Time for Re-Evaluating the Human Carcinogenicity of Ethylenedithiocarbamate Fungicides? A Systematic Review
Abstract
:1. Introduction
- “The monographs do not formally evaluate the carcinogenicity of metabolites or other endogenously formed substances, although evidence on the biological activity of metabolites may provide important supporting data for evaluating the carcinogenicity of parent substances”; however, the IARC supplement No.7, in re-evaluating ETU, had extended the Group 3 classification also to the EBDC fungicides Maneb, Thiram, Zineb, and Ziram, without presenting any further evidence [5].
- “exceptionally, agents … for which the evidence of carcinogenicity is inadequate in humans but sufficient in experimental animals may be placed in [Group 3] when there is strong evidence that the mechanism of carcinogenicity in experimental animals does not operate in humans”. In fact, “…thyroid follicular cell neoplasms… may … be induced by virtually any nongenotoxic goitrogen in these rodent species. In this respect, rodents and humans are quite different…, and no nonradioactive chemical is known to cause these cancers in humans.”
- Thyroid tumours in rats arise through inhibition of thyroid peroxidase (TPO) by ETU and/or Mancozeb leading to disruption of the HPT [hypothalamic-pituitary-thyroid] axis, a non-genotoxic mechanism of action.
- ETU metabolism is more efficient in humans than in rats.
- The plausible occurrence of the same mechanism of action in humans exhibits large, quantitative differences in respect to adult rats due to their lack of thyroxine-binding globulin (TBG).
- Thyroid tumours are a relatively common finding in long-term rat studies, whilst the only known human thyroid carcinogen is ionizing radiation.
- There is no clear evidence of an association between hypothyroidism and thyroid cancer in humans.
- The epidemiological studies on EBDC exposure and thyroid cancer are negative.
- A 1999 document by the European Chemicals Bureau (ECB) on thyroid tumours proposed that low- or medium-potency thyroid carcinogens in rodents should not be classified for human carcinogenicity.
- The Annex VI to the CLP Regulation for ETU, an agent causing thyroid tumours in rats and mice, does not classify ETU as a human carcinogen.
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Inclusion Criteria
3. Results
3.1. Epidemiological Studies on Thyroid Cancer in Agricultural Workers
3.2. Epidemiological Studies on Cancer and Exposure to EBDCs
3.2.1. Thyroid Cancer
3.2.2. Malignant Melanoma
3.2.3. Brain Cancer
3.2.4. Other Cancers
First Author, Year [Ref] | EBDC | Country | Study Design | Exposure | Cancer Site | OR 95% C.I. | Trends | Notes |
---|---|---|---|---|---|---|---|---|
Cherpak et al., 1971 [37] | Thiram | Russia | cohort | Manufacturing | Thyroid | 1 observed case | N/A | |
Smith, 1976 [38] | ETU | United Kingdom | Female cohort | Rubber manufacturing; ETU manufacturing | Thyroid | 0 observed cases | N/A | |
Maher and Defonso, 1986 [39] | Mancozeb | United States | Male cohort | Manufacturing | All cancers Thyroid | 0.66 0 observed case | N/A | Unclear exposure definition |
Schreinemachers et al., 1999 [40] | EBDC | United States | Ecological | Environmental exposure from agricultural uses | Lip Thyroid | 2.7 (1.08–6.71) 2.9 (1.35–6.44) | N/A | |
Nordby et al., 2005 [41] | Mancozeb | Sweden | Ecological | Environmental exposure from agricultural uses | Thyroid | 0.9 (0.81–1.07) * | No | Risk estimated by the ratio between incidence rates |
Lerro et al., 2021 [43] | Maneb/Mancozeb | United States | Cohort | Occupational exposure | Thyroid | 0.5 (0.17–1.47) | No | Five cases only |
Dennis et al., 2010 [44] | Maneb/Mancozeb | United States | Case-control | Occupational exposure | Skin melanoma | 2.4 (1.20–4.90) | Yes | |
Fortes et al., 2016 [45] | Fungicides (mainly Maneb/Mancozeb) | Italy, Brazil | Case-control | Occupational exposure | Skin melanoma | 3.9 (1.17–12.9) | N/A | |
Bhat et al., 2010 [47] | Pesticides (including Mancozeb) | India | Cross sectional | Orchard work | Brain cancer | 2.0 (1.86–2.07) ** | N/A | |
Piel et al., 2019 [48] | Thiram Ferbam, Propineb, Ziram and/or Zineb Maneb/Mancozeb, Metiram | France | Cohort | Occupational exposure | Glioblastoma brain cancer | 1.9 (1.09–3.28) 2.2 (1.20–3.67) 1.9 (1.12–3,35) | Yes | |
Mills et al., 2005 [49] | Mancozeb Maneb | United States | Case-control | Occupational exposure | Leukaemia | 2.4 (1.12–4.95) 1.8 (0.89–3.86) | N/A | |
Mills and Yang, 2007 [50] | Mancozeb Maneb | United States | Case-control | Occupational exposure | Stomach cancer | 1.2 (0.70–2.06) 0.9 (0.57–1.66) | Yes Yes | |
Band et al., 2011 [51] | Ferbam/Maneb Mancozeb Metiram Thiram Zineb Ziram | Canada | Case-control | Occupational exposure | Prostate | 1.6 (1.04–2.48) 1.4 (0.89–2.15) 1.4 (0.86–2.42) 0.9 (0.41–2.11) 0.5 (0.22–2.13) 1.5 (0.97–2.27) | Yes No No N/A N/A yes | |
Koutros et al., 2011 [52] | Maneb/Mancozeb | United States | Case-control | Occupational exposure | Prostate | 0.7 (0.40–1.30) | No | |
Cockburn, 2011 [53] | Maneb | United States | Case-control | Environmental exposure | Prostate | 0.9 (0.48–1.51) | No | |
Lee et al., 2007 [54] | Maneb/Mancozeb Ziram | United States | Cohort | Occupational exposure | Colorectum | 0.7 (0.50–1.20) 1.2 (0.50–2.90) | N/A N/A |
3.3. Experimental Animal and Laboratory Studies
Cancer
3.4. Other Health Effects in Experimental Animals and in Humans
3.4.1. Allergy and Contact Dermatitis
3.4.2. Neurotoxicological and Neurodevelopmental Effects
3.4.3. Genetic Damage and Reproductive Effects
3.4.4. Thyroid Disruption
4. Discussion
5. Conclusions
- Human studies. The available evidence is inadequate to evaluate the human carcinogenicity of ethylenedithio-carbamates and ethylenethiourea, their main metabolite;
- Animal studies. There is sufficient evidence of the carcinogenicity of ethylene-dithiocarbamates and ethylenethiourea in experimental animals;
- Mechanistic evidence. There is sufficient evidence that the mechanisms responsible for the animal carcinogenicity of ethylene-dithiocarbamates and ethylenethiourea also apply to humans.
