biol. 2001, 63, 8–18. [Google Scholar] [CrossRef]
- El Ghissassi, F.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part d: Radiation. Lancet Oncol. 2009, 10, 751–752. [Google Scholar] [CrossRef]
- Olsen, C.M.; Carroll, H.J.; Whiteman, D.C. Estimating the attributable fraction for melanoma: A meta-analysis of pigmentary characteristics and freckling. Int. J. Cancer 2010, 127, 2430–2445. [Google Scholar] [CrossRef]
- Chang, Y.; Barrett, J.H.; Bishop, D.T.; Armstrong, B.K.; Bataille, V.; Bergman, W.; Berwick, M.; Bracci, P.M.; Elwood, J.M.; Ernstoff, M.S.; et al. Sun Exposure and Melanoma Risk at Different Latitudes: A Pooled Analysis of 5700 Cases and 7216 Controls. Int. J. Epidemiol. 2009, 38, 814–830. [Google Scholar] [CrossRef] [PubMed]
- Rastrelli, M.; Tropea, S.; Rossi, C.R.; Alaibac, M. Melanoma: Epidemiology, Risk Factors, Pathogenesis, Diagnosis and Classification. In Vivo 2014, 28, 7. [Google Scholar]
- Volkovova, K.; Bilanicova, D.; Bartonova, A.; Letašiová, S.; Dusinska, M. Associations between environmental factors and incidence of cutaneous melanoma. Review. Environ. Health 2012, 11, S12. [Google Scholar] [CrossRef] [Green Version]
- Chiarugi, A.; Quaglino, P.; Crocetti, E.; Nardini, P.; De Giorgi, V.; Borgognoni, L.; Brandani, P.; Gerlini, G.; Manganoni, A.M.; Bernengo, M.G.; et al. Melanoma density and relationship with the distribution of melanocytic naevi in an Italian population: A GIPMe study—The Italian multidisciplinary group on melanoma. Melanoma Res. 2015, 25, 80–87. [Google Scholar] [CrossRef]
- Cho, E.; Rosner, B.A.; Colditz, G. Risk Factors for Melanoma by Body Site. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1241–1244. [Google Scholar] [CrossRef] [Green Version]
- Yuan, T.A.; Lu, Y.; Edwards, K.; Jakowatz, J.; Meyskens, F.L.; Liu-Smith, F. Race-, Age-, and Anatomic Site-Specific Gender Differences in Cutaneous Melanoma Suggest Differential Mechanisms of Early- and Late-Onset Melanoma. Int. J. Environ. Res. Public Health 2019, 16, 908. [Google Scholar] [CrossRef] [Green Version]
- Tyrrell, H.; Payne, M. Combatting mucosal melanoma: Recent advances and future perspectives. Melanoma Manag. 2018, 5, MMT11. [Google Scholar] [CrossRef] [Green Version]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Zanetti, R.; Masini, C.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur. J. Cancer 2005, 41, 2040–2059. [Google Scholar] [CrossRef] [PubMed]
- MacKie, R.M. Long-term health risk to the skin of ultraviolet radiation. Prog. Biophys. Mol. Biol. 2006, 92, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Picconi, O.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer 2005, 41, 45–60. [Google Scholar] [CrossRef]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Abeni, D.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur. J. Cancer 2005, 41, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Elwood, J.M.; Jopson, J. Melanoma and sun exposure: An overview of published studies. Int. J. Cancer 1997, 73, 198–203. [Google Scholar] [CrossRef]
- Nelemans, P.; Rampen, F.; Ruiter, D.; Verbeek, A. An addition to the controversy on sunlight exposure and melanoma risk: A meta-analytical approach. J. Clin. Epidemiol. 1995, 48, 1331–1342. [Google Scholar] [CrossRef] [Green Version]
- Dennis, L.K.; Lowe, J.B.; Lynch, C.F.; Alavanja, M.C. Cutaneous melanoma and obesity in the Agricultural Health Study. Ann. Epidemiol. 2008, 18, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Dennis, L.K.; Lynch, C.F.; Sandler, D.P.; Alavanja, M.C. Pesticide use and cutaneous melanoma in pesticide applicators in the Agricultural Heath Study. Environ. Health Perspect. 2010, 118, 812–817. [Google Scholar] [CrossRef] [Green Version]
- Le Marchand, L.; Saltzman, B.S.; Hankin, J.H.; Wilkens, L.R.; Franke, A.A.; Morris, S.J.; Kolonel, L.N. Sun exposure, diet, and melanoma in Hawaii Caucasians. Am. J. Epidemiol. 2006, 164, 232–245. [Google Scholar] [CrossRef] [Green Version]
- Jacquez, G.M.; Slotnick, M.J.; Meliker, J.R.; AvRuskin, G.; Copeland, G.; Nriagu, J. Accuracy of Commercially Available Residential Histories for Epidemiologic Studies. Am. Epidemiol. 2011, 173, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Kanaroglou, P.; Delmelle, E. Spatial Analysis and Health Geography; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
