Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.1.1. Urban Effluents
2.1.2. Microalgae and Culture Medium
2.1.3. Chemicals for Siloxane Analyses
2.2. Effluent Characterisation
2.3. Experimental Setup
2.4. Microalgal Growth Monitoring in Urban Effluents
2.5. Nutrient Removal
2.6. Siloxanes Extraction and Quantification
2.6.1. Gas Samples
2.6.2. Water Samples
2.6.3. Microalgal Biomass Samples
2.6.4. GC Analyses for Siloxane Quantification
2.7. Statistical Analysis
3. Results and Discussion
3.1. Microalgal Growth in Urban Effluents
Type of Wastewater | Parameter | Initial Concentration | RE (%) | Growth Parameters | Cultivation Period (Days) | Reference |
---|---|---|---|---|---|---|
Highly concentrated municipal wastewater (centrate) | TN | 134 mg L−1 | >50 * | µ: 0.293 d−1 PX, avg: 0.121 g L−1 d−1 | 3 | [7] |
PO4-P | 212 mg L−1 | >65 * | ||||
DOC | 960 mg L−1 | >82 * | ||||
COD | 2324 mg L−1 | >74 * | ||||
Filtered municipal raw wastewater (influent) | TN | 6.64 mg L−1 | 92 | µ: 0.36 d−1 | 7 | [6] |
TP | 0.15 mg L−1 | 82 | ||||
Filtered primary wastewater | NH4-N | 40.8 mg L−1 | 61 | µ: 0.61 d−1 PX, avg: 0.09 g L−1 d−1 | 28 | [42] |
TP | 10.0 mg L−1 | 35 | ||||
COD | 242 mg L−1 | 40 | ||||
Filtered secondary wastewater | NO3-N | 18.0 mg L−1 | 22 | µ: 0.52 d−1 PX, avg: 0.06 g L−1 d−1 | ||
TP | 26.0 mg L−1 | 12 | ||||
COD | 59.0 mg L−1 | 49 | ||||
Urban wastewater at 30% (v/v) | TN | 59.3 mg L−1 | 88 | µ: 1.06 d−1 PX, avg: 0.19 g L−1 d−1 | 10 | [43] |
TP | 9.61 mg L−1 | 98 | ||||
Filtered primary domestic wastewater at 0.02% (v/v) | TN | 2.70 mg L−1 | 85 | µ: 0.30 d−1 PX, avg: 0.041 g L−1 d−1 | 12 | [44] |
TP | 24.2 mg L−1 | 35 | ||||
Filtered secondary urban wastewater | NH4-N | 0.44 mg L−1 | 100 | Xf: 1.167-1.575 g L−1 | 21 | [45] |
COD | 38.5 mg L−1 | 100 | ||||
Filtered municipal primary wastewater | TN | 30.6 mg L−1 | 100 | µ: 1.2 d−1 Xmax: 1.62 g L−1 | 13 | [5] |
TP | 6.60 mg L−1 | 80 | ||||
Filtered municipal secondary wastewater | TN | 11.8 mg L−1 | 83 | µ: 0.62 d−1 Xmax: 1.16 g L−1 | ||
TP | 5.60 mg L−1 | 100 | ||||
Filtered urban primary wastewater | TN | 25 mg L−1 | 86 | µ: 0.034 d−1 Xmax: 1.40 g L−1 PX, avg: 0.034 g L−1 d−1 PX, max: 0.054 g L−1 d−1 | 9 | This study |
PO4-P | 3.0 mg L−1 | 80 | ||||
DOC | 63 mg L−1 | 79 | ||||
COD | 87 mg L−1 | 37 | ||||
Filtered urban secondary wastewater | NO3-N | 11 mg L−1 | 52 | µ: 0.036 d−1 Xmax: 1.30 g L−1 PX, avg: 0.035 g L−1 d−1 PX, max: 0.050 g L−1 d−1 | 7 | |
PO4-P | 2.4 mg L−1 | 87 | ||||
DOC | 10 mg L−1 | na | ||||
COD | 23 mg L−1 | na |
3.2. Nutrients Removal
3.2.1. Nitrogen and Phosphorus
3.2.2. Carbon
3.3. Siloxanes Removal
3.3.1. Gas and Water Samples
3.3.2. Biomass Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Experiment | Time | |
---|---|---|---|
t0 | tf | ||
Colour (HU) | C+ | 6.4 ± 0.5 * | 10.5 ± 0.8 * |
C-PE | 76 ± 8 a | 47 ± 10 b | |
PE | 65 ± 6 a | 68 ± 3 a | |
C-SE | 29 ± 7 a | 20 ± 3 a | |
SE | 30 ± 1 a | 55 ± 7 b | |
Turbidity (NTU) | C+ | 0.9 ± 0.3 a | 1.8 ± 0.9 a |
C-PE | 5.5 ± 0.4 a | 2.8 ± 0.4 b | |
PE | 4.8 ± 0.8 a | 3.3 ± 0.5 b | |
C-SE | 0.8 ± 0.2 a | 0.70 ± 0.09 a | |
SE | 1.2 ± 0.3 a | 2.4 ± 0.9 a |
Appendix B
