SARS-CoV-2 Seroprevalence in Healthcare Workers before the Vaccination in Poland: Evolution from the First to the Second Pandemic Outbreak
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Procedures
2.2. Laboratory Analysis
Detection of Anti-SARS-CoV-2 Antibodies
2.3. Statistical Analysis
3. Results
3.1. First Observational Period: May 2020
3.2. Second Observational Period: December 2020
3.3. Risk Factors and Seropositivity—Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO, Geneva, 2020. WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 31 October 2021).
- Polish Ministry of Health. Available online: https://www.gov.pl/web/zdrowie (accessed on 5 October 2021).
- Corman, V.; Bleicker, T.; Brünink, S.; Drosten, C.; Landt, O.; Koopmans, M.; Zambon, M. Diagnostic Detection of 2019-nCoV by Real-Time RT-PCR. Protocol and Preliminary Evaluationas of 17 January 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/protocol-v2-1.pdf?sfvrsn=a9ef618c_2. (accessed on 31 October 2021).
- Overview of Testing for SARS-CoV-2 (COVID-19). Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.html. (accessed on 3 November 2021).
- Korth, J.; Wilde, B.; Dolff, S.; Anastasiou, O.E.; Krawczyk, A.; Jahn, M.; Cordes, S.; Ross, B.; Esser, S.; Lindemann, M.; et al. SARS-CoV-2-specific antibody detection in healthcare workers in Germany with direct contact to COVID-19 patients. J. Clin. Virol. 2020, 128, 104437. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, S.F.; Brandstetter, S.; Roth, S.; Harner, S.; Buntrock-Döpke, H.; Toncheva, A.A.; Borchers, N.; Gruber, R.; Ambrosch, A.; Kabesch, M.; et al. Immune response to SARS-CoV-2 in health care workers following a COVID-19 outbreak: A prospective longitudinal study. J. Clin. Virol. 2020, 130, 104575. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.; Leven, E.; Muellers, K.; Stone, K.; Mendu, D.R.; Wajnberg, A. Prevalence of SARS-CoV-2 Antibodies Among Healthcare Workers at a Tertiary Academic Hospital in New York City. J. Gen. Intern. Med. 2020, 35, 2485–2486. [Google Scholar] [CrossRef] [PubMed]
- Poulikakos, D.; Sinha, S.; Kalra, P.A. SARS-CoV-2 antibody screening in healthcare workers in a tertiary centre in North West England. J. Clin. Virol. 2020, 129, 104545. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.B.; Grüter, L.; Boltzmann, M.; Rollnik, J.D. Prevalence of serum IgG antibodies against SARS-CoV-2 among clinic staff. PLoS ONE 2020, 15, e0235417. [Google Scholar] [CrossRef]
- Steensels, D.; Oris, E.; Coninx, L.; Nuyens, D.; Delforge, M.L.; Vermeersch, P.; Heylen, L. Hospital-Wide SARS-CoV-2 Antibody Screening in 3056 Staff in a Tertiary Center in Belgium. JAMA J. Am. Med. Assoc. 2020, 324, 195–197. [Google Scholar] [CrossRef]
- Wang, X.; Ferro, E.G.; Zhou, G.; Hashimoto, D.; Bhatt, D.L. Association between universal masking in a health care system and SARS-CoV-2 positivity among health care workers. JAMA 2020, 324, 703–704. [Google Scholar] [CrossRef]
- Iversen, K.; Bundgaard, H.; Hasselbalch, R.B.; Kristensen, J.H.; Nielsen, P.B.; Pries-Heje, M.; Knudsen, A.D.; Christensen, C.E.; Fogh, K.; Norsk, J.B.; et al. Risk of COVID-19 in health-care workers in Denmark: An observational cohort study. Lancet Infect. Dis. 2020, 20, 1401–1408. [Google Scholar] [CrossRef]
- Sahu, A.K.; Amrithanand, V.T.; Mathew, R.; Aggarwal, P.; Nayer, J.; Bhoi, S. COVID-19 in health care workers—a systematic review and meta-analysis. Am. J. Emerg. Med. 2020, 38, 1727–1731. [Google Scholar] [CrossRef]
- WHO Keep Health Workers Safe to Keep Patients Safe. 2020. Available online: https://www.who.int/news/item/17-09-2020-keep-health-workers-safe-to-keep-patients-safe-who (accessed on 3 November 2021).
