Strength Training in Swimming
Abstract
:1. Introduction
“Since the majority of the competitive swimming events last less than 3 min, it is difficult to understand how training at speeds that are markedly slower than competitive pace for 3–4 h·d−1 will prepare the swimmer for the supramaximal efforts of competition”.
2. Aims of Strength Training in Swimming
2.1. Preventive Aspects of Strength Training for Swimmers
2.2. Strength Training to Increase the Strength Abilities of the Muscles Used to Propel the Swimmer
2.2.1. Increase in the Impulse of Swimming Movements
What Should Be Called Strength Training?
Cross-Sectional and Longitudinal Studies on Strength Training in Swimming
“It can be stated that there is little electromyographic similarity between swimming movements on dry land and the front crawl movement under normal conditions …”. Bradshaw and Hoyle [151] (p. 15) add: “A limitation of the bench is that most swimmers, in order to produce as much power as possible, use a different pulling technique than it is used in the water. The technique most often used for producing a maximum power measurement on the bench is likely to be less efficient in the water.”
“The swim bench, for example, could create such a negative interference, since it is similar but cannot copy the real movement, which is affected by slippage, drag forces, and the use of the lower extremities”.
“Likewise, we must avoid falling into the simulation trap (i.e., being fooled by outward appearances or kinematics). An exercise may look like a target task without being specific to it.”
“The main conclusion following from research data is that since land exercises cannot accurately reproduce specific neuro-muscular patterns of swimming motions the best way to develop specific strength in swimmers would be to work on it during swimming training.”
2.2.2. Increase in Momentum at Start and Turn
3. Methodical Approach to Strength Training
3.1. Morphological Adaptations
“Swimming coaches believe that changes in body shape will increase drag force and this will be detrimental to swimming performance. This contention has not been supported or refuted by scientific research … In truth, the athletes do not have the time to devote to a resistance training program with sufficient volume to produce large increases in muscle size since they complete so many hours training in the pool. It is very unlikely that more than modest gains in muscle size could be achieved in these athletes regardless of the resistance training program. The large volume of endurance exercise that swimmers complete each week is incompatible with maximal gains in strength and muscle size, and past research [408] suggests these conflicting influences will limit muscle hypertrophy.”
3.2. Development of Strength and Power
“Moving quickly with a weight does not mean one will move quickly without a weight. […] It appears that explosive exercises like these use too much resistance to improve speed and too little resistance to increase strength and therefore essentially have no beneficial effect on muscular power or athletic performance.”
“A movement performed using some type of resistance can mimic a particular sport movement, but it can never precisely match the speed and coordination of that movement and therefore cannot be considered specific. A movement is either specific or it is not; it cannot be ‘almost’ specific.”
“Perform the main sport with added resistance. This often is the quickest way to make gains in athletic performance. It is also insufficient. The performance results initially advance but soon stop improving due to accommodation. Other training means are then necessary”.
“The purpose of the base building phase is not to mimic sport skills, but to allow the entire body to develop and adapt to the stresses of training and competition. The most effective skill transfer occurs when practicing skills as the body becomes stronger, faster, and more efficient. The athlete should strengthen all the muscles used to produce the movement, then practice the movement.”
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cureton, T.K. Biomechanics of swimming with interrelationships to fitness and performance. In Proceedings of the First International Symposium on Biomechanics in Swimming, Waterpolo and Diving, Brussels, Belgium, 14–16 September 1970; pp. 31–52. [Google Scholar]
- Cureton, T.K. Factors governing success in competitive swimming: A brief review of related studies. In Proceedings of the Second International Symposium on Biomechanics in Swimming, Baltimore, MD, USA, 9 June 1979; pp. 9–39. [Google Scholar]
- Holmer, I. Energetics and mechanical work in swimming. In Biomechanics and Medicine in Swimming, International Series on Sport Science; Hollander, A.P., Huijing, P.A., de Groot, G., Eds.; Human Kinetics: Champaign, IL, USA, 1983; Volume 14, pp. 154–164. [Google Scholar]
- Wanivenhaus, F.; Fox, A.J.S.; Chaudhury, S.; Rodeo, S.A. Epidemiology of injuries and prevention strategies in competitive swimmers. Sports Health 2012, 4, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morouço, P.G.; Marinho, D.A.; Amaro, N.M.; Peréz-Turpin, J.A.; Marques, M.C. Effects of dry-land strength training on swimming performance: A brief review. J. Hum. Sport Exerc. 2012, 7, 553–559. [Google Scholar]
- Costill, D.L. Training adaptations for optimal performance. In Proceedings of the Biomechanics and Medicine in Swimming VIII: Proceedings of the VIII International Symposium on Biomechanics and Medicine in Swimming, Jyvaskyla, Finland, 28 June–2 July 1998; pp. 381–389. [Google Scholar]
- De Sousa, E.O.; Tricoli, V.; Roschel, H.; Brum, P.C.; Bacurau, A.V.N.; Ferreira, J.C.B.; Aoki, M.S.; Neves, M., Jr.; Aihara, A.Y.; da Rocha Correa Fernandes, A.; et al. Molecular adaptations to concurrent training. Int. J. Sports Med. 2013, 34, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Docherty, D.; Sporer, B. A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Med. 2000, 30, 385–394. [Google Scholar] [CrossRef]
- McCarthy, J.P.; Pozniak, M.A.; Agre, J.C. Neuromuscular adaptations to concurrent strength and endurance training. Med. Sci. Sports Exerc. 2002, 34, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Nader, G.A. Concurrent strength and endurance training: From molecules to man. Med. Sci. Sports Exerc. 2006, 38, 1965–1970. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.M.; Marin, P.J.; Rhea, M.R.; Wilson, S.M.C.; Loenneke, J.P.; Anderson, J.C. Concurrent training: A meta-analysis examining interference of aerobic and resistance exercises. J. Strength Cond. Res. 2012, 26, 2293–2307. [Google Scholar] [CrossRef]
- Millet, G.; Jaouen, B.; Borrani, F.; Candau, R. Effects of concurrent endurance and strength training on running economy and VO2 kinetics. Med. Sci. Sports Exerc. 2002, 34, 1351–1359. [Google Scholar] [CrossRef] [Green Version]
- Hoff, J.; Gran, A.; Helgerud, J. Maximal strength training improves endurance performance. Scand. J. Med. Sci. Sports 2002, 12, 288–295. [Google Scholar] [CrossRef]
- D’Acquisto, L.J.; Berry, J.; Boggs, G. Energetic, kinematic, and freestyle performance characteristics of male swimmers. J. Swim. Res. 2007, 17, 31–38. [Google Scholar]
- Esteve-Lanao, J.; San Juan, A.F.; Earnest, C.P.; Foster, C.; Lucia, A. How do endurance runners actually train? Relationship with competition performance. Med. Sci. Sports Exerc. 2005, 37, 496–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billat, V.L.; Demarle, A.; Slawinski, J.; Paiva, M.; Koralsztein, J.-P. Physical and training characteristics of top-class marathon runners. Med. Sci. Sports Exerc. 2001, 33, 2089–2097. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L.; Demarle, A.; Slawinski, J.; Paiva, M.; Koralsztein, J.-P. Effect of training on the physiological factors of performance in elite marathon runners (males and females). Int. J. Sports Med. 2002, 23, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Aspens, S.T.; Karlsen, T. Exercise-Training intervention studies in competitive swimming. Sports Med. 2012, 42, 527–543. [Google Scholar] [CrossRef]
- Chatard, J.C.; Mujika, I. Training load and performance in swimming. In Proceedings of the Biomechanics and Medicine in Swimming VIII: Proceedings of the VIII International Symposium on Biomechanics and Medicine in Swimming, Jyvaskyla, Finland, 28 June–2 July 1998; pp. 429–434. [Google Scholar]
- Costa, M.J.; Bragada, J.A.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Longitudinal interventions in elite swimming: A systematic review based on energetics, biomechanics, and performance. J. Strength Cond. Res. 2012, 26, 2006–2016. [Google Scholar] [CrossRef]
- Costill, D.L. The 1985 C. H. McCloy Research Lecture Practical Problems in Exercise Physiology Research Problems in exercise physiology research. Res. Q. Exerc. Sport 1985, 56, 378–384. [Google Scholar] [CrossRef]
- Costill, D.L.; Flynn, M.G.; Kirwan, J.P.; Houmard, J.A.; Mitchell, J.B.; Thomas, R.; Park, S.H. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med. Sci. Sports Exerc. 1988, 20, 249–254. [Google Scholar] [CrossRef]
- Costill, D.L.; King, D.S.; Thomas, R.; Hargraves, M. Effects of reduced training on muscular power in swimmers. Physician Sportsmed. 1985, 13, 94–101. [Google Scholar] [CrossRef]
- Costill, D.L.; Thomas, R.; Robergs, R.A.; Pascoe, D.; Lambert, C.; Barr, S.; Fink, W.J. Adaptations to swimming training: Influence of training volume. Med. Sci. Sports Exerc. 1991, 23, 371–377. [Google Scholar] [CrossRef]
- Klentrou, P.P.; Montpetit, R.R. Physiologic and physical correlates of swimming performance. J. Swim. Res. 1991, 7, 13–18. [Google Scholar]
- Kirwan, J.P.; Costill, D.L.; Flynn, M.G.; Mitchell, J.B.; Fink, W.J.; Neufer, P.D.; Houmard, J.A. Physiological responses to successive days of intense training in competitive swimmers. Med. Sci. Sports Exerc. 1988, 20, 255–259. [Google Scholar] [CrossRef]
- Mujika, I.; Chatard, J.C.; Busso, T.; Geyssant, A.; Barale, F.; Lacoste, L. Effects of training on performance in competitive swimming. Can. J. Appl. Physiol. 1995, 20, 395–406. [Google Scholar] [CrossRef]
- Nugent, F.J.; Comyns, T.M.; Burrows, E.; Warrington, G.D. Effects of low-volume, high-intensity training on performance in competitive swimmers: A systematic review. J. Strength Cond. Res. 2017, 31, 837–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richmond, T.; Buell, J.; Pfeil, S.; Crowder, M.W. Evidence-based recommendations for maximizing competitive swimming performance. J. Swim. Res. 2015, 23, 1. [Google Scholar]
- Hawley, J.A.; Williams, M.M. Relationship between upper body anaerobic power and freestyle swimming performance. Int. J. Sports Med. 1991, 12, 1–5. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, P.; O’Shea, K. The 50-meter freestyle sprint. Natl. Strength Cond. Assoc. J. 1991, 13, 6–11. [Google Scholar] [CrossRef]
- Reilly, T. Swimming. In Physiology of Sports; Reilly, T., Secher, N., Snell, P., Williams, C., Eds.; E. & F.N. SPON: London, UK, 1990; pp. 218–255. [Google Scholar]
- Strzala, M.; Tyka, A. Physical endurance, somatic indices and swimming technique parameters as determinants of front crawl swimming speed at short crawl swimming speed at short distances in young swimmers. Med. Sport. 2009, 13, 99–107. [Google Scholar] [CrossRef]