References
- Vale, M.A.; Ferreira, A.; Pires, J.C.M.; Gonçalves, A.L. CO2 capture using microalgae. In Advances in Carbon Capture; Rahimpour, M.R., Farsi, M., Makarem, M.A., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 381–405. [Google Scholar]
- Sutherland, D.L.; Ralph, P.J. Microalgal bioremediation of emerging contaminants—Opportunities and challenges. Water Res. 2019, 164, 114921. [Google Scholar] [CrossRef]
- Wirth, R.; Pap, B.; Böjti, T.; Shetty, P.; Lakatos, G.; Bagi, Z.; Kovács, K.L.; Maróti, G. Chlorella vulgaris and its phycosphere in wastewater: Microalgae-bacteria interactions during nutrient removal. Front. Bioeng. Biotechnol. 2020, 8, 557572. [Google Scholar] [CrossRef]
- Kondzior, P.; Butarewicz, A. Effect of heavy metals (Cu and Zn) on the content of photosynthetic pigments in the cells of algae Chlorella vulgaris. J. Ecol. Eng. 2018, 19, 18–28. [Google Scholar] [CrossRef]
- Znad, H.; Al Ketife, A.M.D.; Judd, S.; AlMomani, F.; Vuthaluru, H.B. Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecol. Eng. 2018, 110, 1–7. [Google Scholar] [CrossRef]
- Zhou, G.J.; Ying, G.G.; Liu, S.; Zhou, L.J.; Chen, Z.F.; Peng, F.Q. Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environ. Sci. Process. Impacts 2014, 16, 2018–2027. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Min, M.; Hu, B.; Chen, P.; Ruan, R. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour. Technol. 2011, 102, 6909–6919. [Google Scholar] [CrossRef]
- Baglieri, A.; Sidella, S.; Barone, V.; Fragalà, F.; Silkina, A.; Nègre, M.; Gennari, M. Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water. Environ. Sci. Pollut. Res. 2016, 23, 18165–18174. [Google Scholar] [CrossRef]
- Wang, J.; Song, A.; Huang, Y.; Liao, Q.; Xia, A.; Zhu, X.; Zhu, X. Domesticating Chlorella vulgaris with gradually increased the concentration of digested piggery wastewater to bio-remove ammonia nitrogen. Algal Res. 2021, 60, 102526. [Google Scholar] [CrossRef]
- Fazal, T.; Rehman, M.S.U.; Javed, F.; Akhtar, M.; Mushtaq, A.; Hafeez, A.; Alaud Din, A.; Iqbal, J.; Rashid, N.; Rehman, F. Integrating bioremediation of textile wastewater with biodiesel production using microalgae (Chlorella vulgaris). Chemosphere 2021, 281, 130758. [Google Scholar] [CrossRef]
- Silva, M.I.; Gonçalves, A.L.; Vilar, V.J.P.; Pires, J.C.M. Experimental and techno-economic study on the use of microalgae for paper industry effluents remediation. Sustainability 2021, 13, 1314. [Google Scholar] [CrossRef]
- Bhuyar, P.; Farez, F.; Rahim, M.H.A.; Maniam, G.P.; Govindan, N. Removal of nitrogen and phosphorus from agro-industrial wastewater by using microalgae collected from coastal region of peninsular Malaysia. Afr. J. Biol. Sci. 2021, 3, 58–66. [Google Scholar] [CrossRef]
- Rücker, C.; Kümmerer, K. Environmental chemistry of organosiloxanes. Chem. Rev. 2015, 115, 466–524. [Google Scholar] [CrossRef]
- Chavoshani, A.; Hashemi, M.; Mehdi Amin, M.; Ameta, S.C. (Eds.) Personal care products as an endocrine disrupting compound in the aquatic environment. In Micropollutants and Challenges; Elsevier: Amsterdam, The Netherlands, 2020; pp. 91–144. [Google Scholar]