- Meliker, J.R.; Slotnick, M.J.; AvRuskin, G.A.; Schottenfeld, D.; Jacquez, G.M.; Wilson, M.L.; Goovaerts, P.; Franzblau, A.; Nriagu, J.O. Lifetime exposure to arsenic in drinking water and bladder cancer: A population-based case-control study in Michigan, USA. Cancer Causes Control 2010, 21, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Meliker, J.R.; AvRuskin, G.A.; Slotnick, M.J.; Goovaerts, P.; Schottenfeld, D.; Jacquez, G.M.; Nriagu, J.O. Validity of spatial models of arsenic concentrations in private well water. Environ. Res. 2008, 106, 42–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avruskin, G.A.; Meliker, J.R.; Jacquez, G.M. Using satellite derived land cover information for a multi-temporal study of self-reported recall of proximity to farmland. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Nordsborg, R.B.; Meliker, J.R.; ErsbÃll, A.K.; Jacquez, G.M.; Poulsen, A.H.; Raaschou-Nielsen, O. Space-time clusters of breast cancer using residential histories: A Danish case-control study. BMC Cancer 2014, 14, 255. [Google Scholar] [CrossRef] [Green Version]
- Nordsborg, R.B.; Meliker, J.R.; ErsbÃll, A.K.; Jacquez, G.M.; Raaschou-Nielsen, O. Space-time clustering of non-Hodgkin lymphoma using residential histories in a Danish case-control study. PLoS ONE 2013, 8, e60800. [Google Scholar]
- Jacquez, G.M.; Barlow, J.; Rommel, R.; Kaufmann, A.; Rienti MJr AvRuskin, G.; Rasul, J. Residential mobility and breast cancer in Marin County, California, USA. Int. J. Environ. Res. Public Health 2013, 11, 271–295. [Google Scholar] [CrossRef] [PubMed]
- Sloan, C.D.; Nordsborg, R.B.; Jacquez, G.M.; Raaschou-Nielsen, O.; Meliker, J.R. Space-time analysis of testicular cancer clusters using residential histories: A case-control study in Denmark. PLoS ONE 2015, 10, e0120285. [Google Scholar] [CrossRef]
- Holman, C.D.; Armstrong, B.K.; Heenan, P.J.; Blackwell, J.B.; Cumming, F.J.; English, D.R.; Holland, S.; Kelsall, G.R.; Matz, L.R.; Rouse, I.L.; et al. The causes of malignant melanoma: Results from the West Australian Lions Melanoma Research Project. Recent Results Cancer Res. 1986, 102, 18–37. [Google Scholar]
- Autier, P.; Doré, J.F.; Gefeller, O.; Cesarini, J.P.; Lejeune, F.; Koelmel, K.F.; Lienard, D.; Kleeberg, U.R. Melanoma risk and residence in sunny areas. EORTC Melanoma Co-operative Group. European Organization for Research and Treatment of Cancer. Br. J. Cancer 1997, 76, 1521–1524. [Google Scholar] [CrossRef] [Green Version]
- Robsahm, T.E.; Tretli, S. Cutaneous malignant melanoma in Norway: Variation by region of residence before and after the age 17. Cancer Causes Control 2001, 12, 569–576. [Google Scholar] [CrossRef]
- Mack, T.M.; Floderus, B. Malignant melanoma risk by nativity, place of residence at diagnosis, and age at migration. Cancer Causes Control 1991, 2, 401–411. [Google Scholar] [CrossRef]
- Garbe, C.; Kruger, S.; Stadler, R.; Guggenmoos-Holzmann, I.; Orfanos, C.E. Markers and relative risk in a German population for developing malignant melanoma. Int. J. Dermatol. 1989, 28, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Green, A.; Bain, C.; McLennan, R.; Siskind, V. Risk factors for cutaneous melanoma in Queensland. Recent Results Cancer Res. 1986, 102, 76–97. [Google Scholar]
- Landi, M.T.; Baccarelli, A.; Tarone, R.E.; Pesatori, A.; Tucker, M.A.; Hedayati, M.; Grossman, L. DNA repair, dysplastic nevi, and sunlight sensitivity in the development of cutaneous malignant melanoma. J. Natl. Cancer Inst. 2002, 94, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodenas, J.M.; Delgado-Rodriguez, M.T.; Herranz Tercedor, J.; Serrano, S. Sun exposure, pigmentary traits, and risk of cutaneous malignant melanoma: A case-control study in a Mediterranean population. Cancer Causes Control 1996, 7, 275–283. [Google Scholar] [CrossRef]
- Loria, D.; Matos, E. Risk factors for cutaneous melanoma: A case-control study in Argentina. Int. J. Dermatol. 2001, 40, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, R.; Franceschi, S.; Rosso, S.; Colonna, S.; Bidoli, E. Cutaneous melanoma and sunburns in childhood in a southern European population. Eur. J. Cancer 1992, 28, 1172–1176. [Google Scholar] [CrossRef]
- Zanetti, R.; Rosso, S.; Martinez, C.; Nieto, A.; Miranda, A.; Mercier, M.; Loria, D.I.; Østerlind, A.; Greinert, R.; Navarro, C.; et al. Comparison of risk patterns in carcinoma and melanoma of the skin in men: A multi-centre case-case-control study. Br. J. Cancer 2006, 94, 743–751. [Google Scholar] [CrossRef]