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- International Agency for Research on Cancer. Some Thyrotropic Agents. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2001; Volume 79, pp. 1–729. [Google Scholar]
- Steenland, K. Carcinogenicity of EBDCs. Environ. Health Perspect 2003, 111, A266. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K.; Cedillo, L.; Tucker, J.; Hines, C.; Sorensen, K.; Deddens, J.; Cruz, V. Thyroid hormones and cytogenetic outcomes in backpack sprayers using ethylenebis(dithiocarbamate) (EBDC) fungicides in Mexico. Environ. Health Perspect 1997, 105, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Baan, R.A.; Rice, J.M. Carcinogenicity of EBDC’s. Response. Environ. Health Perspect 2003, 111, A266–A267. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Overall Evaluation of Carcinogenicity: An updating of IARC Monographs Volumes 1 to 42. In IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans Supplement No. 7; IARC: Lyon, France, 1987; pp. 1–400. [Google Scholar]
- Vettorazzi, G.; Almeida, W.F.; Burin, G.J.; Jaeger, R.B.; Puga, F.R.; Rahde, A.F.; Reyes, F.G.; Schvartsman, S. International safety assessment of pesticides: Dithiocarbamate pesticides, ETU, and PTU—A review and update. Teratog. Carcinog. Mutagen. 1995, 15, 313–337. [Google Scholar] [CrossRef] [PubMed]
- Cocco, P. Pesticides and Human health. Oxford Research Encyclopedias. In Environmental Health; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- International Agency for Research on Cancer. Some Carbamates, Thiocarbamates, and Carbazides. In IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 1976; Volume 12, pp. 137–150, 245–258. [Google Scholar]
- International Agency for Research on Cancer. Occupational exposures in pesticide applications and some pesticides. In IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans; IRAC: Lyon, France, 1991; Volume 53, pp. 1–586. [Google Scholar]
- Gullino, M.L.; Tinivella, F.; Garibaldi, A.; Kemmitt, G.M.; Bacci, L.; Sheppard, B. Mancozeb past, present, and future. Plant Dis. 2010, 94, 1076–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Industry Data Analytics. Mancozeb Market—Growth, Trends and Forecast (2021–2026) by types, by application, by regions and by key players: UPL, Coromandel International, Indofil, DowDuPont, 2020. Available online: https://www.industrydataanalytics.com/reports/global-Mancozeb-market (accessed on 1 December 2021).
- EXTOXNET Extension Toxicology Network. Pesticide Information Profiles. Mancozeb. Oregon State University. 1996. Available online: https://extoxnet.orst.edu/pips/Mancozeb.htm (accessed on 1 December 2021).
- U.S. Environmental Protection Agency. Prevention, Pesticides, and Toxic Substances. In Re-Registration Eligibility Decision for Mancozeb; EPA: Washington, DC, USA, 2005. [Google Scholar]
- Swedish Chemical Agency. Interpretation in Sweden of the Impact of the “Cut-Off” Criteria Adopted in the Common Position of the Council Concerning the Regulation of Placing Plant Protection Products on the Market (Document 11119/08). Available online: http://www.kemi.se/upload/Bekampningsmedel/Docs_eng/SE_positionpapper_annenII_sep08.pdf (accessed on 17 February 2022).
- U.S. National Institute of Environmental Health Sciences, National Toxicology Program. Report on Carcinogens. In Ethylene Thiourea, 14th ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2010. Available online: http://ntp.niehs.nih.gov/go/roc (accessed on 1 December 2021).
- U.K. Health and Safety Executive. Chemicals Regulation Directorate. Proposal for Harmonised Classification and Labelling. In CLH Report—Mancozeb; HSE: Bootle, UK, 2017. [Google Scholar]
- European Chemicals Agency. Committee for Risk Assessment—RAC. Opinion proposing harmonized classification and labelling at EU level of Mancozeb (ISO). In Manganese Ethylenebis (Dithiocarbamate) (Polymeric) Complex with Zinc Salt; ECHA: Helsinki, Finland, 2019; Available online: https://www.echa.europa.eu/documents/10162/6ea48bca-63ef-2999-1f1f-4ac1278d7b60 (accessed on 1 December 2021).
- European Food Safety Authority; Abdourahime, H.; Anastassiadou, M.; Arena, M.; Auteri, D.; Barmaz, S.; Brancato, A.; Bura, L.; Carrasco Cabrera, L.; Chaideftou, E.; et al. Conclusion on the peer review of the pesticide risk assessment of the active substance Mancozeb. EFSA J. 2020, 18, 5755. [Google Scholar] [CrossRef]
- The European Commission. Commission Implementing Regulation (EU) 2020/2087 of 14 December 2020 concerning the non-renewal of the approval of the active substance Mancozeb, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R2087&from=EN (accessed on 2 December 2021).