- Tansel, B.; Surita, S.C. Historical and projected trends of siloxane use in consumer products, associated impacts on municipal solid waste and landfill gas utilisation. Int. J. Environ. Sci. Technol. 2017, 14, 795–802. [Google Scholar] [CrossRef]
- Kozerski, G.E.; Xu, S.; Miller, J.; Durham, J. Determination of soil-water sorption coefficients of volatile methylsiloxanes. Environ. Toxicol. Chem. 2014, 33, 1937–1945. [Google Scholar] [CrossRef] [Green Version]
- Hena, S.; Gutierrez, L.; Croué, J.P. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. J. Hazard. Mater. 2021, 403, 124041. [Google Scholar] [CrossRef]
- Moldoveanu, S.; David, V. (Eds.) Phase transfer in sample preparation. In Modern Sample Preparation for Chromatography; Elsevier: Amsterdam, The Netherlands, 2015; pp. 105–130. [Google Scholar]
- Panagopoulos, D.; Jahnke, A.; Kierkegaard, A.; MacLeod, M. Temperature dependence of the organic carbon/water partition ratios (Koc) of volatile methylsiloxanes. Environ. Sci. Technol. Lett. 2017, 4, 240–245. [Google Scholar] [CrossRef] [Green Version]
- European Comission. Commission Regulation (EU) 2018/35 of 10 January 2018 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards. Off. J. Eur. Union 2018, 6, 45–47. [Google Scholar]
- European Chemicals Agency (ECHA). Backround Document to the Opinion on the Annex XV Dossier Proposing Restrictions on Octamethylcyclotetrasiloxane (D4); Decamethylcyclopentasiloxane (D5) and Dodecamethylcyclohexasiloxane (D6); ECHA: Helsinki, Finland, 2020. [Google Scholar]
- Wang, D.G.; Norwood, W.; Alaee, M.; Byer, J.D.; Brimble, S. Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere 2013, 93, 711–725. [Google Scholar] [CrossRef]
- Mackay, D.; Cowan-Ellsberry, C.E.; Powell, D.E.; Woodburn, K.B.; Xu, S.; Kozerski, G.E.; Kim, J. Decamethylcyclopentasiloxane (D5) environmental sources, fate, transport, and routes of exposure. Environ. Toxicol. Chem. 2015, 34, 2689–2702. [Google Scholar] [CrossRef]
- Garcia, M.; Prats, D.; Arturo, T. Presence of siloxanes in the biogas of a wastewater treatment plant separation in condensates and influence of the dose of iron chloride on its elimination. Int. J. Waste Resour. 2015, 6, 1000192. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Zhang, Y.; Hu, D.; Fan, J.; Zeng, G. A review on removal of siloxanes from biogas: With a special focus on volatile methylsiloxanes. Environ. Sci. Pollut. Res. 2018, 25, 30847–30862. [Google Scholar] [CrossRef]
- Nyamukamba, P.; Mukumba, P.; Chikukwa, E.S.; Makaka, G. Biogas upgrading approaches with special focus on siloxane removal—A review. Energies 2020, 13, 6088. [Google Scholar] [CrossRef]
- De Arespacochaga, N.; Valderrama, C.; Raich-Montiu, J.; Crest, M.; Mehta, S.; Cortina, J.L. Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorisation of sewage biogas—A review. Renew. Sustain. Energy Rev. 2015, 52, 366–381. [Google Scholar] [CrossRef] [Green Version]
- Accettola, F.; Guebitz, G.M.; Schoeftner, R. Siloxane removal from biogas by biofiltration: Biodegradation studies. Clean Technol. Environ. Policy 2008, 10, 211–218. [Google Scholar] [CrossRef]