- Armstrong, B.K.; Cust, A.E. Sun exposure and skin cancer, and the puzzle of cutaneous melanoma: A perspective on Fears et al. Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. American Journal of Epidemiology 1977; 105: 420–427. Cancer Epidemiol. 2017, 48, 147–156. [Google Scholar] [CrossRef]
- Cahoon, E.K.; Wheeler, D.C.; Kimlin, M.G.; Kwok, R.K.; Alexander, B.H.; Little, M.P.; Linet, M.S.; Freedman, D.M. Individual, environmental, and meteorological predictors of daily personal ultraviolet radiation exposure measurements in a united states cohort study. PLoS ONE 2013, 8, e54983. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Lucas, R.; Harrison, S.; Van Der Mei, I.; Armstrong, B.K.; Nowak, M.; Brodie, A.; Kimlin, M.G. The relationship between ambient ultraviolet radiation (UVR) and objectively measured personal UVR exposure dose is modified by season and latitude. Photochem. Photobiol. Sci. 2014, 13, 1711–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langston, M.E.; Dennis, L.K.; Lynch, C.F.; Roe, D.; Brown, H.E. Temporal Trends in Satellite-Derived Erythemal UVB and Implications for Ambient Sun Exposure Assessment. Int. J. Environ. Res. Public Health 2017, 14, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surdu, S.; Fitzgerald, E.F.; Bloom, M.S.; Boscoe, F.P.; Carpenter, D.O.; Haase, R.F.; Gurzau, E.; Rudnai, P.; Koppova, K.; Févotte, J.; et al. Occupational exposure to arsenic and risk of nonmelanoma skin cancer in a multinational European study. Int. J. Cancer 2013, 133, 2182–2191. [Google Scholar] [CrossRef] [PubMed]
- Gilbert-Diamond, D.; Li, Z.; Perry, A.E.; Spencer, S.K.; Gandolfi, A.J.; Karagas, M.R. A population-based case-control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ. Health Perspect. 2013, 121, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, G.; Vahter, M.; Clemens, F.; Goessler, W.; Gurzau, E.; Hemminki, K.; Hough, R.; Koppova, K.; Kumar, R.; Rudnai, P.; et al. Inorganic arsenic and basal cell carcinoma in areas of Hungary, Romania, and Slovakia: A case-control study. Environ. Health Perspect. 2012, 120, 721–726. [Google Scholar] [CrossRef]
- Matthews, N.H.; Fitch, K.; Li, W.Q.; Morris, J.S.; Christiani, D.C.; Qureshi, A.A.; Cho, E. Exposure to Trace Elements and Risk of Skin Cancer: A Systematic Review of Epidemiologic Studies. Cancer Epidemiol. Prev. Biomark. 2019, 28, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Baastrup, R.; Sørensen, M.; Balstrøm, T.; Frederiksen, K.; Larsen, C.L.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Arsenic in drinking-water and risk for cancer in Denmark. Environ. Health Perspect. 2008, 116, 231–237. [Google Scholar] [CrossRef]
- Beane Freeman, L.E.; Dennis, L.K.; Lynch, C.F.; Thorne, P.S.; Just, C.L. Toenail arsenic content and cutaneous melanoma in Iowa. Am. J. Epidemiol. 2004, 160, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Yager, J.W.; Erdei, E.; Myers, O.; Siegel, M.; Berwick, M. Arsenic and ultraviolet radiation exposure: Melanoma in a New Mexico non-Hispanic white population. Environ. Geochem. Health 2016, 38, 897–910. [Google Scholar] [CrossRef]
- Chen, Y.; Graziano, J.H.; Parvez, F.; Hussain, I.; Momotaj, H.; van Geen, A.; Howe, G.R.; Ahsan, H. Modification of risk of arsenic-induced skin lesions by sunlight exposure, smoking, and occupational exposures in Bangladesh. Epidemiology 2006, 17, 459–467. [Google Scholar] [CrossRef]
- Melkonian, S.; Argos, M.; Pierce, B.L.; Chen, Y.; Islam, T.; Ahmed, A.; Syed, E.H.; Parvez, F.; Graziano, J.; Rathouz, P.J.; et al. A prospective study of the synergistic effects of arsenic exposure and smoking, sun exposure, fertilizer use, and pesticide use on risk of premalignant skin lesions in Bangladeshi men. Am. J. Epidemiol. 2011, 173, 183–191. [Google Scholar] [CrossRef]
- Cooper, K.L.; Yager, J.W.; Hudson, L.G. Melanocytes and keratinocytes have distinct and shared responses to ultraviolet radiation and arsenic. Toxicol. Lett. 2014, 224, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Speer, R.M.; Volk, L.; Hudson, L.G.; Liu, K.J. Arsenic co-carcinogenesis: Inhibition of DNA repair and interaction with zinc finger proteins. Semin. Cancer Biol. 2021, 76, 86–98. [Google Scholar] [CrossRef]
- International Research Institute. Nasa GSFC Total Ozone Mapping Spectrometer. 2015. Available online: http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.GSFC/.TOMS/ (accessed on 27 May 2021).