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.T.; Guyton, K.Z.; Gibbons, C.F.; Fritz, J.M.; Portier, C.J.; Rusyn, I.; DeMarini, D.M.; Caldwell, J.C.; Kavlock, R.J.; Lambert, P.F.; et al. Key characteristics of carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. Environ. Health Perspect 2016, 124, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Blair, A.; Dosemeci, M.; Heineman, E.F. Cancer and other causes of death among male and female farmers from twenty-three states. Am. J. Ind. Med. 1993, 23, 729–742. [Google Scholar] [CrossRef]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Sandler, D.P.; Lynch, C.F.; Louis, L.M.; Blair, A.; Parks, C.G.; Shrestha, S.; Lubin, J.H.; et al. Cancer incidence in the Agricultural Health Study after 20 years of follow-up. Cancer Causes Control 2019, 30, 311–322. [Google Scholar] [CrossRef]
- Pukkala, E.; Martinsen, J.I.; Lynge, E.; Gunnarsdottir, H.K.; Sparén, P.; Tryggvadottir, L.; Weiderpass, E.; Kjaerheim, K. Occupation and cancer—Follow-up of 15 million people in five Nordic countries. Acta Oncol. 2009, 48, 646–790. [Google Scholar] [CrossRef] [Green Version]
- Lemarchand, C.; Tual, S.; Leveque-Morlais, N.; Perrier, S.; Belot, A.; Velten, M.; Guizard, A.-V.; Marcotullio, E.; Monnereau, A.; Clin, B.; et al. Cancer incidence in the AGRICAN cohort study (2005–2011). Cancer Epidemiol. 2017, 49, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Lence-Anta, J.J.; Xhaard, C.; Ortiz, R.M.; Kassim, H.; Pereda, C.M.; Turcios, S.; Velasco, M.; Chappe, M.; Infante, I.; Bustillo, M.; et al. Environmental, lifestyle, and anthropometric risk factors for differentiated thyroid cancer in Cuba: A case-control study. Eur. Thyroid. J. 2014, 3, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Ba, Y.; Huang, H.; Lerro, C.C.; Li, S.; Zhao, N.; Li, A.; Ma, S.; Udelsman, R.; Zhang, Y. Occupation and Thyroid Cancer: A Population-Based, Case-Control Study in Connecticut. J. Occup. Environ. Med. 2016, 58, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, F.; Lerro, C.; Lavoué, J.; Huang, H.; Siemiatycki, J.; Zhao, N.; Ma, S.; Deziel, N.C.; Friesen, M.C.; Udelsman, R.; et al. Occupational Exposure to Pesticides and Other Biocides and Risk of Thyroid Cancer. Occup. Environ. Med. 2017, 74, 502–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschebrook-Kilfoy, B.; Ward, M.H.; Della Valle, C.T.; Friesen, M.C. Occupation and thyroid cancer. Occup. Environ. Med. 2014, 71, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Beane Freeman, L.E.; Rusiecki, J.A.; Hoppin, J.A.; Lubin, J.H.; Koutros, S.; Andreotti, G.; Hoar Zahm, S.; Hines, C.J.; Coble, J.B.; Barone-Adesi, F.; et al. Atrazine and Cancer Incidence Among Pesticide Applicators in the Agricultural Health Study (1994–2007). Environ. Health Perspect 2011, 119, 1253–1259. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.J.; Hoppin, J.A.; Blair, A.; Lubin, J.H.; Dosemeci, M.; Sandler, D.P.; Alavanja, M.C.R. Cancer incidence among pesticide applicators exposed to alachlor in the Agricultural Health Study. Am. J. Epidemiol. 2004, 159, 373–380. [Google Scholar] [CrossRef]
- Han, M.A.; Kim, J.H.; Song, H.S. Persistent organic pollutants, pesticides, and the risk of thyroid cancer: Systematic review and meta-analysis. Eur. J. Cancer Prev. 2019, 28, 344–349. [Google Scholar] [CrossRef]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Friesen, M.C.; Alavanja, M.C.; Blair, A.; Hoppin, J.A.; Sandler, D.P.; Lubin, J.H.; Ma, X.; et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2015, 72, 736–744. [Google Scholar] [CrossRef] [Green Version]
- Lerro, C.C.; Jones, R.R.; Langseth, H.; Grimsrud, T.K.; Engel, L.S.; Sjödin, A.; Choo-Wosoba, H.; Albert, P.; Ward, M.H. A nested case-control study of polychlorinated biphenyls, organochlorine pesticides, and thyroid cancer in the Janus Serum Bank cohort. Environ. Res. 2018, 165, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Grimalt, J.O.; Sunyer, J.; Moreno, V.; Amaral, O.C.; Sala, M.; Rosell, A.; Anto, J.M.; Albaiges, J. Risk excess of soft-tissue sarcoma and thyroid cancer in a community exposed to airborne organochlorinated compound mixtures with a high hexachloro-benzene content. Int. J. Cancer 1994, 56, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-J.; Wu, H.-B.; Zhang, C.; Zhong, Q.; Hu, M.-J.; He, J.-L.; Li, G.-A.; Zhu, Z.-Y.; Zhu, J.-L.; Zhao, H.-H.; et al. Exposure to 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol and risk of thyroid cancer: A case-control study in China. Environ. Sci. Pollut. Res. Int. 2021, 28, 61329–61343. [Google Scholar] [CrossRef] [PubMed]
- Cherpak, V.V.; Bezuglyĭ, V.P.; Kaskevich, L.M. Health and hygienic characteristics of the working conditions and state of health of persons working with tetramethylthiuramdisulfide (TMTD). Vrach Delo 1971, 10, 136–139. (In Russian) [Google Scholar] [PubMed]
- Smith, D. Ethylene Thiourea—A study of possible teratogenicity and thyroid carcinogenicity. Occup. Med. 1976, 26, 92–94. [Google Scholar] [CrossRef]
- Maher, K.V.; Defonso, L.R. A historical cohort study of mortality among chemical researchers. Arch. Environ. Health 1986, 41, 109–116. [Google Scholar] [CrossRef]
