Efficiency of Gum Rosin-Coated Personal Protective Clothing to Protect against Chlorpyrifos Exposure in Applicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Personal Protective Clothing (PPC)
2.2. Study Site and Participants
2.3. Measurement Climatic Conditions in the Field
2.4. Measurement of Protective Efficiency of PPC
2.5. Analysis of Chlorpyrifos
2.6. Measurement of Physiological Effect and Perception of Discomfort
2.7. Data Analysis
3. Results
3.1. Actual Dermal Exposure (ADE) and Potential Dermal Exposure (PDE) for the Total Surface Body of Applicators
3.2. Comparison of Chlorpyrifos Protection Efficiency among Tested PPC
3.3. Physiological Effects among Tested PPC
3.4. The Perception of Discomfort among Tested PPC
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gangemi, S.; Miozzi, E.; Teodoro, M.; Briguglio, G.; De Luca, A.; Alibrando, C.; Polito, I.; Libra, M. Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans. Mol. Med. Rep. 2016, 14, 4475–4488. [Google Scholar] [CrossRef] [Green Version]
- Chittrakul, J.; Sapbamrer, R.; Sirikul, W. Insecticide Exposure and Risk of Asthmatic Symptoms: A Systematic Review and Meta-Analysis. Toxics 2021, 9, 228. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprea, C.; Terenzoni, B.; De Angelis, V.; Sciarra, G.; Lunghini, L.; Borzacchi, G.; Vasconi, D.; Fani, D.; Quercia, A.; Salvan, A.; et al. Evaluation of Skin and Respiratory Doses and Urinary Excretion of Alkylphosphates in Workers Exposed to Dimethoate During Treatment of Olive Trees. Arch. Environ. Contam. Toxicol. 2004, 48, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Sapbamrer, R.; Thammachai, A. Factors affecting use of personal protective equipment and pesticide safety practices: A systematic review. Environ. Res. 2020, 185, 109444. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Naksata, M.; Hongsibsong, S.; Wunnapuk, K.; Watcharapasorn, A.; Chittrakul, J. How to protect agricultural workers from exposure to pesticides: Effectiveness of woven and natural resin-coated fabrics. Cogent Eng. 2021, 8, 1932241. [Google Scholar] [CrossRef]
- Miguelino, E.S. A Meta-analytic Review of the Effectiveness of Single-Layer Clothing in Preventing Exposure From Pesticide Handling. J. Agromed. 2014, 19, 373–383. [Google Scholar] [CrossRef]
- Jallow, M.F.; Awadh, D.G.; Albaho, M.S.; Devi, V.Y.; Thomas, B.M. Pesticide Knowledge and Safety Practices among Farm Workers in Kuwait: Results of a Survey. Int. J. Environ. Res. Public Health 2017, 14, 340. [Google Scholar] [CrossRef] [Green Version]
- Holmér, I. Protective Clothing in Hot Environments. Ind. Health 2006, 44, 404–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kermani, M.; Dowlati, M.; Gholami, M.; Sobhi, H.R.; Azari, A.; Esrafili, A.; Yeganeh, M.; Ghaffari, H.R. A global systematic review, meta-analysis and health risk assessment on the quantity of Malathion, Diazinon and Chlorpyrifos in Vegetables. Chemosphere 2021, 270, 129382. [Google Scholar] [CrossRef]
- Foong, S.Y.; Ma, N.L.; Lam, S.S.; Peng, W.; Low, F.; Lee, B.H.; Alstrup, A.K.; Sonne, C. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J. Hazard. Mater. 2020, 400, 123006. [Google Scholar] [CrossRef]
- Saunders, M.; Magnanti, B.L.; Carreira, S.C.; Yang, A.; Alamo-Hernández, U.; Riojas-Rodriguez, H.; Calamandrei, G.; Koppe, J.G.; Von Krauss, M.K.; Keune, H.; et al. Chlorpyrifos and neurodevelopmental effects: A literature review and expert elicitation on research and policy. Environ. Health 2012, 11 (Suppl. 1), S5. [Google Scholar] [CrossRef] [Green Version]
- Burke, R.D.; Todd, S.W.; Lumsden, E.; Mullins, R.; Mamczarz, J.; Fawcett, W.P.; Gullapalli, R.P.; Randall, W.R.; Pereira, E.F.R.; Albuquerque, E.X. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: From clinical findings to preclinical models and potential mechanisms. J. Neurochem. 2017, 142 (Suppl. 2), 162–177. [Google Scholar] [CrossRef]
- Office of the Permanent Secretary for Ministry of Agriculture and Cooperatives. Measures to Restrict Three Pesticides (Paraquat, Glyphosate, and Chlorpyrifos). Available online: https://www.opsmoac.go.th/news-preview-411391791982 (accessed on 25 June 2021).