- Wilson, J.M.; Wilson, G.J. A practical approach to the taper. Strength Cond. J. 2008, 30, 10–17. [Google Scholar] [CrossRef]
- Bradley, J.; Kerr, S.; Bowmaker, D.; Gomez, J.-F. Review of shoulder injuries and shoulder problems in competitive swimmers. Am. J. Sport Sci. Med. 2016, 4, 57–73. [Google Scholar] [CrossRef]
- Dawson, C.; Rodeo, S.A. Sports medicine: Swimming injuries and prevention. In Science of Swimming Faster; Riewald, S., Rodeo, S., Eds.; Human Kinetics: Champaign, IL, USA, 2015; pp. 371–380. [Google Scholar]
- Gaunt, T.; Maffulli, N. Soothing suffering swimmers: A systematic review of the epidemiology, diagnosis, treatment and rehabilitation of musculoskeletal injuries in competitive swimmers. Br. Med. Bull. 2012, 103, 45–88. [Google Scholar] [CrossRef] [Green Version]
- Heinonen, A.; Waller, B.; Ristolainen, L.; Kujala, U. The prevalence of swimming injuries and their factors; A 12 month retrospective study. In Proceedings of the 12th Annual Congress of the European College of Sport Science, Jyväskylä, Finland, 28–30 October 2020; pp. 112–113. [Google Scholar]
- Johnson, J.N. Competitive swimming illness and injury: Common conditions limiting participation. Curr. Sports Med. Rep. 2003, 2, 267–271. [Google Scholar] [CrossRef]
- Kenal, K.A.F.; Knapp, L.D. Rehabilitation of injuries in competitive swimmers. Sports Med. 1996, 22, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, K.; Yoon, U.; Kraemer, R.; Vogt, P.M. 200–400 m breaststroke event dominate among knee overuse injuries in elite swimming athletes. Sportverletz. Sportschaden 2008, 22, 213–219. [Google Scholar] [CrossRef]
- Masiero, S.; Carraro, E.; Celia, A.; Sarto, D.; Ermani, M. Prevalence of nonspecific low back pain in schoolchildren aged between 13 and 15 years. Acta Paediatr. 2008, 97, 212–216. [Google Scholar] [CrossRef]
- Mutoh, Y.; Takamoto, M.; Miyashita, M. Chronic injuries of elite competitive swimmers, divers, water polo players, and synchonized swimmers. In International Symposium of Biomechanics and Medicine in Swimming; Ungerechts, B.E., Wilke, K., Reischl, R., Eds.; Human Kinetics: Champaign, IL, USA, 1988; Volume 18, pp. 333–337. [Google Scholar]
- Sato, T.; Ito, T.; Hirano, T.; Morita, O.; Kikuchi, R.; Endo, N.; Tanabe, N. Low back pain in childhood and adolescence: Assessment of sports activities. Eur. Spine J. 2011, 20, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Wolf, B.R.; Ebinger, A.E.; Lawler, M.P.; Britton, C.L. Injury patterns in division I collegiate swimming. Am. J. Sports Med. 2009, 37, 2037–2042. [Google Scholar] [CrossRef]
- Zaina, F.; Donzelli, S.; Luisini, M.; Minnella, S.; Negrini, S. Swimming and spinal deformities: A cross-sectional study. J. Pediatr. 2015, 166, 163–167. [Google Scholar] [CrossRef]
- Becker, T.J. Overuse shoulder injuries in swimmers. J. Swim. Res. 2011, 18, 1–5. [Google Scholar] [CrossRef]
- Pollard, H.; Croker, D. Shoulder pain in elite swimmers. Australasien Chiropr. Osteopathy 1999, 8, 91–95. [Google Scholar]
- Richardson, A.B.; Jobe, F.W.; Collins, H.R. The shoulder in competitive swimming. Am. J. Sports Med. 1980, 8, 159–163. [Google Scholar] [CrossRef]
- Sein, M.L.; Walton, J.; Linklater, J.; Appleyard, R.; Kirkbride, B.; Kuah, D.; Murrell, A.C. Shoulder pain in elite swimmers: Primarily due to swim-volume-induced supraspinatus tendinopathy. Br. J. Sports Med. 2010, 44, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Tate, A.; Turner, G.N.; Knab, S.E.; Jorgensen, C.; Strittmatter, A.; Michener, L.A. Risk factors associated with shoulder pain and disability across the lifespan of competitive swimmers. J. Athl. Train. 2012, 47, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tovin, B.J. Prevention and treatment of swimmer’s shoulder. N. Am. J. Sports Phys. Ther. 2006, 1, 166–175. [Google Scholar]
- Walker, H.; Gabbe, B.; Wajswelner, H.; Blanch, P.; Bennell, K. Shoulder pain in swimmers: A 12-month prospective cohort study of incidence and risk factors. Phys. Ther. Sport 2012, 13, 243–249. [Google Scholar] [CrossRef]
- Keskinen, K.; Eriksson, E.; Komi, P. Breaststroke swimmer’s knee. A biomechanical and arthroscopic study. Am. J. Sports Med. 1980, 8, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Rovere, G.D.; Nichols, A.W. Frequency, associated factors, and treatment of breaststroker’s knee in competitive swimmers. Am. J. Sports Med. 1985, 13, 99–104. [Google Scholar] [CrossRef]
- Stulberg, S.D.; Shulman, K.; Stuart, S.; Culp, P. Breaststroker’s knee: Pathology, etiology, and treatment. Am. J. Sports Med. 1980, 8, 164–171. [Google Scholar] [CrossRef]
- Nyska, M.; Constantini, N.; Calé-Benzoor, M.; Back, G.; Mann, G. Spondylolysis as a cause of low back pain in swimmers. Int. J. Sports Med. 2000, 21, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-dos-Santos, M.R.; Lynch, K.R.; Agostinete, R.R.; Maillane-Vanegas, S.; Turi-Lynch, B.; Ito, I.H.; Luiz-de-Marco, R.; Rodrigues, M.A.; Fernandes, R.A. Prolonged practice of swimming is negatively related to bone mineral density gains in adolescents. J. Bone Metab. 2016, 23, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Cassel, C.; Benedict, M.; Specker, B. Bone mineral density in elite 7- to 9-yr-old female gymnasts and swimmers. Med. Sci. Sports Exerc. 1996, 28, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Courteix, D.; Lespessailles, E.; Peres, S.L.; Obert, P.; Germain, P.; Benhamou, C.L. Effects of physical training on bone mineral density in prepubertal girls: A comparative study between impact-loading and non-impact-loading sports. Osteoporos. Int. 1998, 8, 152–158. [Google Scholar] [CrossRef]
- Fehling, P.C.; Alekel, L.; Clasey, J.; Rector, A.; Stillman, R.J. A Comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone 1995, 17, 205–210. [Google Scholar] [CrossRef]
- Heinrich, C.H.; Going, S.B.; Pamenter, R.W.; Perry, C.D.; Boyden, T.W.; Lohman, T.G. Bone mineral content of cyclically menstruating female resistance and endurance athletes. Med. Sci. Sports Exerc. 1990, 22, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Kannus, P.; Nikander, R.; Sievänen, H.; Mujika, I. Adaptations of bone and connective tissue to training. In The Olympic Textbook of Medicine in Sport—Volume XIV of the Encyclopaedia of Sports Medicine; Schwellnus, M.P., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2008; pp. 111–118. [Google Scholar]
- Nilsson, B.E.; Westlin, N.E. Bone density in athletes. Clin. Orthop. Relat. Res. 1971, 77, 179–182. [Google Scholar] [PubMed]
- Risser, W.L.; Lee, E.J.; Leblanc, A.; Poindexter, H.B.W.; Risser, J.M.H.; Schneider, V. Bone density in eumenorrheic female college athletes. Med. Sci. Sports Exerc. 1990, 22, 570–574. [Google Scholar] [CrossRef]
- Taaffe, D.R.; Marcus, R. Regional and total body bone mineral density in elite collegiate male swimmers. J. Sports Med. Phys. Fit. 1999, 39, 154–159. [Google Scholar]
- Taaffe, D.R.; Snow-Harter, C.; Connolly, D.A.; Robinson, T.L.; Brown, M.D.; Marcus, R. Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes. J. Bone Miner. Res. 1995, 10, 586–593. [Google Scholar] [CrossRef]
- Agostinete, R.R.; Maillane-Vanegas, S.; Lynch, K.R.; Turi-Lynch, B.; Coelho-E-Silva, M.J.; Campos, E.Z.; Cayres, S.U.; Araújo Fernandes, R. The Impact of Training Load on Bone Mineral Density of Adolescent Swimmers: A Structural Equation Modeling Approach. Pediatr. Exerc. Sci. 2017, 29, 520–528. [Google Scholar] [CrossRef]
- Ferry, B.; Duclos, M.; Burt, L.; Therre, P.; Gall, F.L.; Jaffré, C.; Courteix, D. Bone geometry and strength adaptations to physical constraints inherent in different sports: Comparison between elite female soccer players and swimmers. J. Bone Miner. Metab. 2011, 29, 342–351. [Google Scholar] [CrossRef]
- Magkos, F.; Kavouras, S.A.; Yannakoulia, M.; Karipidou, M.; Sidossi, S.; Sidossis, L.S. The bone response to non-weight-bearing exercise is sport-, site, and sex-specific. Clin. Sports Med. Int. 2007, 17, 123–128. [Google Scholar] [CrossRef]
- Magkos, F.; Yannakoulia, M.; Kavouras, S.A.; Sidossis, L.S. The type and intensity of exercise have independent and additive effects on bone mineral density. Int. J. Sports Med. 2007, 28, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.A. The role of physical activity in the regulation of bone mass during growth. In The Child and Adolescent Athlete; Bar-Or, O., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2005; pp. 138–152. [Google Scholar]
- Bellew, J.W.; Gehrig, L. A comparison of bone mineral density in adolescent female swimmers, soccer players, and weight lifters. Pediatri. Phys. Ther. 2006, 18, 19–22. [Google Scholar] [CrossRef]
- Grimston, S.K.; Willows, M.D.; Hanley, D.A. Mechanical loadingregime and its relationship to bone mineral density in children. Med. Sci. Sports Exerc. 1993, 25, 1203–1210. [Google Scholar] [CrossRef]
- Morseth, B.; Emaus, N.; Jørgensen, L. Physical activity and bone: The importance of the various mechanical stimuli for bone mineral density. A review. Nor. Epidemiol. 2011, 20, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Mudd, L.M.; Fornetti, W.; Pivarnik, J.M. Bone mineral density in collegiate female athletes: Comparisons among sports. J. Athl. Train. 2007, 42, 403–408. [Google Scholar]
- Petit, M.; McKay, H.; Khan, K. Osteoporosis Prevention. In The Health Benefits of Physical Activity for Girls and Women—Literature Review and Recommendations for Future Research and Policy; British Columbia Centre of Excellence for Women’s Health: Vancouver, BC, Canada, 2000; pp. 129–155. [Google Scholar]
- Goldstein, J.D.; Berger, P.E.; Windler, G.E.; Jackson, D.W. Spine injuries in gymnasts and swimmers—An epidemiologic investigation. Am. J. Sports Med. 1991, 19, 463–468. [Google Scholar] [CrossRef]
- Hangai, M.; Kaneoka, K.; Hinotsu, S.; Shimizu, K.; Okubo, Y.; Miyakawa, S.; Mukai, N.; Sakane, M.; Ochiai, N. Lumbar Intervertebral Disk Degeneration in Athletes. Am. J. Sports Med. 2009, 37, 149–155. [Google Scholar] [CrossRef]
- Rossi, F.; Dragoni, S. The prevalence of spondylolysis and spondylolisthesis in symptomatic elite athletes: Radiographic findings. Radiography 2001, 7, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Kaneoka, K.; Shimizu, K.; Hangai, M.; Okuwaki, T.; Mamizuka, N.; Sakane, M.; Ochiai, N. Lumbar intervertebral disk degeneration in elite competitive swimmers. Am. J. Sports Med. 2007, 35, 1341–1345. [Google Scholar] [CrossRef]
- Chilibeck, P.D.; Sale, D.G.; Webber, C.E. Exercise and bone mineral density. Sports Med. 1995, 19, 103–122. [Google Scholar] [CrossRef]
- Colletti, L.A.; Edwards, J.; Gordon, L.; Shary, J.; Bell, N.H. The effects of muscle-building exercise on bone mineral density of the Radius, Spine, and Hip in young men. Calcif. Tissue Int. 1989, 45, 12–14. [Google Scholar] [CrossRef]
- Conroy, B.P.; Kraemer, W.J.; Maresh, C.M.; Fleck, S.J.; Stone, M.H.; Fry, A.C.; Miller, P.D.; Dalsky, G.P. Bone mineral density in elite junior olympic weightlifters. Med. Sci. Sports Exerc. 1993, 25, 1103–1109. [Google Scholar] [CrossRef]
- Fleck, S.J.; Kraemer, W.J. Designing Resistance Training Programs; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Granhed, H.; Jonson, R.; Hannsson, T. The loads on the lumbar spine during extreme weightlifting. Spine 1987, 12, 146–149. [Google Scholar] [CrossRef]