- Schreinemachers, D.M.; Creason, J.P.; Garry, V.F. Cancer Mortality in Agricultural Regions of Minnesota. Environ Health Perspect 1999, 107, 205–211. [Google Scholar] [CrossRef]
- Nordby, K.-C.; Andersen, A.; Irgens, L.M.; Kristensen, P. Indicators of Mancozeb exposure in relation to thyroid cancer and neural tube defects in farmers’ families. Scand J. Work Environ. Health 2005, 31, 89–92. [Google Scholar] [CrossRef]
- La Vecchia, C.; Turati, F.; Negri, E. Exposure to antithyroid drugs and ethylenethiourea and risk of thyroid cancer: A systematic review of the epidemiologic evidence. Eur. J. Cancer Prev. 2022, 31, 64–72. [Google Scholar] [CrossRef]
- Lerro, C.C.; Beane Freeman, L.E.; Della Valle, C.T.; Andreotti, G.; Hofmann, J.N.; Koutros, S.; Parks, C.G.; Shrestha, S.; Alavanja, M.C.R.; Blair, A.; et al. Pesticide exposure and incident thyroid cancer among male pesticide applicators in agricultural health study. Environ. Int. 2021, 146, 106187. [Google Scholar] [CrossRef]
- Dennis, L.K.; Lynch, C.F.; Sandler, D.P.; Alavanja, M.C.R. Pesticide use and cutaneous melanoma in pesticide applicators in the agricultural heath study. Environ. Health Perspect. 2010, 118, 812–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortes, C.; Mastroeni, S.; Segatto, M.M.; Hohmann, C.; Miligi, L.; Bakos, L.; Bonamigo, R. Occupational Exposure to Pesticides With Occupational Sun Exposure Increases the Risk for Cutaneous Melanoma. J. Occup. Environ. Med. 2016, 58, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Fortes, C.; de Vries, E. Nonsolar occupational risk factors for cutaneous melanoma. Int. J. Dermatol. 2008, 47, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.R.; Wani, M.A.; Kirmani, A.R. Brain cancer and pesticide relationship in orchard farmers of Kashmir. Indian J. Occup. Environ. Med. 2010, 14, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Piel, C.; Pouchieu, C.; Carles, C.; Béziat, B.; Boulanger, M.; Bureau, M.; Busson, A.; Grüber, A.; Lecluse, Y.; Migault, L.; et al. Agricultural exposures to carbamate herbicides and fungicides and central nervous system tumour incidence in the cohort AGRICAN. Environ. Int. 2019, 130, 104876. [Google Scholar] [CrossRef]
- Mills, P.K.; Yang, R.; Riordan, D. Lymphohematopoietic cancers in the United Farm Workers of America (UFW), 1988–2001. Cancer Causes Control 2005, 16, 823–830. [Google Scholar] [CrossRef]
- Mills, P.K.; Yang, R.C. Agricultural exposures and gastric cancer risk in Hispanic farm workers in California. Environ. Res. 2007, 104, 282–289. [Google Scholar] [CrossRef]
- Band, P.R.; Abanto, Z.; Bert, J.; Lang, B.; Fang, R.; Gallagher, R.P.; Le, N.D. Prostate cancer risk and exposure to pesticides in British Columbia farmers. Prostate 2011, 71, 168–183. [Google Scholar] [CrossRef]
- Koutros, S.; Andreotti, G.; Berndt, S.J.; Barry, K.H.; Lubin, J.H.; Hoppin, J.A.; Kamel, F.; Sandler, D.P.; Burdette, L.A.; Yuenger, J.; et al. Xenobiotic metabolizing gene variants, pesticide use, and risk of prostate cancer. Pharmagenet Genom. 2011, 21, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Cockburn, M.; Mills, P.; Zhang, X.; Zadnick, J.; Goldberg, D.; Ritz, B. Prostate cancer and ambient pesticide exposure in agriculturally intensive areas in California. Am. J. Epidemiol. 2011, 173, 1280–1288. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.J.; Sandler, D.P.; Blair, A.; Samanic, C.; Cross, A.J.; Alavanja, M.C.R. Pesticide use and colorectal cancer risk in the Agricultural Health Study. Int. J. Cancer 2007, 121, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Gak, J.C.; Graillot, C.; Turhaut, R. Difference in the sensitivity of the hamster and the rat to the effects of long-term administration of ethylenethiourea. Eur. J. Toxicol. Environ. Hyg. 1976, 9, 303–312. (In French) [Google Scholar]
- Innes, J.R.M.; Ulland, B.M.; Valerio, M.G.; Petrucelli, L.; Fishbein, L.; Hart, E.R.; Pallotta, A.J.; Bates, R.R.; Falk, H.L.; Gart, J.J.; et al. Bioassay of pesticides and industrial chemicals for tumorigenicity in mice: A preliminary note. J. Natl. Cancer Inst. 1969, 42, 1101–1114. [Google Scholar]
- Uliand, B.M.; Weisburger, J.H.; Weisburger, E.K.; Rice, J.M.; Cypher, R. Thyroid cancer in rats from ethylene thiourea intake. J. Natl. Cancer Inst. 1972, 49, 583–584. [Google Scholar]
- Mattioli, F.; Martelli, A.; Gosmar, M.; Garbero, C.; Manfredi, V.; Varaldo, E.; Torre, G.C.; Brambilla, G. DNA fragmentation and DNA repair synthesis induced in rat and human thyroid cells by chemicals carcinogenic to the rat thyroid. Mutat. Res. 2006, 609, 146–153. [Google Scholar] [CrossRef]
- Chhabra, R.S.; Eustis, S.; Haseman, J.K.; Kurtz, P.J.; Carlton, B.D. Comparative carcinogenicity of ethylene thiourea with or without perinatal exposure in rats and mice. Fundam Appl. Toxicol. 1992, 18, 405–417. [Google Scholar] [CrossRef]
- Belpoggi, F.; Soffritti, M.; Guarino, M.; Lambertini, L.; Cevolani, D.; Maltoni, C. Results of Long-Term Experimental Studies on the Carcinogenicity of Ethylene-bisdithiocarbamate (Mancozeb) in Rats. Ann. N. Y. Acad. Sci. 2002, 982, 123–136. [Google Scholar] [CrossRef]