- Hovila, J.; Arola, A.; Tamminen, J. OMI/Aura Surface UVB Irradiance and Erythemal Dose Daily L3 Global Gridded 1.0 Degree × 1.0 Degree V3, NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2013. Available online: https://disc.gsfc.nasa.gov/datasets/OMUVBd_003/summary (accessed on 3 June 2021).
- Herman, J.; Celarier, E. Erythemal Exposure Data Product. 2016. Available online: http://ozoneaq.gsfc.nasa.gov/media/docs/erynotes.pdf (accessed on 27 May 2021).
- McKinlay, A.; Diffey, B. A reference action spectrum for ultraviolet induced erythema in human skin. CIE J. 1987, 6, 17–22. [Google Scholar]
- US EPA, US Environmental Protection Agency. Technical Fact Sheet: Final Rule for Arsenic in Drinking Water. 2001. Available online: http://nepis.epa.gov/Exe/ZyPdf.cgi?Dockey=20001XXE.txt (accessed on 27 May 2021).
- US EPA, US Environmental Protection Agency. Arsenic Treatment Technology Evaluation Handbook EPA 816-r-03-014. 2003. Available online: https://frtr.gov/pdf/arsenicdesignmanualpeerreviewdraft.pdf (accessed on 27 May 2021).
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- IBWA, International Bottled Water Association. Bottled Water Code of Practice. 2020. Available online: https://bottledwater.org/wp-content/uploads/2020/12/IBWA-MODEL-CODE-2020-Rev-2020-FINAL.pdf (accessed on 4 June 2021).
- US FDA, US Food and Drug Administration. Code of Federal Regulations Title 21 Sec. 165.110 Bottled Water. 2015. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=165.110 (accessed on 27 May 2021).
- Jennings, A.A. Analysis of regulatory guidance values for residential surface soil arsenic exposure. J. Environ. Eng. 2010, 136, 861–877. [Google Scholar] [CrossRef]
- IDNR. Statewide Standards for Contaminants in Soil and Groundwater. Iowa Department of Natural Resources. 2021. Available online: https://programs.iowadnr.gov/riskcalc/home/statewidestandards (accessed on 4 June 2021).
- Rowden, R.; The Iowa State-Wide Trace Element Soil Sampling Project: Design and Implementation. Iowa Department of Natural Resources. 2010. Available online: https://www.iihr.uiowa.edu/igs/publications/uploads/2014-08-24_08-08-51_ofr-2010-1.pdf (accessed on 27 May 2021).
- Haswell, S.J. Atomic Absorption Spectrometry: Theory, Design and Applications; Elsevier Science Publishers BV: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K.; Lucas, N. Using ArcGIS Geostatistical Analyst. 2001. Available online: http://dusk.geo.orst.edu/gis/geostat_analyst.pdf (accessed on 27 May 2021).
- Census, US Census Bureau. Annual Estimates of the Resident Population by Sex, Race, and Hispanic Origin for the United States, States, and Counties: 1 April 2010 to 1 July 2015. 2016. Available online: https://www.census.gov/programs-surveys/popest.html (accessed on 27 May 2021).