- Heinonen, A.; Vuorl, I.; Kannus, P.; Oja, P.; Sievänen, H. Bone mineral density in competitive female athletes. Am. J. Sports Med. 1992, 24, 45. [Google Scholar]
- Heinonen, A.; Oja, P.; Kannus, P.; Sievänen, H.; Mänttäri, A.; Vuori, I. Bone mineral density of female athletes in different sports. Bone Miner. 1993, 23, 1–14. [Google Scholar] [CrossRef]
- Helge, E.W.; Kock, H.E.; Kanstrup, I.-L. Impact of eccentric exercise on bone mineral density. Med. Sci. Sports Exerc. 2003, 35, 80. [Google Scholar] [CrossRef]
- Karlsson, M.K.; Johnell, O.; Obrant, K.J. Bone mineral density in weight lifters. Calcif. Tissue Int. 1993, 52, 212–215. [Google Scholar] [CrossRef]
- Khan, K.; McKay, H.; Kannus, P.; Bailey, D.; Wark, J.; Bennell, K. Physical Activity and Bone Health; Human Kinetics: Champaign, IL, USA, 2001. [Google Scholar]
- Schwarz, P.; Eriksen, E.F.; Thorsen, K. Bone tissue—Bone training. In Textbook of Sports Medicine—Basic Science and Clinical Aspects of Sports Injury and Physical Activity; Kjær, M., Krogsgaard, M., Magnusson, P., Engebretsen, L., Roos, H., Takala, T., Woo, S.L.Y., Eds.; Blackwell Science Ltd.: Oxford, UK, 2003; pp. 173–186. [Google Scholar]
- Virvidakis, K.; Georgiou, E.; Korkotsidis, A.; Ntalles, K.; Proukakis, C. Bone mineral content of junior competitive weightlifters. Int. J. Sports Med. 1990, 11, 244–246. [Google Scholar] [CrossRef]
- Creighton, D.L.; Morgan, A.L.; Boardley, D.; Brolinson, P.G. Weight-bearing exercise and markers of bone turnover in female athletes. J. Appl. Physiol. 2001, 90, 565–570. [Google Scholar] [CrossRef]
- Gomez-Bruton, A.; Montero-Marín, J.; González-Agüero, A.; Garciá-Campayo, J.; Moreno, L.A.; Casajús, J.A.; Vicente-Rodríguez, G. The effect of swimming during childhood and adolescence on bone mineral density: A systematic review and Meta-Analysis. Sports Med. 2016, 46, 365–379. [Google Scholar] [CrossRef]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Taaffe, D.; Robinson, T.L.; Snow, C.M.; Marcus, R. High-impact exercise promotes bone gain in well-trained female athletes. J. Bone Miner. Res. 1997, 12, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Rodriguez, G. How does exercise affect bone development during growth? Sports Med. 2006, 36, 561–569. [Google Scholar] [CrossRef]
- Dyson, K.; Blimkie, C.J.R.; Davison, K.S.; Webber, C.E.; Adachi, J.D. Gymnastic training and bone density in pre-adolescent females. Med. Sci. Sports Exerc. 1997, 29, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Helge, E.W.; Kanstrup, I.L. Bone density in female elite gymnasts: Impact of muscle strength and sex hormones. Med. Sci. Sports Exerc. 2002, 34, 174–180. [Google Scholar] [CrossRef]
- Lehtonen-Veromaa, M.; Möttönen, T.; Irjala, K.; Nuotio, I.; Leino, A.; Viikari, J. A 1-year prospective study on the relationship between physical activity, markers of bone metabolism, and bone acquisition in peripubertal girls. J. Clin. Endocrinol. Metab. 2000, 85, 3726–3732. [Google Scholar] [CrossRef] [Green Version]
- Nickols-Richardson, S.M.; O’Connor, P.J.; Shapses, S.A.; Lewis, R.D. Longitudinal bone mineral density changes in female child artistic gymnasts. J. Bone Miner. Res. 1999, 14, 994–1002. [Google Scholar] [CrossRef]
- Nickols-Richardson, S.M.; Modlesky, C.M.; O’Connor, P.J.; Lewis, R.D. Premenarcheal gymnasts possess higher bone mineral density than controls. Med. Sci. Sports Exerc. 2000, 32, 63–69. [Google Scholar] [CrossRef]
- Nurmi-Lawton, J.A.; Baxter-Jones, A.D.; Mirwald, R.L.; Bishop, J.A.; Taylor, P.; Cooper, C.; New, S.A. Evidence of sustained skeletal benefits from impact-loading exercise in young females: A 3-year longitudinal study. J. Bone Miner. Res. 2004, 19, 314–322. [Google Scholar] [CrossRef]
- Bass, S.L. The pubertal years—A uniquely opportune stage of growth when the skeleton is most responsive to exercise. Sports Med. 2000, 30, 73–78. [Google Scholar] [CrossRef]
- Bass, S.L.; Daly, R.M.; Blimkie, C.J.R. Growing a healthy skeleton: Exercise—The primary driving force. In The Young Athlete; Volume XIII of the Encyclopaedia of Sports Medicine; Hebestreit, H., Bar-Or, O., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2008; pp. 112–126. [Google Scholar]
- Bass, S.L.; Saxon, L.; Daly, R.M.; Turner, C.H.; Robling, A.G.; Seeman, E.; Stuckey, S. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls a study in tennis players. J. Bone Miner. Res. 2002, 17, 2274–2280. [Google Scholar] [CrossRef]
- Girold, S.; Jalab, C.; Bernard, O.; Carette, P.; Kemoun, G.; Dugué, B. Dry-land strength training vs. electical stimulation in sprint swimming performance. J. Strength Cond. Res. 2012, 26, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Strass, D. Effects of maximal strength training on sprint performance of competitive swimmers. In Proceedings of the International Symposium of Biomechanics and Medicine in Swimming. International Series of Sport Sciences, Champaign, IL, USA, 28 April–2 May 2014; pp. 149–156. [Google Scholar]
- Riewald, S. Periodization and Planning. In Science of Swimming Faster; Riewald, S., Rodeo, S., Eds.; Human Kinetics: Champaign, IL, USA, 2015; pp. 173–198. [Google Scholar]
- Shephard, R.J.; Plyley, M.J. Peripheral circulation and endurance. In Endurance in Sport. The Encyclopaedia of Sports Medicine an IOC Medical Commision Publication; Shephard, R.J., Ǻstrand, P.-O., Eds.; Blackwell Scientific Publications: Oxford, UK, 1992; pp. 80–95. [Google Scholar]
- Sjøgaard, G.; Savard, G.; Juel, C. Muscle blood flow during isometric activity and its relation to muscle fatigue. Eur. J. Appl. Physiol. 1988, 57, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.T. Bioenergetics of exercise and training. In Essentials of Strength Training and Conditioning; Baechle, T.R., Earle, R.W., Eds.; Human Kinetics: Champaign, IL, USA, 2008; pp. 21–40. [Google Scholar]
- Powers, S.K.; Howley, E.T. Theory and Application to Fitness and Performance; Brown & Benchmark Publishers: Blanchester, OH, USA, 1994. [Google Scholar]
- Robergs, A.; Roberts, S.O. Exercise Physiology—Exercise, Performance, and Clinical Applications; Human Kinetic Publishers: Champaign, IL, USA, 1997. [Google Scholar]
- Spriet, L.L. Anaerobic metabolism during exercise. In Exercise Metabolism; Hargreaves, M., Spriet, L.L., Eds.; Human Kinetics: Champaign, IL, USA, 2006. [Google Scholar]
- Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Baker, D.G. 10-year changes in upper body strength and power in elite professional rugby league players—The effect of training age, stage, and content. J. Strength Cond. Res. 2013, 27, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Schmidtbleicher, D. Motorische Eigenschaft Kraft: Struktur, Komponenten, Anpassungserscheinungen, Trainingsmethoden und Periodisierung. In Rudern—Erfahren, Erkunden, Erforschen; Fritsch, W., Ed.; Sport Media-Verlag: Gießen, Germany, 2003; pp. 15–40. [Google Scholar]
- Burd, N.A.; West, D.W.; Staples, A.W.; Atherton, P.J.; Baker, J.M.; Moore, D.R.; Holwerda, A.; Parise, G.; Rennie, M.J.; Baker, S.K.; et al. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE 2010, 5, e12033. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J. The Effects of Low-Load vs. High-Load Resistance Training on Muscle Fiber Hypertrophy: A Meta-Analysis. J. Hum. Kinet. 2020, 74, 51–58. [Google Scholar] [CrossRef]
- Gamble, P. Periodization of training for team sports athletes. Strength Cond. J. 2006, 28, 56–66. [Google Scholar] [CrossRef]
- Connaboy, C.; Naemi, R.; Brown, S.; Psycharakis, S.; McCabe, C.; Coleman, S.; Sanders, R. The key kinematic determinants of undulatory underwater swimming at maximal velocity. J. Sports Sci. 2016, 34, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Houel, N.; Elipot, M.; André, F.; Hellard, P. Influence of angles of attack, frequency and kick amplitude on swimmer’s horizontal velocity during underwater phase of a grab start. J. Appl. Biomech. 2013, 29, 49–54. [Google Scholar] [CrossRef]
- Taladriz, S.; Dominguez, R.; Morales, E.; Arellano, R. Effect of fatigue on kinematics of sprint underwater undulatory swimming. In Proceedings of the XXXIII International Conference on Biomechanics in Sports, Poitiers, France, 29 June–3 July 2015; pp. 1240–1243. [Google Scholar]
- Shimojo, H.; Sengoku, Y.; Miyoshi, T.; Tsubakimoto, S.; Takagi, H. Effect of imposing in kick frequency on kinematics during undulatory underwater swimming at maximal effort in male swimmers. Hum. Mov. Sci. 2014, 38, 94–105. [Google Scholar] [CrossRef]
- Gergley, T.; McArdle, W.D.; DeJesus, P.; Toner, M.M.; Jacobowitz, S.; Spina, R.J. Specificity of arm training on aerobic power during swimming and running. Med. Sci. Sports Exerc. 1984, 16, 349–354. [Google Scholar] [CrossRef]
- Girold, S.; Calmels, P.; Maurin, D.; Milhau, N.; Chatard, J.-C. Assisted an resisted sprint training in swimming. J. Strength Cond. Res. 2006, 20, 547–554. [Google Scholar] [CrossRef]
- Girold, S.; Maurin, D.; Dugué, B.; Chatard, J.C.; Millet, G. Effects of dry-land vs. resisted- and assisted-sprint exercise on swimming sprint performance. J. Strength Cond. Res. 2007, 21, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Toussaint, H.M.; Vervoorn, K. Effects of specific high resistance training in the water on competitive swimmers. Int. J. Sports Med. 1990, 11, 228–233. [Google Scholar] [CrossRef]
- Roberts, A.J.; Termin, B.; Reilly, M.F.; Pendergast, D.R. Effectiveness of biokinetic training on swimming performance in collegiate swimmers. J. Swim. Res. 1991, 7, 5–11. [Google Scholar]
- Sadowski, J.; Mastalerz, A.; Gromisz, W.; Niźnikowski, T. Effectiveness of the power dry-land training programmes in youth swimmers. J. Hum. Kinet. 2012, 32, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Amaro, N.M.; Marinho, D.A.; Marques, M.C.; Batalha, N.P.; Morouço, P.G. Effects of Dry-Land Strength and Conditioning Programs in Age Group Swimmers. J. Strength Cond. Res. 2017, 31, 2447–2454. [Google Scholar] [CrossRef]
- Belfry, G.R.; Noble, E.G.; Taylor, A.W. Effects of two different weight training programs on swimming performance and muscle enzyme activities and fiber type. J. Strength Cond. Res. 2016, 30, 305–310. [Google Scholar] [CrossRef]
- Krabak, B.J.; Hancock, K.J.; Drake, S. Comparison of dry-land training programs between age groups of swimmers. J. Inj. Funct. Rehabil. 2013, 5, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.M.; Dooly-Manning, C.R.; Terrell, D.T.; Salas, E. Effects of a power circuit weight training program on power production and performance. J. Swim. Res. 1986, 2, 24–29. [Google Scholar]
- Migliaccio, G.M.; Cosso, M.; Bazzu, A.; Skryabin, A.; Del Bianco, M.; Padulo, J. The Effects of 12 Weeks of Neuromuscular Power Training on Elite Swimmers. In Proceedings of the 3rd ITU World Conference on Science and Triathlon, Paris, France, 26–27 November 2015. [Google Scholar]
- Morais, J.E.; Silva, A.J.; Marinho, D.A.; Marques, M.C.; Barbosa, T.M. Effect of a concurrent water and dry-land training over a season in young swimmers’ performance. Int. J. Perform. Anal. Sport 2016, 16, 761–775. [Google Scholar] [CrossRef] [Green Version]
- Van der Vliet, R.; Carol, M.; Toussaint, H. Effects of Strength Training on Sprint Performance. Available online: http://www.rrvywahoos.com/azasg/UserFiles/File/Effects%20of%20Strength%20training%20on%20Sprint%20Swim%20Performance(1).pdf (accessed on 12 February 2016).