- Lijinsky, W. Induction of tumors of the nasal cavity in rats by concurrent feeding of Thiram and sodium nitrite. J. Toxicol. Environ. Health 1984, 13, 609–614. [Google Scholar] [CrossRef]
- Shukla, Y.; Antony, M.; Kumar, S.; Mehrotra, N.K. Carcinogenic activity of a carbamate fungicide, Mancozeb on mouse skin. Cancer Lett. 1990, 53, 191–195. [Google Scholar] [CrossRef]
- Shukla, Y.; Antony, M.; Kumar, S.; Mehrotra, N.K. Tumour-promoting ability of Mancozeb, a carbamate fungicide, on mouse skin. Carcinogenesis 1988, 9, 1511–1512. [Google Scholar] [CrossRef]
- Mehrotra, N.K.; Kumar, S.; Shukla, Y. Tumour initiating activity of Mancozeb—A carbamate fungicide in mouse skin. Cancer Lett. 1987, 36, 283–287. [Google Scholar] [CrossRef]
- Mehrotra, N.K.; Kumar, S.; Shukla, Y. Enhancement of tumor-initiating activity of DMBA by the carbamate fungicide Mancozeb. Bull. Environ. Contam Toxicol. 1990, 44, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.P.; Mehrotra, N.K. Status of ornithine decarboxylase activity and DNA synthesis in Mancozeb-exposed mouse skin. Carcinogenesis 1992, 13, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Shukla, Y.; Baqar, S.M.; Mehrotra, N.K. Carcinogenic and co-carcinogenic studies of Thiram on mouse skin. Food Chem. Toxicol. 1996, 34, 283–289. [Google Scholar] [CrossRef]
- Yoshida, A.; Harada, T.; Hayashi, S.; Mori, I.; Miyajima, H.; Maita, K. Endometrial carcinogenesis induced by concurrent oral administration of ethylenethiourea and sodium nitrite in mice. Carcinogenesis 1994, 15, 2311–2318. [Google Scholar] [CrossRef]
- Nishiyama, K.; Ando-Lu, J.; Nishimura, S.; Takahashi, M.; Yoshida, M.; Sasahara, K.; Miyajima, K.; Maekawa, A. Initiating and promoting effects of concurrent oral administration of ethylenethiourea and sodium nitrite on uterine endometrial adenocarcinoma development in Donryu rats. In Vivo 1998, 12, 363–368. [Google Scholar]
- Yoshida, A.; Harada, T.; Kitazawa, T.; Yoshida, T.; Kinoshita, M.; Maita, K. Effects of age on endometrial carcinogenesis induced by concurrent oral administration of ethylenethiourea and sodium nitrite in mice. Exp. Toxicol. Pathol. 1996, 48, 289–298. [Google Scholar] [CrossRef]
- Yoshida, A.; Harada, T.; Maita, K. Tumor induction by concurrent oral administration of ethylenethiourea and sodium nitrite in mice. Toxicol. Pathol. 1993, 21, 303–310. [Google Scholar] [CrossRef]
- Monis, B.; Valentich, M.A. Promoting effects of Mancozeb on pancreas of nitrosomethylurea-treated rats. Carcinogenesis 1993, 14, 929–933. [Google Scholar] [CrossRef]
- Valentich, M.A.; Eynard, A.R.; Barotto, N.N.; Díaz, M.P.; Bongiovanni, G.A. Effect of the co-administration of phenobarbital, quercetin and Mancozeb on nitrosomethylurea-induced pancreatic tumors in rats. Food Chem. Toxicol. 2006, 44, 2101–2105. [Google Scholar] [CrossRef]
- Shukla, Y.; Arora, A. Transplacental carcinogenic potential of the carbamate fungicide Mancozeb. J. Environ. Pathol. Toxicol. Oncol. 2001, 20, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, R.; Cabral, E.; Hoshiya, T.; Hakoi, K.; Ogiso, T.; Boonyaphiphat, P.; Shirai, T.; Ito, N. Carcinogenic potential of some pesticides in a medium-term multi-organ bioassay in rats. Int. J. Cancer 1993, 54, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Sabarwal, A.; Singh, R.P. Mancozeb selectively induces mitochondrial-mediated apoptosis in human gastric carcinoma cells through ROS generation. Mitochondrion 2019, 48, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Garry, V.F. In vitro studies of cellular and molecular developmental toxicity of adjuvants, herbicides, and fungicides commonly used in Red River Valley, Minnesota. J. Toxicol. Environ. Health A 2000, 60, 423–439. [Google Scholar] [CrossRef]
- Calviello, G.; Piccioni, E.; Boninsegna, A.; Tedesco, B.; Maggiano, N.; Serini, S.; Wolf, F.I.; Palozza, P. DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: Involvement of the oxidative mechanism. Toxicol. Appl. Pharmacol. 2006, 211, 87–96. [Google Scholar] [CrossRef]
- Dias, P.J.; Teixeira, M.C.; Telo, J.P.; Sá-Correia, I. Insights into the mechanisms of toxicity and tolerance to the agricultural fungicide Mancozeb in yeast, as suggested by a chemogenomic approach. OMICS 2010, 14, 211–227. [Google Scholar] [CrossRef]
- Rana, I.; Shivanandappa, T. Mechanism of potentiation of endosulfan cytotoxicity by Thiram in Ehrlich ascites tumor cells. Toxicol In Vitro 2010, 24, 40–44. [Google Scholar] [CrossRef]
- Hasegawa, R.; Takahashi, M.; Furukawa, F.; Toyoda, K.; Sato, H.; Jang, J.J.; Hayashi, Y. Carcinogenicity study of tetramethylthiuram disulfide (Thiram) in F344 rats. Toxicology 1988, 51, 155–165. [Google Scholar] [CrossRef]
- Charles, J.M.; Tobia, A.; van Ravenzwaay, B. Subchronic and chronic toxicological investigations on Metiram: The lack of a carcinogenic response in rodents. Toxicol. Sci. 2000, 54, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Perocco, P.; Santucci, M.A.; Gasperi Campani, A.; Forti, G.C. Toxic and DNA-damaging activities of the fungicides Mancozeb and Thiram (TMTD) on human lymphocytes in vitro. Teratog. Carcinog. Mutagen 1989, 9, 75–81. [Google Scholar] [CrossRef]