- Berwick, M.; Buller, D.B.; Cust, A.; Gallagher, R.; Lee, T.K.; Meyskens, F.; Pandey, S.; Thomas, N.E.; Veierød, M.B.; Ward, S. Melanoma Epidemiology and Prevention. In Melanoma. Cancer Treatment and Research; Kaufman, H., Mehnert, J., Eds.; Springer: Cham, Switzerland, 2016; Volume 167, pp. 17–49. [Google Scholar] [CrossRef]
- Cust, A.E.; Jenkins, M.A.; Goumas, C.; Armstrong, B.K.; Schmid, H.; Aitken, J.F.; Giles, G.; Kefford, R.; Hopper, J.L.; Mann, G. Early-life sun exposure and risk of melanoma before age 40 years. Cancer Causes Control 2011, 22, 885–897. [Google Scholar] [CrossRef]
- Ransohoff, K.J.; Ally, M.S.; Stefanick, M.L.; Keiser, E.; Spaunhurst, K.; Kapphahn, K.; Pagoto, S.; Messina, C.; Hedlin, H.; Manson, J.E.; et al. Impact of residential UV exposure in childhood versus adulthood on skin cancer risk in Caucasian, postmenopausal women in the women’s health initiative. Cancer Causes Control 2016, 27, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Tatalovich, Z.; Wilson, J.P.; Mack, T.; Yan, Y.; Cockburn, M. The objective assessment of lifetime cumulative ultraviolet exposure for determining melanoma risk. J. Photochem. Photobiol. B Biol. 2006, 85, 198–204. [Google Scholar] [CrossRef]
- Kricker, A.; Armstrong, B.K.; Goumas, C.; Litchfield, M.; Begg, C.B.; Hummer, A.J.; Marrett, L.D.; Theis, B.; Millikan, R.C.; Thomas, N.; et al. Ambient UV, personal sun exposure and risk of multiple primary melanomas. Cancer Causes Control 2007, 18, 295–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fears, T.R.; Bird, C.C.; Guerry, D.; Sagebiel, R.W.; Gail, M.H.; Elder, D.E.; Halpern, A.; A Holly, E.; Hartge, P.; A Tucker, M. Average midrange ultraviolet radiation flux and time outdoors predict melanoma risk. Cancer Res. 2002, 62, 3992–3996. [Google Scholar] [PubMed]
- Solomon, C.C.; White, E.; Kristal, A.R.; Vaughan, T. Melanoma and lifetime UV radiation. Cancer Causes Control 2004, 15, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Han, J.; Vleugels, R.; Puett, R.; Laden, F.; Hunter, D.J.; Qureshi, A.A. Cumulative ultraviolet radiation flux in adulthood and risk of incident skin cancers in women. Br. J. Cancer 2014, 110, 1855–1861. [Google Scholar] [CrossRef] [Green Version]
- Dennis, L.K.; White, E.; McKnight, B.; Kristal, A.; Lee, J.A.; Odland, P. Nevi and migration within the United States and Canada: A population-based cross-sectional study. Cancer Causes Control 1996, 7, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.; Geller, A.C.; Tucker, M.A.; Guy GPJr Weinstock, M.A. Melanoma burden and recent trends among non-Hispanic whites aged 15–49 years, United States. Prev. Med. 2016, 91, 294–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbe, C.; Leiter, U. Melanoma epidemiology and trends. Clin. Dermatol. 2009, 27, 3–9. [Google Scholar] [CrossRef]
- Weir, H.K.; Marrett, L.D.; Cokkinides, V.; Barnholtz-Sloan, J.; Patel, P.; Tai, E.; Jemal, A.; Li, J.; Kim, J.; Ekwueme, D.U. Melanoma in adolescents and young adults (ages 15–39 years): United States, 1999–2006. J. Am. Acad. Dermatol. 2011, 65, S38–S49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guy GPJr Zhang, Y.; Ekwueme, D.U.; Rim, S.H.; Watson, M. The potential impact of reducing indoor tanning on melanoma prevention and treatment costs in the United States: An economic analysis. J. Am. Acad. Dermatol. 2017, 76, 226–233. [Google Scholar]