- Dalamitros, A.A.; Manou, V.; Christoulas, K.; Kellis, S. Knee muscles isokinetic evaluation after a six-month regular combined swim and dry-land strength training period in adolescent competitive swimmers. J. Hum. Kinet. 2015, 49, 195–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aspens, S.; Kjendlie, P.-L.; Hoff, J.; Helgerud, J. Combined strength and endurance training in competitive swimmers. J. Appl. Biomech. 2009, 10, 357–365. [Google Scholar]
- Bucher, W.T.K. Biomechanics of swimming with interrelationships to fitness and performance. In Swimming II: Proceedings of the Second International Symposium on Biomechanics in Swimming; Lewillie, L., Clarys, J.P., Eds.; University Park Press: Baltimore, MD, USA; London, UK; Tokyo University: Tokyo, Japan, 1975; pp. 31–52. [Google Scholar]
- Clarys, J.P. Hydrodynamics and electromyography: Ergonomics aspects in aquatics. Appl. Ergon. 1985, 16, 1. [Google Scholar] [CrossRef]
- Deschodt, V.J.; Arsac, L.M.; Rouard, A.H. Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming. Eur. J. Appl. Physiol. 1999, 80, 192–199. [Google Scholar] [CrossRef]
- Gola, R.; Urbanik, C.; Iwanska, D.; Madej, A. Relationship between muscle strength and front crawl swimming velocity. Hum. Mov. 2014, 15, 110–115. [Google Scholar] [CrossRef]
- Hollander, A.P.; de Groot, G.; van Ingen Schenau, G.J.; Kahman, R.; Toussaint, H.M. Contribution oft he legst o propulsion in front crawl swimming. In Swimming Science V. International Series on Sports Sciences; Ungerechts, B., Wilke, K., Reischle, K., Eds.; Human Kinetics: Champaign, IL, USA, 1988; Volume 18, pp. 157–172. [Google Scholar]
- Martens, J.; Figueiredo, P.; Daly, D. Electromyography in the four competitive swimming strokes: A systematic review. J. Electromyogr. Kinesiol. 2015, 25, 273–291. [Google Scholar] [CrossRef]
- Morouço, P.; Neiva, H.; González-Badillo, J.J.; Garrido, N.; Marinho, D.A.; Marques, M.C. Associations between dry land strength and power measurements with swimming performance in elite athletes: A pilot study. J. Hum. Kinet. Spec. Issue 2012, 29, 105–112. [Google Scholar] [CrossRef]
- Sharp, R.L.; Troup, J.P.; Costill, D.L. Relationship between power and sprint freestyle swimming. Med. Sci. Sports Exerc. 1982, 14, 53–56. [Google Scholar] [CrossRef]
- Uebel, R. Weight training for swimmers—A practical approach. Strength Cond. J. 1987, 9, 38–41. [Google Scholar] [CrossRef]
- Bradshaw, A.; Hoyle, J. Correlation between sprinting and dry land power. J. Swim. Res. 1993, 9, 15–18. [Google Scholar]
- Lyttle, A.; Ostrowski, K. The principles of power development for freestyle sprints. Strength Cond. Coach. 1994, 2, 23–25. [Google Scholar]
- Morris, K.S.; Skinner, T.L.; Jenkins, D.G.; Osborne, M.; Shephard, M.E. The contribution of the stroke and leg kick to freestyle swimming velocity, controlling for stroke and kick rate: A pilot study. In Proceedings of the XIIth International Symposium for Biomechanics and Medicine in Swimming, Canberra, Australia, 16–19 June 2010; pp. 447–453. [Google Scholar]
- Carl, D.L.; Leslie, N.; Dickerson, T.; Griffin, B.; Marksteiner, A. Bench press and leg press and its relationship with in-water force and swimming performance when measured in-season in male and female age-group swimmers. In Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming, Oslo, Norway, 16–19 June 2010; pp. 247–248. [Google Scholar]
- Crowe, S.E.; Babington, J.P.; Tanner, D.A.; Stager, J.M. The relationship of strength to dryland power, swimming power, and swim performance. Med. Sci. Sports Exerc. 1999, 31, 255. [Google Scholar] [CrossRef]
- Gračanin, I.; Gračanin, J. The effect of strength onto the speed in swimming. Res. Kinesiol. 2013, 41, 164–168. [Google Scholar]
- Hohmann, A.; Dierks, B.; Luehnenschloss, D.; Seidel, I.; Wichmann, E. The influence of strength, speed, motor coordination and technique on the performance in crawl sprint. In Proceedings of the Biomechanics and Medicine in Swimming VIII: Proceedings of the VIII International Symposium on Biomechanics and Medicine in Swimming, Jyvaskyla, Finland, 28 June–2 July 1998; pp. 191–196. [Google Scholar]
- Johnson, R.E.; Sharp, R.L.; Hedrick, C.E. Relationship of swimming power and dryland power to sprint freestyle performance: A multiple regression approach. J. Swim. Res. 1993, 9, 10–14. [Google Scholar]
- Marinho, P.; Orival, A. Isometric force assessment and influence on the maximum velocity of swimmers of different levels. In Proceedings of the Biomechanics and Medicine in Swimming IX: Proceedings of the IXth World Symposium on Biomechanics and Medicine in Swimming, Saint-Étienne, France, 21–23 June 2002; pp. 349–354. [Google Scholar]
- Blanksby, B.A.; Gathercole, D.G.; Marshall, R.N. Force plate and video analysis of the tumble turn by age-group swimmers. J. Swim. Res. 1996, 11, 40–45. [Google Scholar]
- Hopper, R.T.; Hadley, C.; Piva, M.; Bambauer, B. Mesurement of power delivered to an external weight. In Biomechanics and Medicine in Swimming. International Series on Sport Science; Hollander, A.P., Huijing, P.A., de Groot, G., Eds.; Human Kinetics: Champaign, IL, USA, 1983; Volume 14, pp. 113–119. [Google Scholar]
- Keiner, M.; Rähse, H.; Wirth, K.; Hartmann, H.; Fries, K.; Haff, G.G. Influence of maximal strength on in-water and dry-land performance in young water polo players. J. Strength Cond. Res. 2020, 34, 1999–2005. [Google Scholar] [CrossRef]
- Keiner, M.; Wirth, K.; Fuhrmann, S.; Kunz, M.; Hartmann, H.; Haff, G.G. The influence of upper- and lower-body maximum strength on swim block start, turn, and overall swim performance in sprint swimming. J. Strength Cond. Res. 2021, 35, 2839–2845. [Google Scholar] [CrossRef]
- Keiner, M.; Yaghobi, D.; Sander, A.; Wirth, K.; Hartmann, H. The influence of maximal strength performance of upper and lower extremities and trunk muscles on different sprint performances in adolescent swimmers. Sci. Sports 2015, 30, e147–e154. [Google Scholar] [CrossRef]
- Ramos-Veliz, R.; Requena, B.; Suarez-Arrones, L.; Newton, R.U.; Sáez de Villarreal, E. Effects of 18-week in-season heavy resistance and power training on throwing velocity, strength, jumping, and maximal sprint swim performance of elite male water polo players. J. Strength Cond. Res. 2014, 28, 1007–1014. [Google Scholar] [CrossRef]
- West, D.J.; Owen, N.J.; Cunningham, D.J.; Cook, C.J.; Kilduff, L.P. Strength and power predictors of swimming starts in international sprint swimmers. J. Strength Cond. Res. 2011, 25, 950–955. [Google Scholar] [CrossRef]
- Garrido, N.; Marinho, D.A.; Barbosa, T.M.; Costa, A.M.; Silva, A.J.; Pérez-Turpin, J.A.; Marques, M.C. Relationship between dry land strength, power variables and short sprint performance in young competitive swimmers. J. Hum. Sport Exerc. 2010, 5, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Dopsaj, M.; Milosevic, M.; Matkovic, I.; Arlov, D.; Blagojevic, M. The relation between sprint ability in free-style swimming and force characteristics of different muscle groups. In Proceedings of the Biomechanics and Medicine in Swimming VIII: Proceedings of the VIII International Symposium on Biomechanics and Medicine in Swimming, Jyvaskyla, Finland, 28 June–2 July 1998; pp. 203–208. [Google Scholar]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Poulsen, P.D. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Andersen, L.L.; Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 2006, 31, 2447–2454. [Google Scholar] [CrossRef]
- Folland, J.P.; Buckthorpe, M.W.; Hannah, R. Human capacity for explosive force production: Neural and contractile determinants. Scand. J. Med. Sci. Sports 2014, 24, 894–906. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.J.; Wilson, G.J.; Pryor, J.F. Use of the iso-inertial force mass relationship in the prediction of dynamic human performance. Eur. J. Appl. Physiol. 1994, 69, 250–527. [Google Scholar] [CrossRef]
- Pearson, S.J.; Young, A.; Macaluso, A.; Devito, G.; Nimmo, M.A.; Cobbold, M.; Harridge, S.D.R. Muscle function in elite master weightlifters. Med. Sci. Sports Exerc. 2002, 34, 1199–1206. [Google Scholar] [CrossRef]
- Baker, D. Comparison of upper-body strength and power between professional and college-aged rugby league players. J. Strength Cond. Res. 2001, 15, 30–35. [Google Scholar] [CrossRef]
- Baker, D. A Series of studies on the training of high-intensity muscle power in rugby league football players. J. Strength Cond. Res. 2001, 15, 198–209. [Google Scholar] [CrossRef]
- Baker, D.; Nance, S. The relationship between running speed and measures of strength and power in professional rugby league players. J. Strength Cond. Res. 1999, 8, 235–242. [Google Scholar] [CrossRef]
- Baker, D.G.; Newton, R. Adaptations in upper-body maximal strength and power output resulting from long-term resistance training in experienced strength-power athletes. J. Strength Cond. Res. 2006, 20, 541–546. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Morais, J.E.; Marques, M.C.; Costa, M.J.; Marinho, D.A. The power output and sprinting performance of young swimmers. J. Strength Cond. Res. 2015, 29, 440–450. [Google Scholar] [CrossRef]
- Bemben, M.G.; McCalip, G.A. Strength and Power Relationships as a Function of Age. J. Strength Cond. Res. 1999, 13, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Berger, R.A.; Henderson, J.M. Relationship of power to static and dynamic strength. Res. Q. 1966, 37, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Carlock, J.M.; Smith, S.L.; Hartman, M.J.; Morris, R.T.; Ciroslan, D.A.; Pierce, K.C.; Newton, R.U.; Harman, E.A.; Sands, W.A.; Stone, M.H. The relationship between vertical jump power estimates and weightlifting ability: A field-test approach. J. Strength Cond. Res. 2004, 10, 534–539. [Google Scholar] [CrossRef]
- Cronin, J.B.; McNair, P.J.; Marshall, R.N. The role of maximal strength and load on initial power production. Med. Sci. Sports Exerc. 2002, 32, 1763–1769. [Google Scholar] [CrossRef]