- Global Agricultural Information Network, United States Department of Agriculture Foreign Agricultural Service. Economic Impact of the Ban on Paraquat and Chlorpyrifos on Thai industries. 2020. Available online: https://www.fas.usda.gov/data/thailand-economic-impact-ban-paraquat-and-chlorpyrifos-thai-industries (accessed on 5 October 2021).
- Sapbamrer, R. Pesticide Use, Poisoning, and Knowledge and Unsafe Occupational Practices in Thailand. New Solut. J. Environ. Occup. Health Policy 2018, 28, 283–302. [Google Scholar] [CrossRef] [PubMed]
- Naksata, M.; Watcharapasorn, A.; Hongsibsong, S.; Sapbamrer, R. Development of Personal Protective Clothing for Reducing Exposure to Insecticides in Pesticide Applicators. Int. J. Environ. Res. Public Health 2020, 17, 3303. [Google Scholar] [CrossRef] [PubMed]
- National Science and Technology Development Agency (NSTDA), Thailand. 2016. Available online: https://www.thailandtechshow.com/view_techno.php?id=34 (accessed on 12 May 2019).
- Verbraecken, J.; Van de Heyning, P.; De Backer, W.; Van Gaal, L. Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism 2006, 55, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Sapbamrer, R.; Hongsibsong, S. Organophosphorus Pesticide Residues in Vegetables From Farms, Markets, and a Supermarket Around Kwan Phayao Lake of Northern Thailand. Arch. Environ. Contam. Toxicol. 2014, 67, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Thouvenin, I.; Bouneb, F.; Mercier, T. Operator dermal exposure and protection provided by personal protective equipment and working coveralls during mixing/loading, application and sprayer cleaning in vineyards. Int. J. Occup. Saf. Ergon. 2017, 23, 229–239. [Google Scholar] [CrossRef]
- Protano, C.; Guidotti, M.; Vitali, M. Performance of Different Work Clothing Types for Reducing Skin Exposure to Pesticides During Open Field Treatment. Bull. Environ. Contam. Toxicol. 2009, 83, 115–119. [Google Scholar] [CrossRef]
- Vitali, M.; Protano, C.; Del Monte, A.; Ensabella, F.; Guidotti, M. Operative Modalities and Exposure to Pesticides During Open Field Treatments Among a Group of Agricultural Subcontractors. Arch. Environ. Contam. Toxicol. 2009, 57, 193–202. [Google Scholar] [CrossRef]
- Espanhol-Soares, M.; Nociti, L.A.S.; Machado-Neto, J.G. Procedures to Evaluate the Efficiency of Protective Clothing Worn by Operators Applying Pesticide. Ann. Occup. Hyg. 2013, 57, 1041–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuiyan, M.A.R.; Wang, L.; Shaid, A.; Shanks, R.A.; Ding, J. Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection. Prog. Org. Coat. 2019, 131, 100–110. [Google Scholar] [CrossRef]