- Perocco, P.; Colacci, A.; Bonora, B.; Grilli, S. In vitro transforming effect of the fungicides metalaxyl and Zineb. Teratog. Carcinog. Mutagen 1995, 15, 73–80. [Google Scholar] [CrossRef]
- Wattenberg, L.W.; Lam, L.K.; Fladmoe, A.V.; Borchert, P. Inhibits of of colon carcinogenesis. Cancer 1977, 40 (Suppl. 5), 2432–2435. [Google Scholar] [CrossRef]
- Perez-Carreon, J.I.; Dargent, C.; Merhi, M.; Fattel-Fazenda, S.; Arce-Popoca, E.; Villa-Treviño, S.; Rouimi, P. Tumor promoting and co-carcinogenic effects in medium-term rat hepatocarcinogenesis are not modified by co-administration of 12 pesticides in mixture at acceptable daily intake. Food Chem. Toxicol. 2009, 47, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Kokubo, T.; Furukawa, F.; Nagano, K.; Maekawa, A.; Kurokawa, Y.; Hayashi, Y. Inhibition of spontaneous leukemia in F-344 rats by tetramethylthiuram disulfide (Thiram). Gan 1983, 74, 810–813. [Google Scholar] [PubMed]
- Marikovsky, M. Thiram inhibits angiogenesis and slows the development of experimental tumours in mice. Br. J. Cancer 2002, 86, 779–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavanella, T.; Arias, E.; Zaffaroni, N.P. Preliminary study on the carcinogenic activity of the fungicide manganese ethylenebisdithiocarbamate in the adult newt. Triturus cristatus carnifex. Tumori 1979, 65, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Zavanella, T.; Zaffaroni, N.P.; Arias, E. Testing of the fungicide Maneb for carcinogenicity in two populations of the European crested newt. Cancer Lett. 1980, 10, 109–116. [Google Scholar] [CrossRef]
- Higgins, C.L.; Palmer, A.M.; Cahill, J.L.; Nixon, R.L. Occupational skin disease among Australian healthcare workers: A retrospective analysis from an occupational dermatology clinic, 1993–2014. Contact Dermatitis 2016, 75, 213–222. [Google Scholar] [CrossRef]
- Swaen, G.M.; van Amelsvoort, L.; Boers, D.; Corsini, E.; Fustinoni, S.; Vergieva, T.; Bosetti, C.; Pennanen, S.; Liesivuori, J.; Colosio, C.; et al. Occupational exposure to ethylenebisdithio-carbamates in agriculture and allergy: Results from the EUROPIT field study. Hum. Exp. Toxicol. 2008, 27, 715–720. [Google Scholar] [CrossRef]
- Tyagi, S.; George, J.; Singh, R.; Bhui, K.; Shukla, Y. Neoplastic alterations induced in mammalian skin following Mancozeb exposure using in vivo and in vitro models. OMICS 2011, 15, 155–167. [Google Scholar] [CrossRef]
- Zakharov, S.; Csomor, J.; Urbanek, P.; Pelclova, D. Toxic Epidermal Necrolysis after Exposure to Dithiocarbamate Fungicide Mancozeb. Basic Clin. Pharmacol. Toxicol. 2016, 118, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Debbarh, I.; Rambelomanana, S.; Penouil, F.; Castaigne, F.; Poisot, D.; Moore, N. Human neurotoxicity of ethylene-bis-dithiocarbamates (EBDC). Rev. Neurol. 2002, 158 Pt 1, 1175–1180. (In French) [Google Scholar]
- Liu, F.; Yuan, M.; Li, C.; Guan, X.; Li, B. The protective function of taurine on pesticide-induced permanent neurodevelopmental toxicity in juvenile rats. FASEB J. 2021, 35, e21273. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Misra, H.P. Exposure to mixtures of endosulfan and Zineb induces apoptotic and necrotic cell death in SH-SY5Y neuroblastoma cells, in vitro. J. Appl. Toxicol. 2007, 27, 434–446. [Google Scholar] [CrossRef] [PubMed]
- Chorfa, A.; Bétemps, D.; Morignat, E.; Lazizzera, C.; Hogeveen, K.; Andrieu, T.; Thierry Baron, T. Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines. Toxicol. Sci. 2013, 133, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caputi, F.F.; Carretta, D.; Lattanzio, F.; Palmisano, M.; Candeletti, S.; Romualdi, P. Proteasome subunit and opioid receptor gene expression down-regulation induced by paraquat and Maneb in human neuroblastoma SH-SY5Y cells. Environ. Toxicol. Pharmacol. 2015, 40, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-F.; Li, S.; Chou, A.P.; Bronstein, J.M. Inhibitory effects of pesticides on proteasome activity: Implication in Parkinson’s disease. Neurobiol. Dis. 2006, 23, 198–205. [Google Scholar] [CrossRef]
- Santos, P.M.; Simões, T.; Sá-Correia, I. Insights into yeast adaptive response to the agricultural fungicide Mancozeb: A toxicoproteomics approach. Proteomics 2009, 9, 657–670. [Google Scholar] [CrossRef]
- Anderson, C.C.; Aivazidis, S.; Kuzyk, C.L.; Jain, A.; Roede, J.R. Acute Maneb Exposure Significantly Alters Both Glycolysis and Mitochondrial Function in Neuroblastoma Cells. Toxicol. Sci. 2018, 165, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Ishido, M. Melatonin inhibits Maneb-induced aggregation of alpha-synuclein in rat pheochromocytoma cells. J. Pineal. Res. 2007, 42, 125–130. [Google Scholar] [CrossRef]
- Van der Willik, K.D.; Ghanbari, M.; Fani, L.; Compter, A.; Ruiter, R.; Stricker, B.H.C.; Schagen, S.B.; Ikram, M.A. Higher Plasma Amyloid-beta Levels Are Associated with a Higher Risk of Cancer: A Population-Based Prospective Cohort Study. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1993–2001. [Google Scholar] [CrossRef] [PubMed]