- Scohy, A.; Gruson, D.; Simon, A.; Kabamba-Mukadi, B.; De Greef, J.; Belkhir, L.; Rodriguez-Villalobos, H.; Robert, A.; Yombi, J.C. Seroprevalence of SARS-CoV-2 infection in health care workers of a teaching hospital in Belgium: Self-reported occupational and household risk factors for seropositivity. Diagn. Microbiol. Infect. Dis. 2021, 100, 115414. [Google Scholar] [CrossRef]
- Wauthier, L.; Delefortrie, Q.; Eppe, N.; Vankerkhoven, P.; Wolff, E.; Dekeyser, M.; Cirriez, J.M.; Grimmelprez, A. SARS-CoV-2 seroprevalence in high-risk health care workers in a Belgian general hospital: Evolution from the first wave to the second. Acta Clin. Belg. 2021, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Keeley, A.J.; Evans, C.; Colton, H. Roll-out of SARS-CoV-2 testing for healthcare workers at a large NHS Foundation Trust in the United Kingdom, march 2020. Euro. Surveill. 2020, 25, 2000433. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Nasrullah, S.M.; Tasnim, Z.; Hasan, M.K.; Hasan, M.M. Seroprevalence of SARS-CoV-2 IgG antibodies among health care workers prior to vaccine administration in Europe, the USA and East Asia: A systematic review and meta-analysis. EClinicalMedicine 2021, 33, 100770. [Google Scholar] [CrossRef]
- Galanis, P.; Vraka, I.; Fragkou, D.; Bilali, A.; Kaitelidou, D. Seroprevalence of SARS-CoV-2 antibodies and associated factors in healthcare workers: A systematic review and meta-analysis. J. Hosp. Infect. 2021, 108, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Pinkas, J.; Jankowski, M.; Szumowski, Ł.; Lusawa, A.; Zgliczyński, W.S.; Raciborski, F.; Wierzba, W.; Gujski, M. Public Health Interventions to Mitigate Early Spread of SARS-CoV-2 in Poland. Med. Sci. Monit. 2020, 13, e924730. [Google Scholar] [CrossRef]
- COVID-19 Map Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/map.html (accessed on 5 November 2021).
- Kasztelewicz, B.; Janiszewska, K.; Burzyńska, J.; Szydłowska, E.; Migdał, M.; Dzierżanowska-Fangrat, K. Prevalence of IgG antibodies against SARS-CoV-2 among healthcare workers in a tertiary pediatric hospital in Poland. PLoS ONE 2021, 16, e0249550. [Google Scholar] [CrossRef]
- Bułdak, R.J.; Woźniak-Grygiel, E.; Wąsik, M.; Kasperczyk, J.; Gawrylak-Dryja, E.; Mond-Paszek, R.; Konka, A.; Badura-Brzoza, K.; Fronczek, M.; Golec, M.; et al. SARS-CoV-2 Antibody Screening in Healthcare Workers in Non-Infectious Hospitals in Two Different Regions of Southern Poland (Upper Silesia and Opole Voivodeships): A Prospective Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 4376. [Google Scholar] [CrossRef]
- Lorent, D.; Nowak, R.; Roxo, C.; Lenartowicz, E.; Makarewicz, A.; Zaremba, B.; Nowak, S.; Kuszel, L.; Stefaniak, J.; Kierzek, R. Prevalence of Anti-SARS-CoV-2 Antibodies in Poznań, Poland, after the First Wave of the COVID-19 Pandemic. Vaccines 2021, 9, 541. [Google Scholar] [CrossRef]