- Cronin, J.B.; Sleivert, G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005, 35, 213–234. [Google Scholar] [CrossRef]
- Marandino, R. Strength training for power. NSCA’s Perform. Train. J. 2002, 1, 15–20. [Google Scholar]
- McClements, L.E. Power relative to strength of leg and thigh muscles. Res. Q. 1966, 37, 71–78. [Google Scholar] [CrossRef]
- Moss, B.M.; Refsnes, P.E.; Abildgaard, A.; Nicolaysen, K.; Jensen, J. Effects of maximal effort strength training with different loads on dynamic strength, cross sectional area, load-power and load velocity relationships. Eur. J. Appl. Physiol. 1997, 75, 193–199. [Google Scholar] [CrossRef]
- Petersen, M.D.; Alvar, B.A.; Rhea, M.R. The contribution of maximal force production to explosive movement among young collegiate athletes. J. Strength Cond. Res. 2006, 20, 867–873. [Google Scholar]
- Smilios, I.; Sotiropoulos, K.; Christou, M.; Douda, H.; Spaias, A.; Tokmakidis, S.P. Maximum power training load determination and its effects on load-power relationship, maximum strength, and vertical jump performance. J. Strength Cond. Res. 2013, 27, 1223–1233. [Google Scholar] [CrossRef]
- Stone, M.H.; O’Bryant, H.S.; McCoy, L.; Coglianese, R.; Lehmkuhl, M.; Schilling, B. Power and Maximum Strength Relationships during Performance of Dynamic and Static Weighted Jumps. J. Strength Cond. Res. 2003, 17, 140–147. [Google Scholar]
- Stone, M.H.; Sanborn, K.; O’Bryant, H.S.; Hartman, M.; Stone, M.E.; Proulx, C.; Ward, B.; Hruby, J. Maximum Strength-Power-Performance Relationships in Collegiate Throwers. J. Strength Cond. 2003, 17, 739–745. [Google Scholar]
- Tokeshi, S.A.; Kraemer, W.J.; Nindl, B.C.; Gotshalk, L.A.; Marx, J.O.; Harman, F.S.; Lamont, H.S.; Sebastianelli, W.J.; Putukian, M.; Fleck, S.; et al. Power and strength in women: Adaptations following six months of resistance training. Med. Sci. Sport Exerc. 1998, 30, 165. [Google Scholar] [CrossRef]
- Nuzzo, J.; McBride, J.; Cormie, P.; McCaulley, G.O. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J. Strength Cond. Res. 2008, 22, 699–707. [Google Scholar] [CrossRef]
- Dominguez-Castells, R.; Izquierdo, M.; Arellano, R. An updated protocol to assess arm swimming power in front crawl. Int. J. Sports Med. 2013, 34, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Hawley, J.A.; Williams, M.M.; Vickovic, M.M.; Handcock, P.J. Muscle power predicts freestyle swimming performance. Br. J. Sports Med. 1992, 26, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Swensen, T. Impact of resistance training on endurance performance. Sports Med. 1998, 25, 191–200. [Google Scholar] [CrossRef]
- Sharp, R.L. Muscle strength and power as related to competitive swimming. J. Swim. Res. 1986, 2, 5–10. [Google Scholar]
- Born, D.-P.; Kuger, J.; Polach, M.; Romann, M. Start and turn performances of elite male swimmers: Benchmarks and underlying mechanisms. Sports Biomech. 2021, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Barbosa, T.M.; Forte, P.; Bragada, J.A.; de Souza Castro, F.A.; Marinho, D.A. Stability analysis and prediction of pacing in elite 1500 m freestyle male swimmers. Sports Biomech. 2020, 6, 1–18. [Google Scholar] [CrossRef]
- Morais, J.E.; Barbosa, T.M.; Neiva, H.P.; Marinho, D.A. Stability of pace and turn parameters of elite long-distance swimmers. Hum. Mov. Sci. 2019, 63, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.A.; Rutherford, O.M. Human muscle strength training: The effects of three different regimes and the nature of the resultant changes. J. Physiol. 1987, 391, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, O.M.; Jones, D.A. The role of learning and coordination in strength training. Eur. J. Appl. Physiol. 1986, 55, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L.; McCaulley, G.O.; Cormie, P.; Cavill, M.J.; McBride, J.M. Trunk muscle activity during stability ball and free weight exercises. J. Strength Cond. Res. 2008, 22, 95–102. [Google Scholar] [CrossRef] [Green Version]
- McGuigan, M.R.; Winchester, J.B. The relationship between isometric and dynamic strength in college football players. J. Sport Sci. Med. 2008, 7, 101–105. [Google Scholar]
- Haff, G.G.; Stone, M.; O’Bryant, H.S.; Harman, E.; Dinan, C.; Johnson, R.; Han, K.-H. Force-time dependent characteristics of dynamic and isometric muscle actions. J. Strength Cond. Res. 1997, 11, 269–272. [Google Scholar]
- Berger, R.A. Comparison of static and dynamic strength increases. Res. Q. 1962, 33, 329–333. [Google Scholar] [CrossRef]
- Berger, R.A. Effects of dynamic and static training on vertical jumping ability. Res. Q. 1963, 34, 419–424. [Google Scholar] [CrossRef]
- Carroll, T.J.; Abernethy, P.J.; Logan, P.A.; Barber, M.; McEniery, M.T. Resistance training frequency: Strength and myosin heavy chain response to two and three bouts per week. Eur. J. Appl. Physiol. 1998, 78, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Dons, B.; Bollerup, K.; Bonde-Petersen, F.; Hancke, S. The effect of weight-lifting exercise related to muscle fiber composition and muscle crossectional area in humans. Eur. J. Appl. Physiol. 1979, 40, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Ewing, J.L.; Wolfe, D.R.; Rogers, M.A.; Amundson, M.L.; Stull, G.A. Effects of velocity of isokinetic training on strength, power, and quadriceps muscle fibre characteristics. Eur. J. Appl. Physiol. 1990, 61, 159–162. [Google Scholar] [CrossRef]
- Gettman, L.R.; Culter, L.A.; Strathman, T.A. Physiological changes after 20 weeks of isotonic vs isokinetic circuit training. J. Sports Med. 1980, 20, 265–274. [Google Scholar]
- Lüthi, J.M.; Howald, H.; Claassen, H.; Rösler, K.; Vock, P.; Hoppeler, H. Structural changes in skeletal muscle tissue with heavy-resistance exercise. Int. J. Sports Med. 1986, 7, 123–127. [Google Scholar] [CrossRef]
- O’Shea, K.L.; O’Shea, J.P. Functional isometric weight training: It’s effects on dynamic and static strength. J. Appl. Sport Sci. Res. 1989, 3, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Rasch, P.J.; Pierson, W.R. One position versus multiple positions in isometric exercise. J. Phys. Med. 1964, 43, 10–12. [Google Scholar]
- Sale, D. Neuronal adaptation to resistance training. Med. Sci. Sports Exerc. 1988, 20, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.J.; Melton, P. Isokinetic versus isotonic variable-resistance training. Am. J. Sports Med. 1981, 9, 275–279. [Google Scholar] [CrossRef]
- Tax, A.A.M.; Denier van der Gon, J.J.; Erkelens, C.J. Differences in coordination of elbow flexor muscles in force tasks and in movement tasks. Exp. Brain Res. 1990, 81, 567–572. [Google Scholar] [CrossRef]
- Stone, M.H.; Sands, W.A.; Stone, M.E. The downfall of sports science in the United States. Strength Cond. J. 2004, 26, 72–75. [Google Scholar] [CrossRef]
- Wilks, R. Limitations in applied strength training research: Current dilemmas and recommendations for future studies. Strength Cond. Coach 1995, 3, 17–20. [Google Scholar]
- Maglischo, E.W. Part I: Is the breaststroke arm stroke a “pull” or a “scull”. J. Swim. Res. 2013, 21, 1–11. [Google Scholar]
- Maglischo, E.W. Part II: Is the breaststroke arm stroke a “pull” or a “scull”. J. Swim. Res. 2013, 21, 1–16. [Google Scholar]
- Maglischo, E.W. Is it time to consider a different way of swimming backstroke? J. Swim. Res. 2014, 22, 1–23. [Google Scholar]
- Rushall, B.S.; Sprigings, E.J.; Holt, L.E.; Cappaert, J.M. A re-evaluation of forces in swimming. J. Swim. Res. 1994, 10, 6–30. [Google Scholar]
- Bandy, W.D.; Hanten, W.P. Changes in torque and electromyographic activity of the quadriceps femoris muscles following isometric training. Phys. Ther. 1993, 23, 455–467. [Google Scholar] [CrossRef]
- Kitai, T.A.; Sale, D.G. Specificity of joint angle in isometric training. Eur. J. Appl. Physiol. 1989, 58, 744–748. [Google Scholar] [CrossRef]
- Knapik, J.J.; Mawdsley, R.H.; Ramos, M.U. Angular specificity and test mode specificity of isometric and isokinetic strength training. J. Orthop. Sports Phys. Ther. 1983, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Rasch, P.J.; Pierson, W.R.; Logan, G.A. The effect of isometric exercise upon the strength of antagonistic muscles. Int. Z. FÜR Angew. Physiol. Einschließlich Arb. 1961, 19, 18–22. [Google Scholar] [CrossRef]
- Behm, D.G.; Sale, D.G. Intended rather than actual movement velocity determines the velocity-specific response. J. Appl. Physiol. 1993, 74, 359–368. [Google Scholar] [CrossRef]
- Caiozzo, V.J.; Perrine, J.J.; Edgerton, V.R. Training-induced alterations of the in vivo force-velocity relationship of human muscle. J. Appl. Physiol. 1981, 51, 750–754. [Google Scholar] [CrossRef]
- Coyle, E.F.; Feiring, D.C.; Rotkis, C.; Cote, R.W., III; Roby, F.B.; Lee, W.; Wilmore, J.H. Specificity of power improvements through slow and fast isokinetic training. J. Appl. Physiol. 1981, 51, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, H.; Miyashita, M. Specificity of velocity in strength training. Eur. J. Appl. Physiol. 1983, 52, 104–106. [Google Scholar] [CrossRef]
- Kaneko, M.; Fuchimoto, T.; Toji, H.; Suei, K. Training effect of different loads on the force-velocity relationship and mechanical power output in human muscle. Scand. J. Sports Sci. 1983, 5, 50–55. [Google Scholar]
- Lesmes, G.R.; Costill, D.L.; Coyle, E.F.; Fink, W.J. Muscle strength and power changes during maximal isokinetic training. Med. Sci. Sports 1978, 10, 266–269. [Google Scholar]
- Paddon-Jones, D.; Leveritt, M.; Lonergan, A.; Abernethy, P. Adaptation to chronic eccentric exercise in humans: The influence of contraction velocity. Eur. J. Appl. Physiol. 2001, 85, 466–471. [Google Scholar] [CrossRef]
- Pousson, M.; Amiridis, I.G.; Cometti, G.; Van Hoecke, J. Velocity-specific training in elbow flexors. Eur. J. Appl. Physiol. 1999, 80, 367–372. [Google Scholar] [CrossRef]