- Colantonio, S.; Bracken, M.B.; Beecker, J. The association of indoor tanning and melanoma in adults: Systematic review and meta-analysis. J. Am. Acad. Dermatol. 2014, 70, 847–857. [Google Scholar] [CrossRef]
- Zhang, M.; Qureshi, A.A.; Geller, A.C.; Frazier, L.; Hunter, D.J.; Han, J. Use of tanning beds and incidence of skin cancer. J. Clin. Oncol. 2012, 30, 1588–1593. [Google Scholar] [CrossRef] [Green Version]
- Li, W.Q.; Cho, E.; Weinstock, M.A.; Mashfiq, H.; Qureshi, A.A. Epidemiological assessments of skin outcomes in the nurses’ health studies. Am. J. Public Health 2016, 106, 1677–1683. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Q.; Qureshi, A.A.; Ma, J.; Goldstein, A.M.; Giovannucci, E.L.; Stampfer, M.J.; Han, J. Personal history of prostate cancer and increased risk of incident melanoma in the United States. J. Clin. Oncol. 2013, 31, 4394–4399. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.R.; Luo, L.; Berwick, M. Sex Differences in Melanoma. Curr. Epidemiol. Rep. 2019, 6, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Giacomoni, P.U.; Mammone, T.; Teri, M. Gender-linked differences in human skin. J. Dermatol. Sci. 2009, 55, 144–149. [Google Scholar] [CrossRef]
- Oblong, J.E. Comparison of the impact of environmental stress on male and female skin. Br. J. Dermatol. 2012, 166, 41–44. [Google Scholar] [CrossRef]
- Damian, D.L.; Patterson, C.R.; Stapelberg, M.; Park, J.; Barnetson, R.S.; Halliday, G.M. UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide. J. Investig. Dermatol. 2008, 128, 447–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedaiwi, A.; Wysong, A.; Rogan, E.G.; Clarey, D.; Arcari, C.M. Arsenic Exposure and Melanoma among US Adults Aged 20 or Older, 2003–2016. Public Health Rep. 2021, 0, 1–9. [Google Scholar] [CrossRef]
- National Research Council. Arsenic in Drinking Water; The National Academies Press: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Lothrop, N.; Wilkinson, S.T.; Verhougstraete, M.; Sugeng, A.; Loh, M.M.; Klimecki, W.; Beamer, P.I. Home water treatment habits and effectiveness in a rural Arizona community. Water 2015, 7, 1217–1231. [Google Scholar] [CrossRef]
- Walker, M.; Seiler, R.L.; Meinert, M. Effectiveness of household reverse-osmosis systems in a western us region with high arsenic in groundwater. Sci. Total Environ. 2008, 389, 245–252. [Google Scholar] [CrossRef]
- Waypa, J.J.; Elimelech, M.; Hering, J.G. Arsenic removal by RO and NF membranes. J. Am. Water Works Assoc. 1997, 89, 102–114. [Google Scholar] [CrossRef]
- Vinceti, M.; Bassissi, S.; Malagoli, C.; Pellacani, G.; Alber, D.; Bergomi, M.; Seidenari, S. Environmental exposure to trace elements and risk of cutaneous melanoma. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 458–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Host Factors | Cases | Controls | OR b (95% CI) | ||
---|---|---|---|---|---|
N | % a | N | % a | ||
Age | |||||
20–39 | 145 | 13 | 173 | 17 | ref |
40–49 | 147 | 14 | 156 | 15 | 1.13 (0.82–1.55) |
50–59 | 227 | 21 | 258 | 25 | 1.03 (0.78–1.37) |
60–69 | 256 | 23 | 265 | 26 | 1.11 (0.84–1.47) |
70–79 | 199 | 18 | 136 | 13 | 1.69 (1.24–2.31) |
80+ | 122 | 11 | 45 | 4 | 3.09 (2.05–4.65) |
Trend OR c | 2.22 (1.65–2.98) | ||||
Sex | |||||
Women | 531 | 48 | 567 | 55 | ref |
Men | 565 | 52 | 466 | 45 | 1.22 (1.03–1.46) |
Marital Status | |||||
Not married | 269 | 25 | 263 | 26 | ref |
Married | 822 | 75 | 766 | 74 | 1.08 (0.88–1.33) |