- Kowalska, M.; Niewiadomska, E.; Barański, K.; Kaleta-Pilarska, A.; Brożek, G.; Zejda, J.E. Association between Influenza Vaccination and Positive SARS-CoV-2 IgG and IgM Tests in the General Population of Katowice Region, Poland. Vaccines 2021, 9, 415. [Google Scholar] [CrossRef]
- Psichogiou, M.; Karabinis, A.; Pavlopoulou, I.D.; Basoulis, D.; Petsios, K.; Roussos, S.; Pratikaki, M.; Jahaj, E.; Protopapas, K.; Leontis, K.; et al. Antibodies against SARS-CoV-2 among health care workers in a country with low burden of COVID-19. PLoS ONE 2020, 15, e0243025. [Google Scholar] [CrossRef] [PubMed]
- Behrens, G.; Cossmann, A.; Stankov, M.V.; Witte, T.; Ernst, D.; Happle, C. Perceived versus proven SARS-CoV-2-specific immune responses in health-care professionals. Infection 2020, 48, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Zejda, J.E.; Brożek, G.M.; Kowalska, M.; Barański, K.; Kaleta-Pilarska, A.; Nowakowski, A.; Xia, Y.; Buszman, P. Seroprevalence of Anti-SARS-CoV-2 Antibodies in a Random Sample of Inhabitants of the Katowice Region, Poland. Int. J. Environ. Res. Public Health. 2021, 18, 3188. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.C.-C.; Wong, S.-C.; Yuen, K.-Y. Estimating coronavirus disease 2019 infection risk in health care workers. JAMA Netw. Open 2020, 3, e209687. [Google Scholar] [CrossRef]
- Shields, A.; Faustini, S.E.; Perez-Toledo, M.; Jossi, S.; Aldera, E.; Allen, J.D.; Al-Taei, S.; Backhouse, C.; Bosworth, A.; Dunbar, L.A.; et al. SARS-CoV-2 seroprevalence and asymptomatic viral carriage in healthcare workers: A cross-sectional study. Thorax 2020, 75, 1089–1094. [Google Scholar] [CrossRef]
- Treibel, T.A.; Manisty, C.; Burton, M.; McKnight, Á.; Lambourne, J.; Augusto, J.B.; Couto-Parada, X.; Cutino-Moguel, T.; Noursadeghi, M.; Moon, J.C. COVID-19: PCR screening of asymptomatic health-care workers at London hospital. Lancet 2020, 395, 1608–1610. [Google Scholar] [CrossRef]
- Galán, M.I.; Velasco, M.; Casas, M.L.; Goyanes, M.J.; Rodríguez-Caravaca, G.; Losa-García, J.E.; Noguera, C.; Castilla, V. Working Group Alcorcón COVID-19 investigators; Working Group Alcorcón COVID-19 investigators. Hospital-Wide SARS-CoV-2 seroprevalence in health care workers in a Spanish teaching hospital. Enferm. Infecc. Microbiol. Clin. 2020, 18, S005–S0213. [Google Scholar] [CrossRef]
- Rostami, A.; Sepidarkish, M.; Leeflang, M.M.G.; Riahi, S.M.; Nourollahpour Shiadeh, M.; Esfandyari, S.; Mokdad, A.H.; Hotez, P.J.; Gasser, R.B. SARS-CoV-2 seroprevalence worldwide: A systematic review and meta-analysis. Clin. Microbiol. Infect 2021, 27, 331–340. [Google Scholar] [CrossRef]
- Abate, B.B.; Kassie, A.M.; Kassaw, M.W.; Aragie, T.G.; Masresha, S.A. Sex difference in coronavirus disease (COVID-19): A systematic review and meta-analysis. BMJ Open 2020, 10, e040129. [Google Scholar] [CrossRef]