- Xu, L.; Shi, Y.; Cai, Y. Occurrence and fate of volatile siloxanes in a municipal Wastewater Treatment Plant of Beijing, China. Water Res. 2013, 47, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Pascual, C.; Cantera, S.; Muñoz, R.; Lebrero, R. Siloxanes removal in a two-phase partitioning biotrickling filter: Influence of the EBRT and the organic phase. Renew. Energy 2021, 177, 52–60. [Google Scholar] [CrossRef]
- Gojkovic, Z.; Lindberg, R.H.; Tysklind, M.; Funk, C. Northern green algae have the capacity to remove active pharmaceutical ingredients. Ecotoxicol. Environ. Saf. 2019, 170, 644–656. [Google Scholar] [CrossRef]
- NP-627. Norma Portuguesa Definitiva: Água-Determinação da côr Verdadeira; Sociedade Astória Lda.: Lisbon, Portugal, 1972. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- US EPA. Method 352.1: Nitrogen, Nitrate (Colorimetric, Brucine) by Spectrophotometer; Environmental Protection Agency: Washington, DC, USA, 1971.
- Lee, B.; Park, S.Y.; Heo, Y.S.; Yea, S.S.; Kim, D.E. Efficient colorimetric assay of RNA polymerase activity using inorganic pyrophosphatase and ammonium molybdate. Bull. Korean Chem. Soc. 2009, 30, 2485–2488. [Google Scholar]
- Liang, F.; Wen, X.; Geng, Y.; Ouyang, Z.; Luo, L.; Li, Y. Growth rate and biomass productivity of Chlorella as affected by culture depth and cell density in an open circular photobioreactor. J. Microbiol. Biotechnol. 2013, 23, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Rocha, F.; Homem, V.; Castro-Jiménez, J.; Ratola, N. Marine vegetation analysis for the determination of volatile methylsiloxanes in coastal areas. Sci. Total Environ. 2019, 650, 2364–2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, Z.; O’Fallon, J.V.; Chen, S. Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol. 2011, 29, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.; Mairet, F.; Bernard, O. Theory of turbid microalgae cultures. J. Theor. Biol. 2018, 456, 190–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valev, D.; Silva Santos, H.; Tyystjärvi, E. Stable wastewater treatment with Neochloris oleoabundans in a tubular photobioreactor. J. Appl. Phycol. 2020, 32, 399–410. [Google Scholar] [CrossRef] [Green Version]
- AlMomani, F.A.; Örmeci, B. Performance of Chlorella vulgaris, Neochloris oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol. Eng. 2016, 95, 280–289. [Google Scholar] [CrossRef]
- Singh, R.; Birru, R.; Sibi, G. Nutrient removal efficiencies of Chlorella vulgaris from urban wastewater for reduced eutrophication. J. Environ. Prot. 2017, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.K.; Yusoff, M.I.; Uemura, Y.; Lim, J.W.; Khoo, C.G.; Lee, K.T.; Ong, H.C. Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renew. Energy 2017, 103, 197–207. [Google Scholar] [CrossRef]
- Fernández-Linares, L.C.; Guerrero Barajas, C.; Durán Páramo, E.; Badillo Corona, J.A. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium. Bioresour. Technol. 2017, 244, 400–406. [Google Scholar] [CrossRef]
- Directive 1991/271/EEC Directive of the European Council of 21 May 1991 concerning urban waste-water treatment. Off. J. Eur. Union L135 1991, 135, 40–52.