- Shaw, A.; Schiffelbein, P. Protective Clothing for Pesticide Operators: Part II—Data Analysis of Fabric Characteristics. Int. J. Occup. Saf. Ergon. 2016, 22, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Obendorf, S.K. Statistical Model of Pesticide Penetration Through Woven Work Clothing Fabrics. Arch. Environ. Contam. Toxicol. 2005, 49, 266–273. [Google Scholar] [CrossRef]
- Coca, A.; Quinn, T.; Kim, J.-H.; Wu, T.; Powell, J.; Roberge, R.; Shaffer, R. Physiological Evaluation of Personal Protective Ensembles Recommended for Use in West Africa. Disaster Med. Public Health Prep. 2017, 11, 580–586. [Google Scholar] [CrossRef]
- De Almeida, R.A.C.d.S.; Veiga, M.M.; Duarte, F.J.D.C.M.; Meirelles, L.A.; Veiga, L.B.E. Thermal comfort and personal protective equipment (PPE). Work 2012, 41 (Suppl. 1), 4979–4982. [Google Scholar] [CrossRef] [Green Version]
- Ruskin, K.J.; Ruskin, A.C.; Musselman, B.T.; Harvey, J.R.; Nesthus, T.E.; O’Connor, M. COVID-19, Personal Protective Equipment, and Human Performance. Anesthesiology 2021, 134, 518–525. [Google Scholar] [CrossRef]
- Garrigou, A.; Laurent, C.; Berthet, A.; Colosio, C.; Jas, N.; Daubas-Letourneux, V.; Filho, J.-M.J.; Jouzel, J.-N.; Samuel, O.; Baldi, I.; et al. Critical review of the role of PPE in the prevention of risks related to agricultural pesticide use. Saf. Sci. 2020, 123, 104527. [Google Scholar] [CrossRef]
- Watson, C.; Troynikov, O.; Lingard, H. Design considerations for low-level risk personal protective clothing: A review. Ind. Health 2019, 57, 306–325. [Google Scholar] [CrossRef] [Green Version]
- Varghese, B.M.; Hansen, A.L.; Williams, S.; Bi, P.; Hanson-Easey, S.; Barnett, A.G.; Heyworth, J.S.; Sim, M.R.; Rowett, S.; Nitschke, M.; et al. Heat-related injuries in Australian workplaces: Perspectives from health and safety representatives. Saf. Sci. 2020, 126, 104651. [Google Scholar] [CrossRef]
- Kim, R.-H.; Kwon, Y.-G.; Lee, H.-Y.; Lim, J.-Y. Safety Evaluation of Pesticide-proof Materials for Agricultural Clothing Using in-vivo Test. Procedia Manuf. 2015, 3, 1888–1895. [Google Scholar] [CrossRef] [Green Version]
- Davey, S.L.; Lee, B.J.; Robbins, T.; Randeva, H.; Thake, C.D. Heat stress and PPE during COVID-19: Impact on healthcare workers’ performance, safety and well-being in NHS settings. J. Hosp. Infect. 2021, 108, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Moradhaseli, S.; Sadighim, H.; Ataei, P. Investigation of the farmers’ safety and protective behavior to use pesticides in the farms. Health Educ. Health Promot. 2017, 5, 53–65. [Google Scholar]
- Khan, M. Adverse Health Effects, Risk Perception and Pesticide Use Behavior. Munich Personal RePEc Archive. 2009. Available online: https://mpra.ub.uni-muenchen.de/16276/1/MPRA_paper_16276.pdf (accessed on 25 June 2021).