- Yu, H.Q.; Sun, B.Q.; Fang, Z.F.; Zhao, J.C.; Liu, X.Y.; Li, Y.M.; Sun, X.Z.; Liang, H.F.; Zhong, B.; Huang, Z.F.; et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur. Respir. J. 2020, 56, 2001526. [Google Scholar] [CrossRef]
- Gudbjartsson, D.F.; Norddahl, G.L.; Melsted, P.; Gunnarsdottir, K.; Holm, H.; Eythorsson, E.; Arnthorsson, A.O.; Helgason, D.; Bjarnadottir, K.; Ingvarsson, R.F.; et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 2020, 383, 1724–1734. [Google Scholar] [CrossRef] [PubMed]
- Karachaliou, M.; Moncunill, G.; Espinosa, A.; Castaño-Vinyals, G.; Jiménez, A.; Vidal, M.; Santano, R.; Barrios, D.; Puyol, L.; Carreras, A.; et al. Infection induced SARS-CoV-2 seroprevalence and heterogeneity of antibody responses in a general population cohort study in Catalonia Spain. Sci. Rep. 2021, 11, 21571. [Google Scholar] [CrossRef] [PubMed]
- Team, C.C.-R. Characteristics of health care personnel with COVID-19—United States, February 12–April 9, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 477–481. [Google Scholar] [CrossRef] [Green Version]
- Chow, E. Symptom screening at illness onset of health care personnel with SARS-CoV-2 Infection in King County, Washington. JAMA 2020, 323, 2087–2089. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; Valdes, A.M.; Freidin, M.B.; Sudre, C.H.; Nguyen, L.H.; Drew, D.A.; Ganesh, S.; Varsavsky, T.; Cardoso, M.J.; El-Sayed Moustafa, J.S.; et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 2020, 26, 1037–1040. [Google Scholar] [CrossRef]
- Rudberg, A.S.; Havervall, S.; Månberg, A.; Jernbom Falk, A.; Aguilera, K.; Ng, H.; Gabrielsson, L.; Salomonsson, A.C.; Hanke, L.; Murrell, B.; et al. SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nat. Commun. 2020, 11, 5064. [Google Scholar] [CrossRef]
Characteristics | May 2020 Total No = 208 | December 2020 Total No = 179 |
---|---|---|
Women | 183 (88.0%) | 154 (86.0%) |
Age (mean ± SD) years | 47.1 ± 12.5 (49.0; 24–74) | 45.2 ± 12.4 (46.0; 21–69) |
Age groups | ||
18–33 years | 48 (23.1%) | 42 (23.5%) |
34–49 years | 61 (29.3%) | 61 (34.1%) |
50–64 years | 83 (39.9%) | 68 (38.0%) |
65+ | 16 (7.7%) | 8 (4.5%) |
Clinical conditions (comorbidities) | 86 (41.4%) | 82 (45.8%) |
Respiratory tract disease | 8 (3.8%) | 7 (3.9%) |
Endocrinological disease | 39 (18.8%) | 35 (19.6%) |
Cardiovascular disease | 36 (17.3%) | 35 (19.6%) |
Diabetes mellitus | 4 (1.9%) | 4 (2.2%) |
Immunodeficiency | 1 (0.5%) | 3 (1.7%) |
Allergy | 34 (16.3%) | 21 (11.7%) |
Gastrointestinal tract disease | 6 (2.9%) | 2 (1.1%) |
Cancer | 2 (1.0%) | 2 (1.1%) |
Occupational SARS-CoV-2 exposure | 28 (13.5%) | 108 (60.3%) |
Previous positive PCR test | 0 (0%) | 24 (13.4%) |
URT Infection in previous 3 months | 81 (38.9%) | 69 (38.5%) |
Infection index | ||
Mild (≤15 points) | 23 (11.1%) | 15 (8.4%) |
Moderate (16–30 points) | 48 (23.1%) | 33 (18.4%) |