- European Comission. Directive 1998/15/EC of the European Comission of 27 February 1998 amending Council Directive 91/271/EEC with respect to certain requirements established in Annex I thereof. Off. J. Eur. Union L67 1998, 67, 29–30. [Google Scholar]
- Choi, H.J.; Lee, S.M. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Biosyst. Eng. 2015, 38, 761–766. [Google Scholar] [CrossRef]
- Tarayre, C.; Nguyen, H.T.; Brognaux, A.; Delepierre, A.; De Clercq, L.; Charlier, R.; Michels, E.; Meers, E.; Delvigne, F. Characterisation of phosphate accumulating organisms and techniques for polyphosphatedetection: A review. Sensors 2016, 16, 797. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, S.F.; Queiroz, M.I.; Zepka, L.Q.; Jacob-Lopes, E. Microalgae biotechnology—A brief introduction. In Microalgal Biotechnology; Jacob-Lopes, E., Queiroz Zepka, L., Queiroz, M.I., Eds.; InTech: London, UK, 2018. [Google Scholar]
- Umetani, I.; Janka, E.; Sposób, M.; Hulatt, C.J.; Kleiven, S.; Bakke, R. Bicarbonate for microalgae cultivation: A case study in a chlorophyte, Tetradesmus wisconsinensis isolated from a Norwegian lake. J. Appl. Phycol. 2021, 33, 1341–1352. [Google Scholar] [CrossRef]
- Otondo, A.; Kokabian, B.; Stuart-Dahl, S.; Gude, V.G. Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris. J. Environ. Chem. Eng. 2018, 6, 3213–3222. [Google Scholar] [CrossRef]
- Han, P.; Lu, Q.; Fan, L.; Zhou, W. A review on the use of microalgae for sustainable aquaculture. Appl. Sci. 2019, 9, 2377. [Google Scholar] [CrossRef] [Green Version]
Parameters | Value | Unit | |||
---|---|---|---|---|---|
Raw PE | Filtered PE | Raw SE | Filtered SE | ||
pH | 7.3 | 8.1 | 7.1 | 7.7 | - |
Conductivity | 4 250 | nd | 1 822 | nd | µS m−1 |
Colour | 260 ± 7 | 76 ± 8 | 43 ± 1 | 29 ± 7 | HU |
Turbidity | 55 ± 3 | 5.5 ± 0.4 | 2.4 ± 0.2 | 0.8 ± 0.2 | NTU |
Chemical oxygen demand (COD) | 76 ± 2 | 87 ± 4 | 24 ± 2 | 23 ± 4 | mg O2 L−1 |
Dissolved organic carbon (DOC) | 255 * | 63 ± 11 | 31 ± 26 | 10 ± 2 | mg C L−1 |
Total dissolved carbon (TDC) | 298 * | 99 ± 11 | 51 ± 26 | 26 ± 5 | mg C L−1 |
Dissolved inorganic carbon (DIC) | 42 * | 35.6 ± 0.2 | 19.66 ± 0.01 | 16 ± 3 | mg C L−1 |
Total nitrogen (TN) | 25.89 ± 0.02 | 25 ± 6 | 15 ± 1 | 14 ± 4 | mg N L−1 |
Nitrate-nitrogen (NO3-N) | <LOD | <LOD | 12.25 ± 0.08 | 10.67 ± 0.02 | mg N L−1 |
Total phosphorus (TP) | 2.21 ± 0.05 | nd | 1.63 ± 0.02 | nd | mg P L−1 |
Phosphate-phosphorus (PO4-P) | 3.0 ± 0.2 | 3.0 ± 0.3 | 2.83 ± 0.01 | 2.4 ± 0.3 | mg P L−1 |
N:P molar ratio | 26 | 18 | 10 | 13 | - |
Total solids (TS) | 1.47 ± 0.02 | nd | 1.118 ± 0.004 | nd | g L−1 |
Total volatile solids (TVS) | 0.22 ± 0.01 | nd | 0.143 ± 0.004 | nd | g L−1 |
Hexamethylcyclotrisiloxane (D3) | 184 ± 88 | 147 ± 26 | 127 ± 35 | 142 ± 63 | ng D3 L−1 |
Octamethylcyclotetrasiloxane (D4) | 198 ± 85 | 168 ± 78 | 246 ± 16 | 201 ± 99 | ng D4 L−1 |