- Akima, H.; Takahashi, H.; Kuno, S.Y.; Masuda, K.; Masuda, T.; Shimojo, H.; Anno, I.; Itai, Y.; Katsuta, S. Early phase adaptations of muscle use and strength to isokinetic training. Med. Sci. Sports Exerc. 1999, 31, 588–594. [Google Scholar] [CrossRef]
- Colliander, E.B.; Tesch, P.A. Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol. Scand. 1990, 140, 31–39. [Google Scholar] [CrossRef]
- Colliander, E.B.; Tesch, P.A. Response to eccentric and concentric resistance training in females and males. Acta Physiol. Scand. 1990, 141, 149–156. [Google Scholar] [CrossRef]
- Farthing, J.P.; Chilibeck, P.D. The effect of eccentric training at different velocities on cross-education. Eur. J. Appl. Physiol. 2003, 89, 570–577. [Google Scholar] [CrossRef]
- Farthing, J.P.; Chilibeck, P.D. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur. J. Appl. Physiol. 2003, 89, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Higbie, E.J.; Cureton, K.J.; Warren, G.L., III; Prior, B.M. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neuronal activation. J. Appl. Physiol. 1996, 81, 2173–2181. [Google Scholar] [CrossRef] [Green Version]
- Hortobagyi, T.; Barrier, J.; Beard, D.; Braspennincx, J.; Koens, P.; Devita, P.; Dempsey, L.; Lambert, J. Greater initial adaptations to submaximal muscle lengthening than maximal shortening. J. Appl. Physiol. 1996, 81, 1677–1682. [Google Scholar] [CrossRef]
- Hortobagyi, T.; Hill, J.P.; Houmard, J.A.; Fraser, D.D.; Lambert, N.; Israel, R.G. Adaptive response to muscle lengthening and shortening in humans. J. Appl. Physiol. 1996, 80, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Sale, D.G.; MacDougall, D. Specificity in strength training—A review for the coach and athlete. Can. J. Appl. Sport Sci. 1981, 6, 87–92. [Google Scholar] [PubMed]
- Seger, J.Y.; Arvidsson, B.; Thorstensson, A. Specific effects of eccentric and concentric training on muscle strength and morphology in humans. Eur. J. Appl. Physiol. 1998, 79, 49–57. [Google Scholar] [CrossRef]
- Seger, J.Y.; Thorstensson, A. Effects of eccentric versus concentric training on thigh muscle strength and EMG. Int. J. Sports Med. 2005, 26, 45–52. [Google Scholar] [CrossRef]
- Baker, D.; Wilson, G.; Carlyon, R. Periodization: The effect on strength of manipulating volume and intensity. J. Strength Cond. Res. 1994, 8, 235–242. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Horne, S.; Cannavan, D.; Coleman, D.R.; Aagaard, P. Effect of contraction mode of slow-speed resistance training on the maximum rate of rate of force development in the human quadriceps. Muscle Nerve 2008, 38, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Humphries, B.; Hohmann, E.; Bryant, A.L. The influence of variable range of motion training on neuromuscular performance and control of external loads. J. Strength Cond. Res. 2011, 25, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Adaptations in athletic performance after ballistic power versus strength training. Med. Sci. Sports Exerc. 2010, 42, 1566–1581. [Google Scholar] [CrossRef] [Green Version]
- Evetovich, T.K.; Housh, T.J.; Housh, D.J.; Johnson, G.O.; Smith, D.B.; Ebersole, K.T. The effect of concentric isokinetic strength training of the quadriceps femoris on electromyography and muscle strength in the trained and untrained limb. J. Strength Cond. Res. 2001, 15, 439–445. [Google Scholar]
- Farup, J.; Rahbek, S.K.; Vendelbo, M.H.; Matzon, A.; Hindhede, J.; Bejder, A.; Ringgard, S.; Vissing, K. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode. Scand. J. Med. Sci. Sports 2014, 24, 788–798. [Google Scholar] [CrossRef]
- Lamas, L.; Ugrinowitsch, C.; Rodacki, A.; Pereira, G.; Mattos, E.C.T.; Kohn, A.F.; Tricoli, V. Effects of strength and power training on neuromuscular adaptations and jumping movement pattern and performance. J. Strength Cond. Res. 2012, 26, 3335–3344. [Google Scholar] [CrossRef]
- Rutherford, O.M.; Purcell, C.; Newham, D.J. The human force:velocity relationship; activity in the knee flexor and extensor muscles before and after eccentric practice. Eur. J. Appl. Physiol. 2001, 84, 133–140. [Google Scholar] [CrossRef]
- Sleivert, G.G.; Backus, R.D.; Wenger, H.A. The influence of a strength-sprint training sequence on multi-joint power output. Med. Sci. Sports Exerc. 1995, 27, 1655–1665. [Google Scholar] [CrossRef]
- Thorstensson, A.; Karlsson, J.; Viitasalo, J.H.T.; Luhtanen, P.; Komi, P.V. Effect of strength training on EMG of human skeletal muscle. Acta Physiol. Scand. 1976, 98, 232–236. [Google Scholar] [CrossRef]
- Toumi, H.; Best, T.M.; Martin, A.; F’Guyer, S.; Poumarat, G. Effects of eccentric phase velocity of plyometric training on the vertical jump. Int. J. Sports Med. 2004, 25, 391–398. [Google Scholar] [CrossRef]
- Carroll, T.J.; Riek, S.; Carson, R.G. Neural adaptations to resistance training. Sports Med. 2001, 31, 829–840. [Google Scholar] [CrossRef]
- Carroll, T.J.; Riek, S.; Carson, R.G. The sites of neuronal adaptation by resistance training in humans. J. Physiol. 2002, 544, 641–652. [Google Scholar] [CrossRef]
- Rutherford, O.M.; Greig, C.A.; Sargeant, A.J.; Jones, D.A. Strength training and power output: Transference effects in the human quadriceps muscle. J. Sport Sci. 1986, 4, 101–107. [Google Scholar] [CrossRef]
- Thorstensson, A.; Hultén, B.; von Döbeln, W.; Karlsson, J. Effect of strength training on enzyme activities and fibre characteristics in human skeletal muscle. Acta Physiol. Scand. 1976, 96, 392–398. [Google Scholar] [CrossRef]
- Häkkinen, K.; Komi, P.V. Changes in electrical and mechanical be-haviour of leg extensor muscles during heavy resistance strength training. Scand. J. Sports Sci. 1985, 7, 55–64. [Google Scholar]
- Schmitz, R.J.; Westwood, K.C. Knee extensor electromyographic activity-to-work ratio is greater with isotonic than isokinetic contractions. J. Athl. Train. 2001, 36, 384–387. [Google Scholar]
- Clarys, J.P. The Brussels swimming EMG project. In Swimming Science V. International Series on Sports Sciences; Ungerechts, B., Wilke, K., Reischle, K., Eds.; Human Kinetics: Champaign, IL, USA, 1988; Volume 18, pp. 157–172. [Google Scholar]
- Llop, F.; Gonzáles, C.; Hernando, E.; Diaz-Rincon, J.A.; Navarro, F.; Arellano, R. Analysis of modifications on technique and lactate concentration during added resistance freestyle swimming. In Proceedings of the Biomechanics and Medicine in Swimming IX: Proceedings of the IXth World Symposium on Biomechanics and Medicine in Swimming, Saint-Etienne, France, 21–23 June 2002; pp. 343–348. [Google Scholar]
- Llop, F.; Tella, V.; Colado, J.C.; Diaz, G.; Navarro, F. Evolution of butterfly technique when resisted swimming with parachute, using different resistance. In Biomechanics and Medicine in Swimming X, Revista Portuguesa de Ciencias do Desporto 6; Vilas-Boas, J.P., Alves, F., Marques, A., Eds.; Faculdade de Desporto da Universidade do Porto: Porto, Portugal, 2006; Volume 6, pp. 302–304. [Google Scholar]
- Olbrecht, J.; Clarys, J.P. EMG of specific strength training exercises for the front crawl. In Biomechanics and Medicine in Swimming, International Series on Sport Science; Hollander, A.P., Huijing, P.A., de Groot, G., Eds.; Human Kinetics: Champaign, IL, USA, 1983; Volume 14, pp. 136–141. [Google Scholar]
- Schleihauf, R.E. Specificity of strength training in swimming: A biomechanical viewpoint. In Biomechanics and Medicine in Swimming, International Series on Sport Science; Hollander, A.P., Huijing, P.A., de Groot, G., Eds.; Human Kinetics: Champaign, IL, USA, 1983; Volume 14, pp. 184–191. [Google Scholar]
- Bollens, E.; Annemans, L.; Vaes, W.; Clarys, J.P. Peripheral EMG comparison between fully tethered and free front crawl swimming. In International Symposium of Biomechanics and Medicine in Swimming, 5th ed.; Ungerechts, B.E., Wilke, K., Reischl, R., Eds.; Swimming Science V, International Series of Sport Sciences; Human Kinetics: Champaign, IL, USA, 1988; Volume 18, pp. 173–182. [Google Scholar]
- Maglischo, C.W.; Maglischo, E.W. Tethered and nontethered swimming. In Proceedings of the International Symposium on Biomechanics in Sports, Colorado Springs, CO, USA, 1984; pp. 163–176. [Google Scholar]
- Gourgoulis, V.; Aggeloussis, N.; Vezos, N.; Kasimatis, P.; Antoniou, P.; Mavromatis, G. Estimation of hand and propelling efficiency during front crawl swimming with hand paddles. J. Biomech. 2008, 41, 208–215. [Google Scholar] [CrossRef]
- Lauder, M.; Newell, R. Asymmetry in frontcrawl swimming with and without hand paddles. In Proceedings of the XXVII International Conference on Biomechanics in Sports, Limerick, Ireland, 17–21 August 2009; pp. 621–624. [Google Scholar]
- Maglischo, E.W.; Maglischo, C.W.; Zier, D.J.; Santos, T.R. The effect of sprint-assisted and sprint-resisted swimming on stroke mechanics. J. Swim. Res. 1985, 1, 27–33. [Google Scholar]
- Payton, C.J.; Lauder, M.A. The influence of hand paddles on the kinematics of front crawl swimming. J. Hum. Mov. Stud. 1995, 28, 175–192. [Google Scholar]
- Sidney, M.; Paillette, S.; Hespel, J.-M.; Chollet, D.; Pelayo, P. Effect of swim paddles on the intra-cyclic velocity variations and on the arm coordination of front crawl stroke. In Proceedings of the 19th International Symposium on Biomechanics in Sports, San Francisco, CA, USA, 1–5 July 2004; pp. 39–42. [Google Scholar]
- Stoner, L.J.; Luedtke, D.L. Variations in the front crawl and back crawl arm strokes of varsity swimmers using hand paddles. In Proceedings of the Swimming III, Proceedings of the Third International Symposium of Biomechanics in Swimming, Edmonton, AB, Canada, 1979; pp. 281–288. [Google Scholar]
- Toussaint, H.M. Strength power and technique of swimming performance: Science meets practice. In Schwimmen—Lernen und Optimieren; Leopold, W., Ed.; Deutsche Schwimmtrainer-Vereinigung e.V.: Lage, Germany, 2007; Volume 27, pp. 43–54. [Google Scholar]