Severe (≥31 points) | 10 (4.8%) | 21 (11.7%) |
Professional category | ||
Administrative and management | 14 (6.7%) | 50 (27.9%) |
Laboratory diagnostician | 51 (24.5%) | 35 (19.6%) |
Nurse | 71 (34.1%) | 51 (28.5%) |
Physician | 69 (33.2%) | 43 (24.0%) |
Workplace | ||
Regional Occupational Medicine Center | 42 (20.2%) | 38 (21.2%) |
Teaching Hospital | 166 (79.8%) | 141 (78.8%) |
Characteristics | May 2020 Total No = 208 | December 2020 Total No = 179 | ||
---|---|---|---|---|
Positive IgG (n = 5) | Positive IgA (n = 15) | Positive IgG (n = 41) | Positive IgA (n = 45) | |
Women | 5 (100%) | 13 (86.7%) | 34 (82.9%) | 37 (82.2%) |
Men | 0 (0%) | 2 (13.3%) | 7 (17.1%) | 8 (17.8%) |
Age groups | ||||
18–33 years | 1 (20.0%) | 3 (20.0%) | 9 (21.9%) | 9 (20.0%) |
34–49 years | 2 (40.0%) | 5 (33.3%) | 10 (24.4%) | 13 (28.9%) |
50–64 years | 2 (40.0%) | 6 (40.0%) | 18 (43.9%) | 19 (42.2%) |
65+ | 0 (0%) | 1 (6.7%) | 4 (9.8%) | 4 (8.9%) |
Clinical conditions (comorbidities) | 3 (60.0%) | 6 (40.0%) | 18 (43.9%) | 21 (46.7%) |
Respiratory tract disease | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Endocrinological disease | 1 (20.0%) | 2 (13.3%) | 13 (31.7%) | 14 (31.1%) |
Cardiovascular disease | 1 (20.0%) | 3 (20.0%) | 5 (12.2%) | 8 (17.8%) |
Diabetes mellitus | 0 (0%) | 0 (0%) | 1 (2.4%) | 1 (2.2%) |
Immunodeficiency | 1 (20.0%) | 1 (6.7%) | 0 (0%) | 0 (0%) |
Allergy | 0 (0%) | 2 (13.3%) | 3 (7.3%) | 3 (6.7%) |
Gastrointestinal tract disease | 0 (0%) | 1 (6.7%) | 1 (2.4%) | 1 (2.2%) |
Cancer | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Occupational SARS-CoV-2 exposure | 2 (40.0%) | 3 (20.0%) | 30 (73.2%) | 33 (73.3%) |
Previous positive PCR test | 0 (0%) | 0 (0%) | 21 (51.2%) | 18 (40.0%) |
URT Infection in previous 3 months | 4 (80.0%) | 10 (66.7%) | 33 (80.5%) | 35 (77.8%) |
Infection index | ||||
Mild (≤15 points) | 3 (60.0%) | 4 (26.7%) | 3 (7.3%) | 4 (8.9%) |
Moderate (16–30 points) | 1 (20.0%) | 3 (20.0%) | 10 (24.4%) | 14 (31.1%) |
Severe (≥31 points) | 0 (0%) | 3 (20.0%) | 20 (48.8%) | 17 (37.8%) |
Professional category | ||||
Administrative and management | 0 (0%) | 0 (0%) | 10 (24.4%) | 15 (33.3%) |
Laboratory diagnosticians | 2 (40.0%) | 7 (46.7%) | 7 (17.1%) | 6 (13.3%) |
Nurse | 2 (40.0%) | 2 (13.3%) | 14 (34.1%) | 12 (26.7%) |
Physician | 1 (20.0%) | 6 (40.0%) | 10 (24.4%) | 12 (26.7%) |
Workplace | ||||
ROMC | 2 (40.0%) | 4 (26.7%) | 9 (21.9%) | 11 (24.4%) |
Teaching Hospital | 3 (60.0%) | 11 (73.3%) | 32 (78.0%) | 34 (75.6%) |
Characteristics | Univariate | Multivariate (All Effects) | Multivariate (Model) | |||
---|---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | |||
Men | 1.37 (0.53–3.56) | 0.51 | 7.5 (1.4–41.0) | 0.021 | ||
Age | 1.02 (0.99–1.05) | 0.17 | 1.02 (0.98–1.08) | 0.29 | ||
Clinical conditions | ||||||
Respiratory tract disease | 0.0 (0.0) | 1.0 | 0.0 (0.0) | 1.0 | ||