Education | |||||
Less than college | 310 | 28 | 226 | 22 | ref |
Some college | 312 | 29 | 288 | 28 | 0.91 (0.71–1.15) |
College Graduate | 469 | 43 | 514 | 50 | 0.79 (0.63–0.99) |
Trend OR c | 0.78 (0.63–0.98) | ||||
Skin Type | |||||
Rarely burn, tan easily | 283 | 26 | 402 | 39 | ref |
Sometimes burn, then tan | 483 | 44 | 406 | 39 | 2.07 (1.67–2.56) |
Usually burn, tan with difficulty | 223 | 21 | 162 | 16 | 2.35 (1.81–3.07) |
Always burn, never tan | 102 | 9 | 58 | 6 | 2.89 (2.00–4.18) |
Trend OR c | 3.17 (2.33–4.30) | ||||
Skin Color | |||||
Medium to Dark | 238 | 22 | 332 | 32 | ref |
Fair | 855 | 78 | 700 | 68 | 1.72 (1.41–2.10) |
Eye color | |||||
Black or Brown | 379 | 35 | 450 | 44 | ref |
Green | 165 | 15 | 150 | 15 | 1.38 (1.06–1.80) |
Blue or Gray | 549 | 50 | 427 | 41 | 1.50 (1.24–1.81) |
Hair color | |||||
Black or Brown | 596 | 55 | 709 | 69 | ref |
Blond | 287 | 27 | 223 | 22 | 1.68 (1.37–2.08) |
Red | 210 | 19 | 100 | 9 | 2.62 (2.00–3.42) |
Family History of Skin Cancer | |||||
No | 605 | 57 | 625 | 62 | ref |
Yes | 450 | 43 | 385 | 38 | 1.36 (1.13–1.64) |
Ambient UVR (kJ/m2) (In Quartiles Defined by Controls) | Men | Women | ||||
---|---|---|---|---|---|---|
Cases (N = 565) | Controls (N = 466) | OR b (95% CI) | Cases (N = 531) | Controls (N = 567) | OR b (95% CI) | |
<14 years old | ||||||
<11,280 | 125 | 127 | ref | 153 | 132 | ref |
11,280–12,878 c | 119 | 113 | 0.83 (0.57–1.25) | 116 | 145 | 0.63 (0.43–0.92) |
12,888–14,386 | 144 | 95 | 1.09 (0.72–1.65) | 134 | 162 | 0.72 (0.48–1.06) |
>14,386 | 177 | 131 | 0.75 (0.50–1.12) | 128 | 128 | 0.82 (0.54–1.25) |
Trend OR d | 0.82 (0.55–1.20) | 0.86 (0.57–1.29) | ||||
14–18 years old | ||||||
<3293 | 125 | 115 | ref | 147 | 144 | ref |
3293–4266 c | 127 | 105 | 1.00 (0.67–1.47) | 141 | 152 | 0.82 (0.58–1.16) |
4267–4944 | 141 | 121 | 0.81 (0.55–1.20) | 119 | 138 | 0.81 (0.55–1.18) |
>4944 | 172 | 125 | 0.74 (0.50–1.11) | 124 | 133 | 0.98 (0.66–1.46) |
Trend OR d | 0.72 (0.49–1.06) | 0.96 (0.66–1.41) | ||||
>18 years old | ||||||
<9276 | 67 | 109 | ref | 146 | 150 | ref |
9276–14,782 | 82 | 106 | 1.42 (0.68–2.97) | 128 | 152 | 1.54 (0.89–2.70) |
14,783–19,805 c | 153 | 129 | 2.42 (1.04–5.61) | 109 | 128 | 2.12 (1.08–4.15) |
>19,805 | 263 | 122 | 2.71 (1.09–6.74) | 148 | 137 | 3.03 (1.39–6.62) |
Trend OR d | 2.62 (1.17–5.85) | 2.94 (1.38–6.27) | ||||
Lifetime | ||||||
<25,659 | 63 | 108 | ref | 147 | 151 | ref |
25,659–32,337 c | 93 | 115 | 2.27 (1.03–5.01) | 133 | 143 | 1.48 (0.83–2.68) |
32,338–37,868 | 146 | 131 | 4.43 (1.70–11.5) | 107 | 127 | 1.83 (0.83–4.06) |
>37,868 | 263 | 112 | 6.89 (2.33–20.3) | 144 | 146 | 2.19 (0.85–5.65) |
Trend OR d | 6.09 (2.21–16.8) | 2.15 (0.84–5.54) |
Environmental Exposures | Overall | >5 Years Current Location | ||||
---|---|---|---|---|---|---|
Cases N = 1096 | Controls N = 1033 | OR a (95% CI) | Cases (N = 944) | Controls (N = 898) | OR a (95% CI) | |
Environmental soil As conc. (ppm) | ||||||
<7.82 | 312 | 257 | ref | 264 | 216 | ref |
7.82–9.00 | 247 | 252 | 0.82 (0.64–1.05) | 212 | 222 | 0.80 (0.61–1.04) |
9.01–9.73 | 283 | 264 | 0.92 (0.73–1.17) | 244 | 225 | 0.93 (0.72–1.21) |
>9.73 | 254 | 260 | 0.79 (0.62–1.01) | 224 | 235 | 0.77 (0.59–1.00) |
Trend OR b | 0.83 (0.66–1.05) | 0.83 (0.65–1.06) | ||||
Soil As content exceeds RGV c | ||||||
No | 966 | 899 | ref | 832 | 773 | ref |
Yes | 130 | 134 | 0.86 (0.66–1.11) | 112 | 125 | 0.79 (0.60–1.05) |
Drinking water As conc. (ppb) | ||||||
<3.04 | 273 | 257 | ref | 230 | 231 | ref |
3.04–3.54 | 242 | 259 | 0.90 (0.70–1.16) | 211 | 217 | 0.99 (0.76–1.30) |
3.55–4.74 | 309 | 248 | 1.18 (0.93–1.51) | 265 | 212 | 1.25 (0.97–1.63) |
>4.74 | 272 | 269 | 0.95 (0.74–1.21) | 238 | 238 | 0.99 (0.77–1.29) |
Trend OR b | 1.04 (0.82–1.30) | 1.07 (0.83–1.37) | ||||
Drinking water As content exceeds MCL d | ||||||
No | 996 | 944 | ref | 852 | 819 | ref |
Yes | 100 | 89 | 0.97 (0.71–1.32) | 92 | 79 | 1.01 (0.74–1.40) |
Used reverse osmosis filter | ||||||
No | 1011 | 970 | ref | 864 | 844 | ref |
Yes | 85 | 63 | 0.74 (0.52–1.04) | 80 | 54 | 0.65 (0.46–0.94) |
As content near current residence | ||||||
AsWater ≤ MCL/AsSoil ≤ RGV | 891 | 829 | ref | 765 | 712 | ref |
AsWater ≤ MCL/AsSoil > RGV | 105 | 115 | 0.79 (0.60–1.06) | 87 | 107 | 0.71 (0.52–0.96) |
AsWater > MCL/AsSoil ≤ RGV | 75 | 70 | 0.88 (0.62–1.25) | 67 | 61 | 0.89 (0.61–1.29) |
AsWater > MCL/AsSoil > RGV | 25 | 19 | 1.18 (0.64–2.17) | 25 | 18 | 1.26 (0.68–2.36) |
Trend OR b | 0.87 (0.60–1.27) | 0.87 (0.58–1.29) |
Ambient Lifetime UVR (kJ/m2) a | Stratified by Soil As Concentration | ||||
---|---|---|---|---|---|
Stratified by Sex | Cases | Exceeds RGV b OR c (95% CI) | Cases | RGV Compliant OR c (95% CI) | |
Men: | <28,524 | 8 | ref | 84 | ref |
28,525–35,600 d | 18 | 1.80 (0.43–7.47) | 130 | 2.49 (0.98–6.31) | |
>35,601 | 49 | 4.97 (1.16–21.3) | 276 | 3.40 (1.41–11.3) | |
p-value for interaction | p = 0.49 | ||||
Women: | <28,524 | 20 | ref | 180 | ref |
28,525–35,600 d | 14 | 1.36 (0.44–4.27) | 133 | 1.35 (0.64–2.87) | |
>35,601 | 21 | 1.71 (0.50–5.77) | 163 | 1.70 (0.69–4.22) | |
p-value for interaction | p = 0.98 | ||||
Stratified by Water As Concentration | |||||
Exceeds MCL e | MCL Compliant | ||||
Men: | <28,524 | 7 | ref | 85 | ref |
28,525–35,600 d | 13 | 1.31 (0.31–5.55) | 135 | 1.73 (0.72–4.17) | |
>35,601 | 38 | 2.95 (0.67–12.92) | 287 | 2.71 (1.02–7.18) | |
p-value for interaction | p = 0.77 | ||||
Women: | <28,524 | 19 | ref | 181 | ref |
28,525–35,600 d | 10 | 0.86 (0.25–2.94) | 137 | 1.28 (0.65–2.40) | |
>35,601 | 13 | 0.55 (0.16–1.92) | 171 | 1.58 (1.24–3.91) | |
p-value for interaction | p = 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langston, M.E.; Brown, H.E.; Lynch, C.F.; Roe, D.J.; Dennis, L.K. Ambient UVR and Environmental Arsenic Exposure in Relation to Cutaneous Melanoma in Iowa. Int. J. Environ. Res. Public Health 2022, 19, 1742. https://doi.org/10.3390/ijerph19031742
Langston ME, Brown HE, Lynch CF, Roe DJ, Dennis LK. Ambient UVR and Environmental Arsenic Exposure in Relation to Cutaneous Melanoma in Iowa. International Journal of Environmental Research and Public Health. 2022; 19(3):1742. https://doi.org/10.3390/ijerph19031742
Chicago/Turabian StyleLangston, Marvin E., Heidi E. Brown, Charles F. Lynch, Denise J. Roe, and Leslie K. Dennis. 2022. "Ambient UVR and Environmental Arsenic Exposure in Relation to Cutaneous Melanoma in Iowa" International Journal of Environmental Research and Public Health 19, no. 3: 1742. https://doi.org/10.3390/ijerph19031742
APA StyleLangston, M. E., Brown, H. E., Lynch, C. F., Roe, D. J., & Dennis, L. K. (2022). Ambient UVR and Environmental Arsenic Exposure in Relation to Cutaneous Melanoma in Iowa. International Journal of Environmental Research and Public Health, 19(3), 1742. https://doi.org/10.3390/ijerph19031742