- Williams, B.K.; Sinclair, P.; Galloway, M. The effects of resistance and assited freestyle swimming on stroke mechanics. In Proceedings of the 19. International Symposium on Biomechanics in Sports, San Francisco, CA, USA, 1–5 July 2004; pp. 131–134. [Google Scholar]
- Rohrs, D.M.; Mayhew, J.L.; Arabas, C.; Shelton, M. The relationship between seven anaerobic tests and swim performance. J. Swim. Res. 1990, 6, 15–19. [Google Scholar]
- Plisk, S. Optimizing sprint speed through training. In Proceedings of the Book of Abstracts. 6th International Conference on Strength Training, Colorado Springs, CO, USA, 30 October–2 November 2008; pp. 341–343. [Google Scholar]
- Vorontsov, A. Strength and power training in swimming. In World book of Swimming: From Science to Practice; Seifert, L., Chollett, D., Mujika, I., Eds.; Nova Science: New York, NY, USA, 2011; pp. 313–343. [Google Scholar]
- Tanaka, H.; Costill, D.L.; Thomas, R.; Fink, W.J.; Widrick, J.J. Dry-land resistance training for competitive swimming. Med. Sci. Sports Exerc. 1993, 25, 952–959. [Google Scholar] [CrossRef]
- Trappe, S.W.; Pearson, D.R. Effects of weight assisted dry-land strength training on swimming performance. J. Strength Cond. Res. 1994, 8, 209–213. [Google Scholar]
- Potdevin, F.J.; Alberty, M.E.; Chevutschi, A.; Pelayo, P.; Sidney, M.C. Effects of a 6-week plyometric training program on performances in pubescent swimmers. J. Strength Cond. Res. 2011, 25, 80–86. [Google Scholar] [CrossRef]
- Garrido, N.; Marinho, D.A.; Reis, V.M.; van den Tillaar, R.; Costa, A.M.; Silva, A.J.; Marques, M.C. Does combined dry land strength and aerobic training inhibit performance of young competitive swimmers? J. Sport Sci. Med. 2010, 9, 300–310. [Google Scholar]
- Grant, M.C.; Kavaliauskas, M. Land based resistance training and youth swimming performance. Int. J. Sports Exerc. Med. 2017, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Arellano, R.; Brown, P.; Cappaert, J.; Nelson, R.C. Analysis of 50-, 100-, and 200-m freestyle swimmers at the 1992 Olympic Games. J. Appl. Biomech. 1994, 10, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Cree, J.; Read, P.; Chavda, S.; Edwards, M.; Turner, A. Strength and conditioning for sprint swimming. Strength Cond. J. 2013, 35, 1–5. [Google Scholar] [CrossRef]
- Garcia-Hermoso, A.; Escalante, Y.; Arellano, R.; Navarro, F.; Domínguez, A.M.; Saavedra, J.M. Relationship between final performance and block times with the traditional and the new starting platforms with a back plate in international swimming championship 50-m and 100-m freestyle events. J. Sports Sci. Med. 2013, 12, 698–706. [Google Scholar]
- Keskinen, O.P.; Keskinen, K.L.; Mero, A.A. Effect of pool length on blood lactate, heart rate, and velocity in swimming. Int. J. Sports Med. 2007, 28, 407–413. [Google Scholar] [CrossRef]
- Lyttle, A.; Banksby, B. Techniques for starts and turns. In Science of Swimming Faster; Riewald, S., Rodeo, S., Eds.; Human Kinetics: Champaign, IL, USA, 2015; pp. 97–122. [Google Scholar]
- Marinho, D.A.; Barbosa, T.M.; Neiva, H.P.; Moriyama, S.-I.; Silva, A.J.; Morais, J.E. The effect of the start and finish in the 50 m and 100 m freestyle performance in elite male swimmers. Int. J. Perform. Anal. Sport 2021, 21, 1041–1054. [Google Scholar] [CrossRef]
- Marinho, D.A.; Barbosa, T.M.; Neiva, H.P.; Silva, A.J.; Morais, J.E. Comparison of the Start, Turn and Finish Performance of Elite Swimmers in 100 m and 200 m Races. J. Sports Sci. Med. 2020, 19, 397–407. [Google Scholar] [PubMed]
- Morais, J.E.; Marinho, D.A.; Arellano, R.; Barbosa, T.M. Start and turn performances of elite sprinters at the 2016 European Championships in swimming. Sports Biomech. 2019, 18, 100–114. [Google Scholar] [CrossRef]
- Thompson, K.G.; Haljand, R.; MacLaren, D.P. An analysis of selected kinematic variables in national and elite male and female 100-m and 200-m breaststroke swimmers. J. Sports Sci. 2000, 18, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Tor, E.; Pease, D.L.; Ball, K.A.; Hopkins, W.G. Monitoring the effect of race-analysis parameters on performance in elite swimmers. Int. J. Sports Physiol. Perform. 2014, 9, 633–636. [Google Scholar] [CrossRef]
- Vantorre, J.; Chollet, D.; Seifert, L. Biomechanical analysis of the swim-start: A review. J. Sports Sci. Med. 2014, 13, 223–231. [Google Scholar]
- Veiga, S.; Cala, A.; Frutos, P.G.; Navarro, E. Kinematical comparison of the 200 m backstroke turns between national and regional level swimmers. J. Sport Sci. Med. 2013, 12, 730–737. [Google Scholar]
- Wakayoshi, K.; Nomura, T.; Takahashi, G.; Mutoh, Y.; Miyashito, M. Analysis of swimming races in the 1989 pacific swimming championships and 1988 japanese olympic trials. In Proceedings of the Science and Football, Proceedings of the First World Congress of Science and Football, London, UK, 13–17 April 1987; pp. 135–142. [Google Scholar]
- Tor, E.; Pease, D.L.; Ball, K.A. Comparing three underwater trajectories of the swimming start. J. Sci. Med. Sport 2015, 18, 725–729. [Google Scholar] [CrossRef]
- Veiga, S.; Roig, A. Underwater and surface strategies of 200 m world level swimmers. J. Sport Sci. 2016, 34, 766–771. [Google Scholar] [CrossRef]
- Barlow, H.; Halaki, M.; Stuelcken, M.; Greene, A.; Sinclair, P.J. The effect of different kick start positions on OMEGA OSB11 blocks on free swimming time 15 m. Hum. Mov. Sci. 2014, 34, 178–186. [Google Scholar] [CrossRef]
- Issurin, V.; Verbitsky, O. Track start vs grab start: Evidence from the Sydney Olympic Games. In Biomechanics and Medicine in Swimming IX: Proceedings of the IXth World Symposium on Biomechanics and Medicine in Swimming; Chatard, J.-C., Ed.; University of Saint-Etienne: Saint-Étienne, France, 2003; pp. 213–218. [Google Scholar]
- Kollias, I.; Baltzopoulos, V.; Chatzinikolaou, D.; Tsirakos, D.; Vasiliadis, I. Sex differences in kinematics and temporal parameters of the grab start. In Biomechanics and Medicine in Swimming; MacLarem, D., Reilly, T., Lees, A., Eds.; London E & FN Spon: London, UK, 1992; Volume 1, pp. 181–185. [Google Scholar]
- Mason, B.; Alcock, A.; Fowlie, J. A kinetic analysis and recommendations for elite swimmers performing the sprint start. In Proceedings of the XXVth International Symposium on Biomechanics in Sport, Oruo Preto, Brazil, 23–27 August 2007; pp. 192–195. [Google Scholar]
- Mason, B.R.; Franco, R.; Sacilotto, G.; Hazrati, P. Characteristics of elite swim start performance. In Proceedings of the XXXII International Conference on Biomechanics in Sports, Johnson City, TN, USA, 12–16 July 2014; pp. 377–380. [Google Scholar]
- Slawson, S.E.; Conway, P.P.; Cossor, J.; Chakravorti, N.; West, A. The categorisation of swimming start performance with reference to force generation on the main block and footrest components of the Omega OSB11 start blocks. J. Sports Sci. 2013, 31, 468–478. [Google Scholar] [CrossRef]
- Tanner, D.A. Sprint performance times related to block time in Olympic swimmers. J. Swim. Res. 2001, 15, 12–19. [Google Scholar]
- Bahadoran, M.E.; Mosavi, S.H.; Hasannejad, E.; Moradlo, H. Investigating kinematic of the flip turn technique in front crawl swimming. In Proceedings of the XXX International Conference on Biomechanics in Sports, Melbourne, Australia, 7 February–7 June 2012. [Google Scholar]
- Lyttle, A.; Blanksby, B.; Elliott, B.; Lloyd, D. Optimising kinetics in the freestyle flip turn push-off. In Proceedings of the XVI ISBS Symposium 1998, Konstanz, Germany, 21–25 July 1998; pp. 225–228. [Google Scholar]
- Lyttle, A.D.; Wilson, G.J.; Ostrowski, K.J. Enhancing performance: Maximal power versus combined weights and plyometrics training. J. Strength Cond. Res. 1996, 10, 173–179. [Google Scholar] [CrossRef]
- Mason, B.R.; Sacilotto, G.; Hazrati, P.; Mackintosh, C. Characteristics of elite swim turn performance. In Proceedings of the XXXIII International Conference on Biomechanics in Sports, Poitiers, France, 29 June–3 July 2015; pp. 1090–1093. [Google Scholar]
- Nicol, K.; Krüger, F. Impulses exerted in performing several kinds of swimming turns. In Proceedings of the Swimming III. Proceedings of the Third International Symposium of Biomechanics in Swimming, Edmonton, AB, Canada, 1979; pp. 222–232. [Google Scholar]
- Prins, J.H.; Patz, A. The influence of tuck index, depth of foot-plant, and wall contact time on the velocity of push-off in the freestyle flip turn. In Biomechanics and Medicine in Swimming X; Vilas-Boas, J.P., Alves, F., Marques, A., Eds.; Revista Portuguesa de Ciencias do Desporto: Porto, Portugal, 2006; Volume 6, pp. 82–85. [Google Scholar]
- Recht, M.; Schmidtbleicher, D. The influence of stretch-shortening-cycle (SSC) on turning performance in competition swimmers. In Proceedings of the 8th Annual Congress of the European College of Sport Science, Salzburg, Austria, 9–12 July 2003; p. 306. [Google Scholar]
- Takahashi, G.; Yoshida, A.; Tsubakimoto, S.; Myashita, M. Propulsive force generated by swimmers during a turning motion. In Biomechanics and Medicine in Swimming, International Series on Sport Science; Hollander, A.P., Huijing, P.A., de Groot, G., Eds.; Human Kinetics: Champaign, IL, USA, 1983; Volume 14, pp. 192–198. [Google Scholar]
- Cronin, J.; Jones, J.; Frost, D. The relationship between dry-land power measures and tumble turn velocity in elite swimmers. J. Swim. Res. 2007, 17, 17–23. [Google Scholar]
- Jones, J.V.; Pyne, D.B.; Haff, G.G.; Newton, R.U. Comparison between elite and subelite swimmers on dry land and tumble turn leg extensor force-time characteristics. J. Strength Cond. Res. 2018, 32, 1762–1769. [Google Scholar] [CrossRef]
- García-Ramos, A.; Tomazin, K.; Feriche, B.; Strojnik, V.; de la Fuente, B.; Argüelles-Cienfuegos, J.; Strumbelj, B.; Stien, I. The relationship between the lower-body muscular profile and swimming start performance. J. Hum. Kinet. 2016, 50, 157–165. [Google Scholar] [CrossRef]