Endocrinological disease | 2.44 (1.1–5.45) | 0.028 | 1.5 (0.37–5.8) | 0.58 | ||
Cardiovascular disease | 0.50 (0.18–1.39) | 0.18 | 0.26 (0.04–1.59) | 0.15 | ||
Diabetes mellitus | 1.13 (0.11–11.1) | 0.92 | 1.36 (0.04–44.2) | 0.86 | ||
Immunodeficiency | 2.5 (0.26–24.6) | 0.43 | 0.0 (0.0) | 1.0 | ||
Allergy | 0.0 (0.0) | 1.0 | 0.27 (0.03–2.4) | 0.24 | ||
Gastrointestinal tract disease | 3.42 (0.2–55.9) | 0.39 | 42.5 (1.2–1455.7) | 0.038 | 19.2 (0.86–426.0) | 0.043 |
Occupational SARS-CoV-2 exposure | 2.1 (0.97–4.52) | 0.059 | 1.54 (0.48–4.9) | 0.47 | ||
URTI in previous 3 months | 11.7 (4.9–27.6) | <0.0001 | 0.35 (0.03–3.7) | 0.38 | ||
Infection index | 1.1 (1.08–1.2) | <0.0001 | 1.18 (1.08–1.3) | <0.0001 | 1.1 (1.06–1.15) | <0.0001 |
Professional category | ||||||
Administrative and management | 0.8 (0.31–2.22) | 0.70 | 1.72 (0.35–8.4) | 0.5 | ||
Laboratory diagnosticians | 0.8 (0.28–2.45) | 0.84 | 2.87 (0.5–16.1) | 0.23 | ||
Nurse | 1.2 (0.49–3.2) | 0.46 | 5.0 (0.85–29.3) | 0.075 | ||
Physician | referent | referent | ||||
Workplace | ||||||
ROMC | 1.06 (0.45–2.46) | 0.9 | 1.53 (0.36–6.55) | 0.57 | ||
Teaching Hospital | referent | referent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korona-Głowniak, I.; Mielnik, M.; Podgajna, M.; Grywalska, E.; Hus, M.; Matuska, K.; Wojtysiak-Duma, B.; Duma, D.; Glowniak, A.; Malm, A. SARS-CoV-2 Seroprevalence in Healthcare Workers before the Vaccination in Poland: Evolution from the First to the Second Pandemic Outbreak. Int. J. Environ. Res. Public Health 2022, 19, 2319. https://doi.org/10.3390/ijerph19042319
Korona-Głowniak I, Mielnik M, Podgajna M, Grywalska E, Hus M, Matuska K, Wojtysiak-Duma B, Duma D, Glowniak A, Malm A. SARS-CoV-2 Seroprevalence in Healthcare Workers before the Vaccination in Poland: Evolution from the First to the Second Pandemic Outbreak. International Journal of Environmental Research and Public Health. 2022; 19(4):2319. https://doi.org/10.3390/ijerph19042319
Chicago/Turabian StyleKorona-Głowniak, Izabela, Michał Mielnik, Martyna Podgajna, Ewelina Grywalska, Marek Hus, Katarzyna Matuska, Beata Wojtysiak-Duma, Dariusz Duma, Andrzej Glowniak, and Anna Malm. 2022. "SARS-CoV-2 Seroprevalence in Healthcare Workers before the Vaccination in Poland: Evolution from the First to the Second Pandemic Outbreak" International Journal of Environmental Research and Public Health 19, no. 4: 2319. https://doi.org/10.3390/ijerph19042319
APA StyleKorona-Głowniak, I., Mielnik, M., Podgajna, M., Grywalska, E., Hus, M., Matuska, K., Wojtysiak-Duma, B., Duma, D., Glowniak, A., & Malm, A. (2022). SARS-CoV-2 Seroprevalence in Healthcare Workers before the Vaccination in Poland: Evolution from the First to the Second Pandemic Outbreak. International Journal of Environmental Research and Public Health, 19(4), 2319. https://doi.org/10.3390/ijerph19042319