- Foucault, A.; Ravalet, N.; Besombes, J.; Picou, F.; Gallay, N.; Babin, L.; Bourgeais, J.; Hamard, S.; Domenech, J.; Loyer, P.; et al. Human Bone Marrow Mesenchymal Stem/Stromal Cells through ALDH2 Inhibition. Cancers 2021, 13, 5699. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.M. Ethylene thiourea: Thyroid function in two groups of exposed workers. Br. J. Ind. Med. 1984, 41, 362–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medda, E.; Santini, F.; De Angelis, S.; Franzellin, F.; Fiumalbi, C.; Perico, A.; Gilardi, E.; Mechi, M.T.; Marsili, A.; Citroni, A.; et al. Iodine nutritional status and thyroid effects of exposure to ethylenebisdithiocarbamates. Environ. Res. 2017, 154, 152–159. [Google Scholar] [CrossRef]
- Panganiban, L.; Cortes-Maramba, N.; Dioquino, C.; Lurenda Suplido, M.; Ho, H.; Francisco-Rivera, A.; Manglicmot-Yabes, A. Correlation between blood ethylenethiourea and thyroid gland disorders among banana plantation workers in the Philippines. Environ. Health Perspect. 2004, 112, 42–45. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.; Han, J.; Yao, T.; Wang, Q.; Zhou, B.; Mohamed, A.D.; Zhu, G. Editor’s Highlight: Structure-Based Investigation on the Binding and Activation of Typical Pesticides with Thyroid Receptor. Toxicol. Sci. 2017, 160, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Colosio, C.; Rubino, F.M. Chapter 93: Organic compounds: Phytofarmaceuticals. In Trattato di Medicina del Lavoro; Alessio, L., Franco, G., Tomei, F., Eds.; Piccin Nuova Libraria: Padova, Italy, 2015; pp. 965–985. (In Italian) [Google Scholar]
- Piccoli, C.; Cremonese, C.; Koifman, R.J.; Koifman, S.; Freire, C. Pesticide exposure and thyroid function in an agricultural population in Brazil. Environ. Res. 2016, 151, 389–398. [Google Scholar] [CrossRef]
- Goldner, W.S.; Sandler, D.P.; Yu, F.; Hoppin, J.A.; Kamel, F.; LeVan, T.D. Pesticide use and thyroid disease among women in the Agricultural Health Study. Am. J. Epidemiol. 2010, 171, 455–464. [Google Scholar] [CrossRef]
- Shreshta, S.; Parks, C.G.; Goldner, W.S.; Kamel, F.; Umbach, D.M.; Ward, M.H.; Lerro, C.C.; Stella Koutros, S.; Hofmann, J.N.; Beane Freeman, L.E.; et al. Incident thyroid disease in female spouses of private pesticide applicators. Environ. Int. 2018, 118, 282–292. [Google Scholar] [CrossRef]
- Lerro, C.C.; Beane Freeman, L.E.; Della Valle, C.T.; Kibriya, M.G.; Aschebrook-Kilfoy, B.; Jasmine, F.; Koutros, S.; Parks, C.G.; Sandler, D.P.; Alavanja, M.C.R.; et al. Occupational pesticide exposure and subclinical hypothyroidism among male pesticide applicators. Occup. Environ. Med. 2018, 75, 79–89. [Google Scholar] [CrossRef]
- Corrales Vargas, A.; Peñaloza Castañeda, J.; Rietz Liljedahl, E.; Mora, A.M.; Menezes-Filho, J.A.; Smith, D.R.; Mergler, D.; Reich, B.; Giffin, A.; Hoppin, J.A.; et al. Exposure to common-use pesticides, manganese, lead, and thyroid function among pregnant women from the Infants’ Environmental Health (ISA) study, Costa Rica. Sci. Total Environ. 2021, 28, 151288. [Google Scholar] [CrossRef] [PubMed]
- Shreshta, S.; Parks, C.G.; Goldner, W.S.; Freya Kamel, F.; Umbach, D.M.; Ward, M.H.; Lerro, C.C.; Koutros, S.; Hofmann, J.N. Pesticide use and incident hyperthyroidism in farmers in the Agricultural Health Study. Occup. Environ. Med. 2019, 76, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Ron, E. Thyroid cancer. In Cancer Epidemiology and Prevention, 2nd ed.; Schottenfeld, D., Fraumeni, J.E., Jr., Eds.; Oxford University Press: New York, NY, USA, 1996; pp. 1000–1021. [Google Scholar]
- Salabè, G.B. Aetiology of thyroid cancer: An epidemiological overview. Thyroidology 1994, 6, 11–19. [Google Scholar] [CrossRef]
- Dal Maso, L.; Bosetti, C.; La Vecchia, C.; Franceschi, S. Risk factors for thyroid cancer: An epidemiological review focused on nutritional factors. Cancer Causes Control 2009, 20, 75–86. [Google Scholar] [CrossRef]
- Preston-Martin, S.; Jin, F.; Duda, M.J.; Mack, W.J. A case-control study of thyroid cancer in women under age 55 in Shanghai (People’s Republic of China). Cancer Causes Control 1993, 4, 431–440. [Google Scholar] [CrossRef]
- Apostolou, K.; Zivaljevic, V.; Tausanovic, K.; Zoric, G.; Chelidonis, G.; Slijepcevic, N.; Jovanovic, M.; Paunovic, I. Prevalence and risk factors for thyroid cancer in patients with multinodular goitre. BJS Open 2021, 5, zraa014. [Google Scholar] [CrossRef]
- Kim, K.W.; Park, Y.J.; Kim, E.H.; Park, S.Y.; Park, D.J.; Ahn, S.-H.; Park, D.J.; Jang, H.C.; Cho, B.Y. Elevated risk of papillary thyroid cancer in Korean patients with Hashimoto’s thyroiditis. Head Neck 2011, 33, 691–695. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Ji, Q.-H.; Zhu, Y.; Wang, Z.; Wang, Y.; Huang, C.; Shen, Q.; Li, D.; Wu, Y. The clinical features of papillary thyroid cancer in Hashimoto’s thyroiditis patients from an area with a high prevalence of Hashimoto’s disease. BMC Cancer 2012, 12, 610. [Google Scholar] [CrossRef] [Green Version]
- Noureldine, S.I.; Tufano, R.P. Association of Hashimoto’s thyroiditis and thyroid cancer. Curr. Opin. Oncol. 2015, 27, 21–25. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, C.; Liu, L.; Liu, X.; Fan, S.; Li, J.; Zhao, Y.; Ni, S.; Liu, S.; Wu, Y. A case-control study of urinary levels of iodine, perchlorate and thiocyanate and risk of papillary thyroid cancer. Environ. Int. 2018, 120, 388–393. [Google Scholar] [CrossRef]