- De la Fuente, B.; García, F.; Arellano, R. Are the forces applied in the vertical countermovement jump related to the forces applied during the swimming start? In Biomechanics and Medicine in Swimming IX: Proceedings of the IXth World Symposium on Biomechanics and Medicine in Swimming; Chatard, J.-C., Ed.; University of Saint-Etienne: Saint-Etienne, France, 2003; pp. 207–212. [Google Scholar]
- Calderbank, J.A.; Comfort, P.; McMahon, J.J. Association of jumping ability and maximum strength with dive distance in swimmers. Int. J. Sports Physiol. Perform. 2020, 16, 296–303. [Google Scholar] [CrossRef]
- Miyashita, M.; Takahashi, S.; Troup, J.P.; Wakayoshi, K. Leg extension power of elite swimmers. In Biomechanics and Medicine in Swimming; MacLarem, D., Reilly, T., Lees, A., Eds.; E & FN Spon: London, UK, 1992; pp. 295–300. [Google Scholar]
- Zatsiorsky, V.M.; Bulgakova, N.Z.; Chaplinsky, N.M. Biomechanical analysis of starting techniques in swimming. In Proceedings of the Swimming III. Proceedings of the Third International Symposium of Biomechanics in Swimming, Edmonton, AB, Canada, 1979; pp. 199–206. [Google Scholar]
- Breed, R.V.P.; Young, W.B. The effect of a resistance training programme on the grab, track and swing starts in swimming. J. Sport Sci. 2003, 21, 213–220. [Google Scholar] [CrossRef]
- Cossor, J.; Slawson, S.; Shillabeer, B.; Conway, P.; West, A. Are land tests a good predictor of swim start performance? Port. J. Sport Sci. 2011, 11, 183–186. [Google Scholar]
- De Jesus, K.; De Jesus, K. The contribution of a resistance training programme on the grab and track starts techniques in competitive swimming. FIEP Bull. 2010, 80, 116–120. [Google Scholar]
- Lee, C.-W.; Huang, C.; Wang, L.; Lin, D.-C. Comparison of the dynamics of the swimming grab start, squat jump, and countermovement jump of the lower extremity. In Proceedings of the 19th International Symposium on Biomechanics in Sports, San Francisco, CA, USA, 1–5 July 2001; pp. 143–146. [Google Scholar]
- Jones, J.V.; Pyne, D.B.; Haff, G.G.; Newton, R.U. Comparison of ballistic and strength training on swimming turn and dry-land leg extensor characteristics in elite swimmers. Sports Sci. Coach. 2017, 13, 262–269. [Google Scholar] [CrossRef]
- Hohmann, A.; Fehr, U.; Reuss, A.; Kieser, S.; Straub, S. Specific strength training and start performance in swimming. In Proceedings of the XIth International Symposium for Biomechanics and Medicine in Swimming, Osl, Norway, 16–19 June 2010; p. 114. [Google Scholar]
- Bishop, D.C.; Smith, R.J.; Smith, M.F.; Rigby, H.E. Effect of plyometric training on swimming block start performance in adolescents. J. Strength Cond. Res. 2009, 23, 2137–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebutini, V.Z.; Pereira, G.; Bohrer, R.C.D.; Ugrinowitsch, C.; Rodacki, A.L.F. Plyometric long jump trtaining with progressive loading improves kinetic and kinematic swimming start parameters. J. Strength Cond. Res. 2016, 30, 2392–2398. [Google Scholar] [CrossRef] [PubMed]
- Ruschel, C.; Gassenferth Araujo, L.; Matheus Pereira, S.; Roesler, H. Kinematical analysis of the swimming start: Block, flight and underwater phases. In Proceedings of the XXVth International Symposium on Biomechanics in Sport, Oruo Preto, Brazil, 23–27 August 2007; pp. 385–388. [Google Scholar]
- Cossor, J.M.; Mason, B.R. Swim start performance at the Sydney 2000 Olympic Games. In Proceedings of the 19th International Symposium on Biomechanics in Sports, San Francisco, CA, USA, 1–5 July 2001; pp. 70–74. [Google Scholar]
- Comfort, P.; Stewart, A.; Bloom, L.; Clarkson, B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J. Strength Cond. Res. 2014, 28, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Pääsuke, M.; Ereline, J.; Gapeyeva, H. Knee extension strength and vertical jumping performance in nordic combined athletes. J. Sports Med. Phys. Fit. 2001, 41, 354–361. [Google Scholar]
- Requena, B.; Gonzalés-Badillo, J.J.; Saez Saez de Villareal, E.; Ereline, J.; García, I.; Gapeyeva, H.; Pääsuke, M. Functional performance, maximal strength, and power characteristics in isometric and dynamic actions of lower extremities in soccer players. J. Strength Cond. Res. 2009, 23, 1391–1401. [Google Scholar] [CrossRef]
- Stone, M.H.; Moir, G.; Glaister, M.; Sanders, R. How much strength is necessary? Phys. Ther. Sport 2002, 3, 88–96. [Google Scholar] [CrossRef]
- Blackburn, J.R.; Morrissey, M.C. The relationship between open and closed kinetic chain strength of the lower limb and jumping performance. J. Orthop. Sports Phys. Ther. 1998, 27, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, J.; Comfort, P. Strength, power, and speed qualities in english junior elite rugby league players. J. Strength Cond. Res. 2013, 27, 2414–2419. [Google Scholar] [CrossRef]
- Ugrinowitsch, C.; Tricoli, V.; Rodacki, A.L.F.; Batista, M.; Ricard, M.D. Influence of training background on jumping height. J. Strength Cond. Res. 2007, 21, 848–852. [Google Scholar]
- Wisløff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004, 38, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Haff, G.G.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L.; Kawamori, N.; Jackson, J.R.; Morris, R.T.; Sands, W.A.; Stone, M.H. Force-time curve characteristics of dynamic and isometric muscle actions of elite women olympic weightlifters. J. Strength Cond. Res. 2005, 19, 741–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khamoui, A.V.; Brown, L.E.; Nguyen, D.; Uribe, B.P.; Coburn, J.W.; Noffal, G.J.; Tran, T. Relationship between force-time and velocity-time characteristics of dynamic and isometric muscle actions. J. Strength Cond. Res. 2011, 25, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Marcora, S.; Miller, M.K. The effect of knee angle on the external validity of isometric measures of lower body neuromuscular function. J. Sports Sci. 2000, 18, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Jones, P.A.; Rothwell, J.; Chiang, C.H.; Comfort, P. An investigation into the relationship between maximum isometric strength and vertical jump performance. J. Strength Cond. Res. 2015, 29, 2176–2185. [Google Scholar] [CrossRef] [PubMed]
- West, D.J.; Owen, N.J.; Jones, M.R.; Bracken, R.M.; Cook, C.J.; Cunningham, D.J.; Shearer, D.A.; Finn, C.V.; Newton, R.U.; Crewther, B.T.; et al. Relationships between force-time characteristics of the isometric midthigh pull and dynamic performance in professional rugby league players. J. Strength Cond. Res. 2011, 25, 3070–3075. [Google Scholar] [CrossRef] [Green Version]
- Young, W.B.; Bilby, G.E. The effect of voluntary effort to influence speed of contraction on strength, muscular power, and hypertrophy development. J. Strength Cond. Res. 1993, 7, 172–178. [Google Scholar]
- Jaric, S.; Ristanovic, D.; Corcos, D.M. The relationship between kinetic parameters and kinematic variables in a complex movement. Eur. J. Appl. Physiol. 1989, 59, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Kawamori, N.; Rossi, S.J.; Justice, B.D.; Haff, E.E.; Pistilli, E.E.; O’Bryant, H.S.; Stone, M.H.; Haff, G.G. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J. Strength Cond. Res. 2006, 20, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Kraska, J.M.; Ramsey, M.W.; Haff, G.G.; Fethkle, N.; Sands, M.A.; Stone, M.E.; Stone, M.H. Relationships between strength characteristics and unweighted and weighted vertical jump height. Int. J. Sports Physiol. Perform. 2009, 4, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Tourny-Chollet, C.; Chollet, D.; Hogie, S.; Papparodopoulos, C. Kinematic analysis of butterfly turns of international and national swimmers. J. Sports Sci. 2002, 20, 383–390. [Google Scholar] [CrossRef]
- Fridén, J. Muscle Soreness After Exercise: Implications of Morphological Changes. Int. J. Sports Med. 1984, 5, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Fridén, J.; Kjörell, U.; Thornell, L.E. Delayed muscle soreness and cytoskeletal alterations: An immunocytological study in man. Int. J. Sports Med. 1984, 5, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Fridén, J.; Lieber, R.L. Structural and mechanical basis of exercise-induced muscle injury. Med. Sci. Sports Exerc. 1992, 24, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Fridén, J.; Sjöström, M.; Ekblom, B. A morphological study of delayed muscle soreness. Experientia 1981, 37, 506–507. [Google Scholar] [CrossRef] [PubMed]
- Fridén, J.; Sjöström, M.; Ekblom, B. Myofibrillar Damage Following Intense Eccentric Exercise in Man. Int. J. Sports Med. 1983, 4, 170–176. [Google Scholar] [CrossRef]
- Hortobagyi, T.; Houmard, J.; Fraser, D.; Dudek, R.; Lambert, J.; Tracy, J. Normal forces and myofibrillar disruption after repeated eccentric exercise. J. Appl. Physiol. 1998, 84, 492–498. [Google Scholar] [CrossRef]
- Beaton, L.J.; Allan, D.A.; Tarnopolsky, M.A.; Tiius, P.M.; Phillips, S.M. Contraction-induced muscle damage is unaffected by vitamin E supplementation. J. Bone. Miner. Res. 2002, 34, 798–805. [Google Scholar] [CrossRef]
- Fridén, J.; Lieber, R.L. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol. Scand. 2001, 171, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Gibala, M.J.; Interisano, S.A.; Tarnopolsky, M.A.; Roy, B.D.; MacDonald, J.R.; Yarasheski, K.E.; MacDougall, J.D. Myofibrillar disruption following acute concentric and eccentric resistance exercise in strength-trained men. Can. J. Physiol. Pharmacol. 2000, 78, 656–661. [Google Scholar] [CrossRef]
- Gibala, M.J.; MacDougall, J.D.; Tarnopolsky, M.A.; Stauber, W.T.; Elorriaga, A. Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. J. Appl. Physiol. 1995, 78, 702–708. [Google Scholar] [CrossRef]
- MacDougall, J.D. Hypertrophy or Hyperplasia. In Strength and Power in Sport; Komi, P.V., Ed.; Blackwell Scientific Publications: Oxford, UK, 2003; pp. 252–264. [Google Scholar]
- McCully, K.K.; Faulkner, J.A. Injury to skeletal musle fibers of mice following lengthening contractions. J. