Walking Environment and Obesity: A Gender-Specific Association Study in Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Key Study Variables
2.2.1. Outcome Variables
2.2.2. Exposure Variables: Walking Environment
2.2.3. Covariates
2.3. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Gender Differences in Weight Gain
3.3. Gender Differences in Obesity
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butland, B. Tackling Obesities: Future Choices-Project Report; Department of Innovation, Universities and Skills: London, UK, 2007. [Google Scholar]
- Apovian, C.M. Participating Faculty: The Clinical and Economic Consequences of Obesity. Am. J. Manag. Care 2013, 19 (Suppl. S11), s219–s228. [Google Scholar]
- Duncan, M.; Griffith, M.; Rutter, H.; Goldacre, M.J. Certification of obesity as a cause of death in England 1979–2006. Eur. J. Public Health 2010, 20, 671–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. Lancet 2009, 373, 1083–1096. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A. Do We Need to Think beyond BMI for Estimating Population-Level Health Risks? J. Public Health 2016, 38, 192–193. [Google Scholar] [CrossRef] [Green Version]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of US Adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haslam, D.W.; James, W.P.T. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Lu, Y.; Hajifathalian, K.; Ezzati, M.; Woodward, M.; Rimm, E.B.; Danaei, G. Metabolic Mediators of the Effects of Body-Mass Index, Overweight, and Obesity on Coronary Heart Disease and Stroke: A Pooled Analysis of 97 Prospective Cohorts with 1.8 Million Participants. Lancet Lond. Engl. 2013, 383, 970–983. [Google Scholar]
- Bronfenbrenner, U.; Ceci, S.J. Nature-nuture reconceptualized in developmental perspective: A bioecological model. Psychol. Rev. 1994, 101, 568–586. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Conde, W.L.; Popkin, B.M. Independent Effects of Income and Education on the Risk of Obesity in the Brazilian Adult Population. J. Nutr. 2001, 131, 881S–886S. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Moncada, R.; Garcia, M.; González-Zapata, L.I.; Fernández, E.; Álvarez-Dardet, C. Incidence of overweight and obesity in a Mediterranean population-based cohort: The Cornellà Health Interview Survey Follow-up Study (CHIS.FU). Prev. Med. 2010, 50, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Hosseinpour-Niazi, S.; Mirmiran, P.; Hosseinpanah, F.; Fallah-Ghohroudy, A.; Azizi, F. Association of Marital Status and Marital Transition WithMetabolic Syndrome: Tehran Lipid and Glucose Study. Int. J. Endocrinol. Metab. 2014, 12. [Google Scholar] [CrossRef] [Green Version]
- Ferdinand, A.O.; Sen, B.; Rahurkar, S.; Engler, S.; Menachemi, N. The Relationship between Built Environments and Physical Activity: A Systematic Review. Am. J. Public Health 2012, 102, e7–e13. [Google Scholar] [CrossRef]
- Durand, C.P.; Andalib, M.; Dunton, G.F.; Wolch, J.; Pentz, M.A. A systematic review of built environment factors related to physical activity and obesity risk: Implications for smart growth urban planning. Obes. Rev. 2011, 12, e173–e182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Derose, K.P.; Han, B.; Williamson, S.; Cohen, D.A. Gender Disparities in Park Use and Physical Activity among Residents of High-Poverty Neighborhoods in Los Angeles. Women’s Health Issues 2018, 28, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalton, R.J. Citizenship Norms and the Expansion of Political Participation. Politi. Stud. 2008, 56, 76–98. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Vintage: London, UK, 2016. [Google Scholar]
- Adkins, A.; Makarewicz, C.; Scanze, M.; Ingram, M.; Luhr, G. Contextualizing Walkability: Do Relationships between Built Environments and Walking Vary by Socioeconomic Context? J. Am. Plann. Assoc. 2017, 83, 296–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stafford, L.; Baldwin, C. Planning Walkable Neighborhoods: Are We Overlooking Diversity in Abilities and Ages? J. Plan. Lit. 2018, 33, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Valentine, G. The Geography of Women’s Fear. Area 1989, 21, 385–390. [Google Scholar]
- Pain, R.H. Social Geographies of Women’s Fear of Crime. Trans. Inst. Br. Geogr. 1997, 22, 231–244. [Google Scholar]
- Gallego, A. Unequal Political Participation in Europe. Int. J. Sociol. 2007, 37, 10–25. [Google Scholar] [CrossRef]
- Paxton, P.; Kunovich, S.; Hughes, M.M. Gender in Politics. Annu. Rev. Sociol. 2007, 33, 263–284. [Google Scholar] [CrossRef]
- Gardner, K.; Johnson, T.; Buchan, K.; Pharaoh, T. Developing a Pedestrian Strategy for London. Transport Policy and Its Implementation. Proceedings of Seminar B Held at the 24th European Transport Forum, Brunel University Henley-in-Arden, London, UK, 2–6 September 1996; p. 402. [Google Scholar]
- Moura, F.; Cambra, P.; Gonçalves, A.B. Measuring walkability for distinct pedestrian groups with a participatory assessment method: A case study in Lisbon. Landsc. Urban Plan. 2017, 157, 282–296. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Ewing, R.; Connors, M.B.; Goates, J.P.; Hajrasouliha, A.; Neckerman, K.; Nelson, A.C.; Greene, W. Validating Urban Design Measures. In Transportation Research Board Meeting. Transportation Research Board Meeting, Washington, DC, USA, 13–17 January 2013; Available online: http://trid.trb.org/view.aspx?id=1241107 (accessed on 7 July 2021).
- Pikora, T.J.; Giles-Corti, B.; Knuiman, M.W.; Bull, F.C.; Jamrozik, K.; Donovan, R.J. Neighborhood Environmental Factors Correlated with Walking near Home: Using SPACES. Med. Sci. Sports Exerc. 2006, 38, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Day, K.; Boarnet, M.; Alfonzo, M.; Forsyth, A. The Irvine–Minnesota Inventory to Measure Built Environments: Development. Am. J. Prev. Med. 2006, 30, 144–152. [Google Scholar] [CrossRef]
- Clifton, K.; Livi, A.; Rodriguez, D.A. Pedestrian Environment Data Scan (PEDS) Tool. Planning 2005, 80, 95–110. [Google Scholar]
- Kelly, C.; Tight, M.; Hodgson, F.; Page, M. A comparison of three methods for assessing the walkability of the pedestrian environment. J. Transp. Geogr. 2011, 19, 1500–1508. [Google Scholar] [CrossRef]
- Berrigan, D.; Pickle, L.W.; Dill, J. Associations between street connectivity and active transportation. Int. J. Health Geogr. 2010, 9, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Tal, G.; Handy, S. Measuring Nonmotorized Accessibility and Connectivity in a Robust Pedestrian Network. Transp. Res. Rec. 2012, 2299, 48–56. [Google Scholar] [CrossRef]
- Cervero, R.; Sarmiento, O.L.; Jacoby, E.; Gomez, L.F.; Neiman, A. Influences of Built Environments on Walking and Cycling: Lessons from Bogotá. Int. J. Sustain. Transp. 2009, 3, 203–226. [Google Scholar] [CrossRef]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form: Findings from SMARTRAQ. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Loo, B.P.Y.; Lam, W.W.Y.; Mahendran, R.; Katagiri, K. How Is the Neighborhood Environment Related to the Health of Seniors Living in Hong Kong, Singapore, and Tokyo? Some Insights for Promoting Aging in Place. Ann. Am. Assoc. Geogr. 2017, 107, 812–828. [Google Scholar] [CrossRef]
- Dai, D. Identifying clusters and risk factors of injuries in pedestrian–vehicle crashes in a GIS environment. J. Transp. Geogr. 2012, 24, 206–214. [Google Scholar] [CrossRef]
- Kimpton, A.; Corcoran, J.; Wickes, R. Greenspace and Crime: An Analysis of Greenspace Types, Neighboring Composition, and the Temporal Dimensions of Crime. J. Res. Crime Delinq. 2017, 54, 303–337. [Google Scholar] [CrossRef] [Green Version]
- Sreetheran, M.; Van Den Bosch, C.C.K. A Socio-Ecological Exploration of Fear of Crime in Urban Green Spaces—A Systematic Review. Urban For. Urban Green. 2014, 13, 1–18. [Google Scholar] [CrossRef]
- Crawford, D.; Timperio, A.; Giles-Corti, B.; Ball, K.; Hume, C.; Roberts, R.; Andrianopoulos, N.; Salmon, J. Do Features of Public Open Spaces Vary According to Neighbourhood Socio-Economic Status? Health Place 2008, 14, 889–893. [Google Scholar] [CrossRef]
- Jones, A.; Hillsdon, M.; Coombes, E. Greenspace access, use, and physical activity: Understanding the effects of area deprivation. Prev. Med. 2009, 49, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Sundquist, K.; Eriksson, U.; Kawakami, N.; Skog, L.; Ohlsson, H.; Arvidsson, D. Neighborhood walkability, physical activity, and walking behavior: The Swedish Neighborhood and Physical Activity (SNAP) study. Soc. Sci. Med. 2011, 72, 1266–1273. [Google Scholar] [CrossRef]
- Frank, L.D.; Andresen, M.A.; Schmid, T.L. Obesity relationships with community design, physical activity, and time spent in cars. Am. J. Prev. Med. 2004, 27, 87–96. [Google Scholar] [CrossRef]
- Frank, L.D.; Kerr, J.; Sallis, J.F.; Miles, R.; Chapman, J. A hierarchy of sociodemographic and environmental correlates of walking and obesity. Prev. Med. 2008, 47, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Iroz-Elardo, N.; MacLeod, K.E.; Hong, A. Pathways from built environment to health: A conceptual framework linking behavior and exposure-based impacts. J. Transp. Health 2019, 12, 319–335. [Google Scholar] [CrossRef]
- Marshall, J.D.; Brauer, M.; Frank, L.D. Healthy Neighborhoods: Walkability and Air Pollution. Environ. Health Perspect. 2009, 117, 1752–1759. [Google Scholar] [CrossRef]
- Liu, X.; Tu, R.; Qiao, D.; Niu, M.; Li, R.; Mao, Z.; Huo, W.; Chen, G.; Xiang, H.; Guo, Y.; et al. Association between long-term exposure to ambient air pollution and obesity in a Chinese rural population: The Henan Rural Cohort Study. Environ. Pollut. 2020, 260, 114077. [Google Scholar] [CrossRef]
- Furlong, M.A.; Klimentidis, Y.C. Associations of air pollution with obesity and body fat percentage, and modification by polygenic risk score for BMI in the UK Biobank. Environ. Res. 2020, 185, 109364. [Google Scholar] [CrossRef]
- Oftedal, B.; Krog, N.H.; Pyko, A.; Eriksson, C.; Graff-Iversen, S.; Haugen, M.; Schwarze, P.; Pershagen, G.; Aasvang, G.M. Road Traffic Noise and Markers of Obesity—A Population-Based Study. Environ. Res. 2015, 138, 144–153. [Google Scholar] [CrossRef]
- Sinharay, R.; Gong, J.; Barratt, B.; Ohman-Strickland, P.; Ernst, S.; Kelly, F.J.; Zhang, J.; Collins, P.; Cullinan, P.; Chung, K.F. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: A randomised, crossover study. Lancet 2018, 391, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.; Guell, C.; Pollard, T.M. Group Walking as a “Lifeline”: Understanding the Place of Outdoor Walking Groups in Women’s Lives. Soc. Sci. Med. 2019, 238, 112489. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, K.; O’Brien, W.; Riot, C. Mothers with young children: Caring for the self through the physical activity space. Leis. Sci. 2016, 38, 85–99. [Google Scholar] [CrossRef] [Green Version]
- McCormack, G.R.; Virk, J.S. Driving towards obesity: A systematized literature review on the association between motor vehicle travel time and distance and weight status in adults. Prev. Med. 2014, 66, 49–55. [Google Scholar] [CrossRef]
- Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too Much Sitting: The Population-Health Science of Sedentary Behavior. Exerc. Sport Sci. Rev. 2010, 38, 105. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Sallis, J.F.; Conway, T.L.; Chapman, J.E.; Saelens, B.E.; Bachman, W. Many Pathways from Land Use to Health: Associations between Neighborhood Walkability and Active Transportation, Body Mass Index, and Air Quality. J. Am. Plan. Assoc. 2006, 72, 75–87. [Google Scholar] [CrossRef]
Characteristic | Total (n = 1355) | Male (n = 718) | Female (n = 637) | p a |
---|---|---|---|---|
BMI/kg/m2 (mean (SD)) | 22.25 (2.92) | 22.97 (2.81) | 21.44 (2.84) | <0.001 b |
Age/year (mean (SD)) | 38.75 (11.42) | 38.02 (11.51) | 39.58 (11.28) | 0.081 |
Education (n (%)) | ||||
Primary school and below | 51 (3.76%) | 13 (1.81%) | 38 (5.97%) | <0.001 |
Junior high school | 258 (19.04%) | 116 (16.16%) | 142 (22.29%) | |
Senior school (including polytechnic school and vocational high school) | 325 (23.99%) | 189 (26.32%) | 136 (21.35%) | |
College | 273 (20.15%) | 148 (20.61%) | 125 (19.62%) | |
University | 382 (28.19%) | 214 (29.81%) | 168 (26.37%) | |
Bachelor’s or higher | 66 (4.87%) | 38 (5.29%) | 28 (4.40%) | |
Hukou (n (%)) | ||||
Shanghai non-agricultural household hukou | 650 (47.97%) | 353 (49.16%) | 297 (46.62%) | 0.097 |
Shanghai agricultural household hukou | 62 (4.58%) | 24 (3.34%) | 38 (5.97%) | |
Non local non-agricultural household hukou | 375 (27.68%) | 193 (26.88%) | 182 (28.57%) | |
Non local agricultural household hukou | 268 (19.78%) | 148 (20.61%) | 120 (18.84%) | |
Marriage (n (%)) | ||||
Married | 1077 (79.48%) | 537 (74.79%) | 540 (84.77%) | <0.001 |
Unmarried | 262 (19.34%) | 172 (23.96%) | 90 (14.13%) | |
Divorced | 11 (0.81%) | 8 (1.11%) | 3 (0.47%) | |
Widowed | 5 (0.37%) | 1 (0.14%) | 4 (0.63%) | |
Employment (n (%)) | ||||
Full-time employment | 980 (72.32%) | 573 (79.81%) | 407 (63.89%) | <0.001 |
Half-time employment | 27 (1.99%) | 13 (1.81%) | 14 (2.20%) | |
Temporary employment | 16 (1.18%) | 9 (1.25%) | 7 (1.10%) | |
School students | 48 (3.54%) | 32 (4.46%) | 16 (2.51%) | |
Retired at home | 141 (10.41%) | 45 (6.27%) | 96 (15.07%) | |
Unemployed | 138 (10.18%) | 42 (5.85%) | 96 (15.07%) | |
Other | 5 (0.37%) | 4 (0.56%) | 1 (0.16%) | |
Housing property (n (%)) | ||||
Head of household | 869 (64.13%) | 436 (60.72%) | 438 (68.76%) | 0.650 |
Non-head of household | 486 (35.87%) | 282 (39.28%) | 199 (31.24%) | |
Pedestrian travel preference (n (%)) | ||||
Very dislike | 25 (1.85%) | 12 (1.67%) | 13 (2.04%) | 0.118 |
Relatively dislike | 135 (9.96%) | 75 (10.45%) | 60 (9.42%) | |
Normal | 529 (39.04%) | 299 (41.64%) | 230 (36.11%) | |
Relatively like | 516 (38.08%) | 263 (36.63%) | 253 (39.72%) | |
Very like | 150 (11.07%) | 69 (9.61%) | 81 (12.72%) | |
House value/RMB (mean (SD)) | 3,105,758.18 (1,825,849.11) | 3,062,767.56 (1,908,874.76) | 3,154,215.43 (1,727,703.53) | 0.589 |
Vehicle volume (mean (SD)) | ||||
Number of cars | 0.65 (0.61) | 0.65 (0.61) | 0.64 (0.61) | 0.278 |
Number of electric vehicles /mopeds /motorcycles | 0.61 (0.68) | 0.64 (0.69) | 0.59 (0.66) | 0.393 |
Number of bicycles | 0.44 (0.65) | 0.43 (0.68) | 0.45 (0.62) | 0.813 |
Exercise frequency per week/Times (mean (SD)) | 3.04 (2.99) | 3.16 (3.04) | 2.91 (2.93) | 0.025 |
Income/RMB (mean (SD)) | 15,727.07 (21,847.11) | 15,892.76 (20,947.84) | 15,540.31 (22,833.46) | 0.232 |
Model 1 | Total Sample | Male Sample | Female Sample | |||
---|---|---|---|---|---|---|
p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | |
Walking environment | ||||||
Road intersection density | 0.227 | 0.994 (0.985, 1.004) | 0.104 | 1.008 (0.998, 1.019) | 0.009 | 0.979 (0.963, 0.995) |
Land use entropy | 0.559 | 1.241 (0.602, 2.558) | 0.633 | 1.210 (0.553, 2.647) | 0.455 | 1.601 (0.466, 5.504) |
Community green space rate | 0.375 | 0.988 (0.962, 1.015) | 0.277 | 0.983 (0.952, 1.014) | 0.838 | 0.996 (0.955, 1.038) |
Number of bus stops within 500 m of the community border | 0.490 | 1.014 (0.975,1.055) | 0.601 | 0.986 (0.936, 1.039) | 0.305 | 1.034 (0.970, 1.101) |
RVI index | 0.099 | 1.368 (0.943, 1.984) | 0.586 | 1.140 (0.711, 1.830) | 0.050 | 1.641 (1.001, 2.692) |
Road sky view index | 0.079 | 0.031 (0.001, 1.487) | 0.638 | 0.328 (0.003, 34.241) | 0.033 | 0.002 (0.001, 0.619) |
Road green view index | 0.358 | 0.213 (0.008, 5.761) | 0.344 | 4.660 (0.192, 112.86) | 0.059 | 0.012 (0.001, 1.176) |
Individual characteristics | ||||||
Gender (Ref: Female) | ||||||
Male | 0.000 | 5.352 (3.866, 7.410) | / | / | / | / |
Education | No significant effect shown, see Table S2 for details | |||||
Hukou | No significant effect shown, see Table S2 for details | |||||
Marriage | No significant effect shown, see Table S2 for details | |||||
Employment (Ref: Other) | ||||||
Full-time employment | 0.154 | 0.294 (0.055, 1.580) | 0.094 | 0.193 (0.028, 1.322) | 0.122 | 0.441 (0.156, 1.244) |
Half-time employment | 0.709 | 0.675 (0.085, 5.329) | 0.354 | 0.221 (0.009, 5.379) | 0.651 | 1.448 (0.291, 7.197) |
Temporary employment | 0.209 | 0.306 (0.048, 1.941) | 0.318 | 0.308 (0.030, 3.117) | 0.112 | 0.262 (0.050, 1.370) |
School students | 0.791 | 0.773 (0.116, 5.170) | 0.812 | 0.760 (0.080, 7.235) | 0.321 | 0.527 (0.148, 1.871) |
Retired at home | 0.027 | 0.165 (0.034, 0.812) | 0.006 | 0.068 (0.010, 0.471) | 0.038 | 0.276 (0.082, 0.928) |
Unemployed | 0.231 | 0.339 (0.058, 1.988) | 0.136 | 0.207 (0.026, 1.641) | 0.259 | 0.503 (0.152, 1.660) |
Housing property | No significant effect shown, see Table S2 for details | |||||
Pedestrian travel preference | No significant effect shown, see Table S2 for details | |||||
Age | 0.000 | 1.061 (1.040, 1.083) | 0.000 | 1.060 (1.031, 1.090) | 0.001 | 1.065 (1.038, 1.093) |
House value | 0.668 | 1.000 (1.000, 1.000) | 0.704 | 1.000 (1.000, 1.000) | 0.148 | 1.000 (1.000, 1.000) |
Number of cars | 0.616 | 0.936 (0.722, 1.212) | 0.871 | 0.973 (0.699, 1.355) | 0.877 | 0.970 (0.658, 1.429) |
Number of electric vehicles /mopeds /motorcycles | 0.280 | 0.881 (0.699, 1.109) | 0.340 | 0.856 (0.623, 1.177) | 0.827 | 0.956 (0.639, 1.430) |
Number of bicycles | 0.224 | 1.143 (0.922, 1.417) | 0.213 | 1.201 (0.901, 1.601) | 0.726 | 1.057 (0.776, 1.439) |
Exercise frequency per week | 0.381 | 1.024 (0.972, 1.078) | 0.215 | 1.043 (0.976, 1.116) | 0.856 | 0.991 (0.904, 1.087) |
Income | 0.044 | 0.958 (0.800, 0.999) | 0.842 | 0.977 (0.960, 1.023) | 0.000 | 0.920 (0.902, 0.980) |
Model 2 | Total Sample | Male Sample | Female Sample | |||
---|---|---|---|---|---|---|
p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | |
Walking environment | ||||||
Road intersection density | 0.998 | 0.999 (0.991, 1.009) | 0.058 | 1.011 (1.000, 1.022) | 0.066 | 0.974 (0.946, 1.002) |
Land use entropy | 0.940 | 1.025 (0.534, 1.971) | 0.417 | 1.332 (0.666, 2.663) | 0.582 | 0.714 (0.215, 2.372) |
Community green space rate | 0.548 | 1.009 (0.979, 1.040) | 0.527 | 1.012 (0.974, 1.052) | 0.738 | 1.007 (0.966, 1.051) |
Number of bus stops within 500 m of the community border | 0.713 | 1.009 (0.964, 1.055) | 0.237 | 0.966 (0.913, 1.023) | 0.035 | 0.910 (0.836, 0.990) |
RVI index | 0.264 | 1.307 (0.817, 2.090) | 0.555 | 1.169 (0.697, 1.959) | 0.568 | 1.468 (0.393, 5.488) |
Road sky view index | 0.387 | 0.147 (0.002, 11.339) | 0.455 | 0.150 (0.001, 21.657) | 0.418 | 0.021 (0.001, 234.921) |
Road green view index | 0.846 | 1.457 (0.033, 64.454) | 0.043 | 54.011 (1.132, 2576.444) | 0.123 | 0.007 (0.002, 3.924) |
Individual characteristics | ||||||
Gender (Ref: Female) | ||||||
Male | 0.000 | 2.799 (1.849, 4.237) | / | / | / | / |
Education | No significant effect shown, see Table S3 for details | |||||
Hukou | No significant effect shown, see Table S3 for details | |||||
Marriage (Ref: Widowed) | ||||||
Married | 0.163 | 0.293 (0.052, 1.646) | / | / | 0.132 | 0.123 (0.008, 1.877) |
Unmarried | 0.008 | 0.091 (0.016, 0.531) | / | / | 0.016 | 0.022 (0.001, 0.485) |
Divorced | 0.133 | 0.140 (0.011, 1.814) | / | / | 0.143 | 0.189 (0.028, 1.856) |
Employment | No significant effect shown, see Table S3 for details | |||||
Housing property | No significant effect shown, see Table S3 for details | |||||
Pedestrian travel preference (Ref: Very like) | ||||||
Very dislike | 0.445 | 0.624 (0.186, 2.092) | 0.977 | 1.018 (0.306, 3.383) | 0.489 | 0.689 (0.347, 1.784) |
Relatively dislike | 0.190 | 0.619 (0.302, 1.269) | 0.339 | 0.657 (0.278, 1.554) | 0.735 | 0.810 (0.240, 2.737) |
Normal | 0.035 | 0.591 (0.362, 0.964) | 0.146 | 0.604 (0.307, 1.192) | 0.511 | 0.771 (0.355, 1.676) |
Relatively like | 0.175 | 0.708 (0.430, 1.166) | 0.294 | 0.698 (0.357, 1.365) | 0.986 | 0.992 (0.405, 2.430) |
Age | 0.019 | 1.024 (1.004, 1.044) | 0.009 | 1.030 (1.007, 1.054) | 0.002 | 1.063 (1.023, 1.105) |
House value | 0.863 | 1.000 (1.000, 1.000) | 0.534 | 1.000 (1.000, 1.000) | 0.209 | 1.000 (1.000, 1.000) |
Number of cars | 0.341 | 0.864 (0.640, 1.167) | 0.546 | 0.896 (0.629, 1.278) | 0.718 | 0.891 (0.478, 1.664) |
Number of electric vehicles /mopeds /motorcycles | 0.448 | 0.915 (0.728, 1.151) | 0.577 | 0.929 (0.717, 1.204) | 0.670 | 0.906 (0.576, 1.426) |
Number of bicycles | 0.245 | 1.158 (0.904, 1.483) | 0.174 | 1.198 (0.923, 1.555) | 0.261 | 1.304 (0.821, 2.070) |
Exercise frequency per week | 0.168 | 1.036 (0.985, 1.090) | 0.338 | 1.198 (0.923, 1.555) | 0.399 | 1.047 (0.941, 1.166) |
Income | 0.489 | 0.980 (0.934, 1.002) | 0.952 | 0.965 (0.946, 1.069) | 0.008 | 0.968 (0.947, 0.974) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Xu, Z.; Chen, Y.; Lu, Y.; Lin, J. Walking Environment and Obesity: A Gender-Specific Association Study in Shanghai. Int. J. Environ. Res. Public Health 2022, 19, 2056. https://doi.org/10.3390/ijerph19042056
Gao H, Xu Z, Chen Y, Lu Y, Lin J. Walking Environment and Obesity: A Gender-Specific Association Study in Shanghai. International Journal of Environmental Research and Public Health. 2022; 19(4):2056. https://doi.org/10.3390/ijerph19042056
Chicago/Turabian StyleGao, Hei, Zike Xu, Yu Chen, Yutian Lu, and Jian Lin. 2022. "Walking Environment and Obesity: A Gender-Specific Association Study in Shanghai" International Journal of Environmental Research and Public Health 19, no. 4: 2056. https://doi.org/10.3390/ijerph19042056
APA StyleGao, H., Xu, Z., Chen, Y., Lu, Y., & Lin, J. (2022). Walking Environment and Obesity: A Gender-Specific Association Study in Shanghai. International Journal of Environmental Research and Public Health, 19(4), 2056. https://doi.org/10.3390/ijerph19042056