- Aprea, C.; Centi, L.; Santini, S.; Lunghini, L.; Banchi, B.; Sciarra, G. Exposure to Omethoate during Stapling of Ornamental Plants in Intensive Cultivation Tunnels: Influence of Environmental Conditions on Absorption of the Pesticide. Arch. Environ. Contam. Toxicol. 2005, 49, 577–588. [Google Scholar] [CrossRef]
Parameter | Commercial PPC | Gum Rosin-Coated PPC | Everyday PPC | p Value |
---|---|---|---|---|
Temperature, °C | 28.03 ± 1.84 | 27.45 ± 1.59 | 27.47 ± 1.04 | 0.240 |
Relative humidity, % | 75.06 ± 7.51 | 75.52 ± 6.46 | 77.13 ± 3.22 | 0.368 |
Wind velocity, ft/min | 88.19 ± 26.92 | 90.00 ± 26.03 | 85.65 ± 23.74 | 0.798 |
Parameter | Commercial PPC a | Gum Rosin-Coated PPC b | Everyday PPC c | p Value | |||
---|---|---|---|---|---|---|---|
Geometric Mean (95%CI) | Median (25th–75th Percentile) | Geometric mean (95%CI) | Median (25th–75th Percentile) | Geometric Mean (95%CI) | Median (25th–75th Percentile) | ||
ADE (μg) | 12,206 (9364–16,164) | 13,632 (3731–52,884) | 13,849 (11,651–16,355) | 10,547 (5876–24,797) | 13,066 (10,501–16,549) | 15,513 (6140–24,385) | 0.845 |
PDE (μg) | 1143 (930–1418) | 1058 (529–1822) | 1298 (1078–1539) | 1028 (617–2174) | 2864 (2241–3712) | 2552 (852–5788) | 0.012 * ac,bc |
% protection efficiency | 81.9 (78.3–84.4) | 90.7 (68.9–95.3) | 84.3 (82.3–88.0) | 89.2 (78.3–96.0) | 64.9 (59.7–69.8) | 76.5 (53.2–87.9) | 0.002 ** ac,bc |
Condition | Type of PPC | Test Chemicals | % Protection Efficiency | Authors |
---|---|---|---|---|
Laboratory Conditions | ||||
Commercial PPC | ||||
Tychem® coverall (closed chamber) | Chlorpyrifos | 99.9% a, 99.9% b | Naksata et al. [17] | |
Repellent finished PPC | ||||
Gum rosin-coated denim (closed chamber) | Chlorpyrifos | 99.9% a, 99.9% b | Naksata et al. [17] | |
Gum rosin-coated denim (gravimetric method) | Chlorpyrifos | 93.6% a | Sapbamrer et al. [6] | |
Fluorocarbon finishes | Copper hydroxide | 93.9–96.8% a | Espanhol-Soares et al. [24] | |
Field Conditions | ||||
Commercial PPC | ||||
Tychem® coverall | Chlorpyrifos | 81.9% a, 90.7% b | The present study | |
Category III Type-partial body gown | Spinosad | 98.7% a | Thouvenin et al. [21] | |
Tyvek coverall | azinphos-methyl, terbuthylazine, alachlor, dimethoate, and dicamba | >97% a | Protano and Guidotti [22] | |
Tyvek coverall | azinphos-methyl, terbuthylazine, alachlor, dimethoate, and dicamba | 97.6% a | Vitali et al. [23] | |
Repellent finished PPC | ||||
Gum rosin-coated PPC | Chlorpyrifos | 84.3% a, 89.2% b | The present study | |
Fluorocarbon finishes | Sulfate manganese | 95.8–97.1% a | Espanhol-Soares et al. [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapbamrer, R.; Naksata, M.; Hongsibsong, S.; Chittrakul, J.; Chaiut, W. Efficiency of Gum Rosin-Coated Personal Protective Clothing to Protect against Chlorpyrifos Exposure in Applicators. Int. J. Environ. Res. Public Health 2022, 19, 2594. https://doi.org/10.3390/ijerph19052594
Sapbamrer R, Naksata M, Hongsibsong S, Chittrakul J, Chaiut W. Efficiency of Gum Rosin-Coated Personal Protective Clothing to Protect against Chlorpyrifos Exposure in Applicators. International Journal of Environmental Research and Public Health. 2022; 19(5):2594. https://doi.org/10.3390/ijerph19052594
Chicago/Turabian StyleSapbamrer, Ratana, Manoch Naksata, Surat Hongsibsong, Jiraporn Chittrakul, and Wilawan Chaiut. 2022. "Efficiency of Gum Rosin-Coated Personal Protective Clothing to Protect against Chlorpyrifos Exposure in Applicators" International Journal of Environmental Research and Public Health 19, no. 5: 2594. https://doi.org/10.3390/ijerph19052594
APA StyleSapbamrer, R., Naksata, M., Hongsibsong, S., Chittrakul, J., & Chaiut, W. (2022). Efficiency of Gum Rosin-Coated Personal Protective Clothing to Protect against Chlorpyrifos Exposure in Applicators. International Journal of Environmental Research and Public Health, 19(5), 2594. https://doi.org/10.3390/ijerph19052594