- Kolonel, L.N.; Hankin, J.H.; Wilkens, L.R.; Fukunaga, F.H.; Hinds, M.W. An epidemiologic study of thyroid cancer in Hawaii. Cancer Causes Control 1990, 1, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, Y.; Wang, L.; Wang, X.; Sun, C.; Xing, M.; Zhao, M. Strong association of high urinary iodine with thyroid nodule and papillary thyroid cancer. Tumour. Biol. 2014, 35, 11375–11379. [Google Scholar] [CrossRef] [PubMed]
- Cléro, E.; Doyon, F.; Chungue, V.; Rachédi, F.; Boissin, J.-L.; Sebbag, J.; Shan, L.; Bost-Bezeaud, F.; Petitdidier, P.; Dewailly, E.; et al. Dietary iodine and thyroid cancer risk in French Polynesia: A case-control study. Thyroid 2012, 22, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-L.; Li, P.; Liu, Z.-Y.; Yi, J.-P.; Chen, Y.; Zhang, M.; Lin, Q. Does relatively low iodine intake contribute to thyroid cancer? An ecological comparison of epidemiology. Medicine 2019, 19, 41. [Google Scholar] [CrossRef] [PubMed]
- Fiore, E.; Rago, T.; Provenzale, M.A.; Scutari, M.; Ugolini, C.; Basolo, F.; Di Coscio, G.; Miccoli, P.; Grasso, L.; Pinchera, A.; et al. L-thyroxine-treated patients with nodular goiter have lower serum TSH and lower frequency of papillary thyroid cancer: Results of a cross-sectional study on 27,914 patients. Endocr. Relat. Cancer 2010, 17, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wu, H.-B.; Cheng, M.-X.; Wang, L.; Gao, C.-B.; Huang, F. Association of exposure to multiple metals with papillary thyroid cancer risk in China. Environ. Sci. Pollut. Res. Int. 2019, 26, 20560–20572. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, C.; Li, H.; Zhang, C.; Wu, H.; Huang, F. Effect of the Interaction Between Cadmium Exposure and CLOCK Gene Polymorphisms on Thyroid Cancer.; a Case-Control Study in China. Biol. Trace Elem. Res. 2020, 196, 86–95. [Google Scholar] [CrossRef]
- Bartsch, R.; Brinkmann, B.; Jahnke, G.; Laube, B.; Lohmann, R.; Michaelsen, S.; Neumann, I.; Greim, H. Human relevance of follicular thyroid tumors in rodents caused by non-genotoxic substances. Regul. Toxicol. Pharmacol. 2018, 98, 199–208. [Google Scholar] [CrossRef]
Dithiocarbamates | Formula | Year Patented | Physical Status | Uses | IARC Last Evaluation (Year, Group) |
---|---|---|---|---|---|
Disulfiram | 1900 | powder | Sulfur vulcanization of rubber; pharmaceutical treatment of alcoholism | 1976, 3 | |
Thiram | C6H12N2S4 | 1934 | powder | Accelerator in rubber vulcanization; pharmaceutical treatment of scabia; sun screen, bactericide; antifungal and animal repellant treatment of seeds, fruit, and ornamental shrubs | 1976, 3 |
Nabam | C4H6N2Na2S4 | 1943 | powder | Antifungal treatment of potato crops and various plants; biocide in sugar millas and pulp and paper mills | Not evaluated |
Ferbam | C9H18FeN3S6 | 1945 | Powder, wettable powder, liquid | Fungicide for fruit, nuts, vegetables, ornamental crops, and in household applications. | 1976, 3 |
Zineb | C4H6N2S4Zn | 1945 | Wettable powder | Antifungal treatment of seeds, vegetables, and various field and ornamental plants; additive in paints, fabrics, leather, linen, plastics, and wood surfaces | 1976, 3 |
Ziram | C6H12N2S4Zn | 1947 | Powder, wettable powder, liquid | Rubber accelerator; fungicide for fruit, vegetables, and ornamental crops. | 1976, 3 |
Maneb | (C4H6MnN2S4)n | 1950 | Wettable powder | Fungicide for vegetables, seeds, nuts, field and forage crops, deciduous fruits, grapes, ornamental plants | 1976, 3 |
Metiram | (C16H33N11S16Zn3)n | 1958 | Wettable powder | Fungicide for cereals, fruits, vegetables, tobacco, and ornamental plants. | Not evaluated |
Mancozeb | (C4H6MnN2S4)n | 1962 | Wettable powder | Fungicide for potato, vegetables, orchards, grapes, residential lawn, golf courses, athletic fields | Not evaluated |
Propineb | C5H8N2S4Zn | 1965 | Powder, wettable powder, liquid | Fungicide for fruit, grapes, tomatoes, potatoes, tobacco, rice, tea, and ornamental shrubs. | Not evaluated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocco, P. Time for Re-Evaluating the Human Carcinogenicity of Ethylenedithiocarbamate Fungicides? A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 2632. https://doi.org/10.3390/ijerph19052632
Cocco P. Time for Re-Evaluating the Human Carcinogenicity of Ethylenedithiocarbamate Fungicides? A Systematic Review. International Journal of Environmental Research and Public Health. 2022; 19(5):2632. https://doi.org/10.3390/ijerph19052632
Chicago/Turabian StyleCocco, Pierluigi. 2022. "Time for Re-Evaluating the Human Carcinogenicity of Ethylenedithiocarbamate Fungicides? A Systematic Review" International Journal of Environmental Research and Public Health 19, no. 5: 2632. https://doi.org/10.3390/ijerph19052632
APA StyleCocco, P. (2022). Time for Re-Evaluating the Human Carcinogenicity of Ethylenedithiocarbamate Fungicides? A Systematic Review. International Journal of Environmental Research and Public Health, 19(5), 2632. https://doi.org/10.3390/ijerph19052632