Decamethylcyclopentasiloxane (D5) | 904 ± 83 | 954 ± 92 | 455 ± 141 | 376 ± 115 | ng D5 L−1 |
Dodecamethylcyclohexasiloxane (D6) | 247 ± 21 | 142 ± 22 | 233 ± 39 | 197 ± 88 | ng D6 L−1 |
Octamethyltrisiloxane (L3) | <LOD | <LOD | <LOD | <LOD | ng L3 L−1 |
Decamethyltetrasiloxane (L4) | <LOD | <LOD | <LOD | <LOD | ng L4 L−1 |
Dodecamethylpentasiloxane (L5) | 16 ± 22 | <LOD | 1.7 ± 0.7 | <LOD | ng L5 L−1 |
Experiment | µ (d−1) | Xmax (gDW L−1) | PX, max (gDW L−1 d−1) | PX, avg (gDW L−1 d−1) |
---|---|---|---|---|
C+ | 0.0472 ± 0.0005 a | 1.61 ± 0.01 a | 0.080 ± 0.002 a | 0.060 ± 0.002 a |
PE | 0.034 ± 0.001 b | 1.40 ± 0.01 c | 0.054 ± 0.003 b | 0.034 ± 0.001 b |
SE | 0.036 ± 0.002 b | 1.30 ± 0.02 b | 0.050 ± 0.009 b | 0.035 ± 0.003 b |
Nutrients | Experiment | S0 (mg L−1) | MR (mg L−1) | RE (%) | k (d−1) | λ (d) | R2 | RMSE (mg L−1) |
---|---|---|---|---|---|---|---|---|
N | C+ | 40 ± 1 a | 14.1 ± 0.3 a | 35.5 ± 0.7 a | 0.4 ± 0.3 | 1 ± 2 | 0.945 | 1.265 |
C-PE | 29.78 ± 0.01 c | 11.06 ± 0.02 c | 37.13 ± 0.02 a | 0.4 ± 0.3 | 1 ± 2 | 0.971 | 0.752 | |
PE | 32.4 ± 0.5 c | 28 ± 1 d | 86 ± 4 c | 0.8 ± 0.1 | 0.6 ± 0.2 | 0.999 | 0.410 | |
C-SE | 10.67 ± 0.02 b | na | na | Na | na | na | na | |
SE | 10.9 ± 0.5 b | 5.66 ± 0.01 b | 52.1 ± 0.1 b | 0.8 ± 0.7 | 0.2 ± 1.9 | 0.986 | 0.227 | |
P | C+ | 10.2 ± 0.1 a | 5.5 ± 0.2 a | 53 ± 2 a | 0.6 ± 0.3 | 0.5 ± 1 | 0.972 | 0.347 |
C-PE | 3.0 ± 0.3 b | 1.8 ± 0.2 b | 59 ± 3 c | 0.9 ± 0.1 | 0.7 ± 0.3 | 0.997 | 0.039 | |
PE | 3.0 ± 0.4 b | 2.5 ± 0.1 c | 80.0 ± 0.1 b | 1.0 ± 0.2 | 0.2 ± 0.5 | 0.984 | 0.115 | |
C-SE | 2.4 ± 0.3 b | na | na | na | na | na | na | |
SE | 2.3 ± 0.1 b | 2.02 ± 0.02 bc | 86.5 ± 0.9 b | 2.2 ± 0.2 | 0.3 ± 0.1 | 0.998 | 0.039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado, E.M.; Gonçalves, A.L.; Sánchez-Soberón, F.; Ratola, N.; Pires, J.C.M. Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes. Int. J. Environ. Res. Public Health 2022, 19, 2634. https://doi.org/10.3390/ijerph19052634
Salgado EM, Gonçalves AL, Sánchez-Soberón F, Ratola N, Pires JCM. Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes. International Journal of Environmental Research and Public Health. 2022; 19(5):2634. https://doi.org/10.3390/ijerph19052634
Chicago/Turabian StyleSalgado, Eva M., Ana L. Gonçalves, Francisco Sánchez-Soberón, Nuno Ratola, and José C. M. Pires. 2022. "Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes" International Journal of Environmental Research and Public Health 19, no. 5: 2634. https://doi.org/10.3390/ijerph19052634
APA StyleSalgado, E. M., Gonçalves, A. L., Sánchez-Soberón, F., Ratola, N., & Pires, J. C. M. (2022). Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes. International Journal of Environmental Research and Public Health, 19(5), 2634. https://doi.org/10.3390/ijerph19052634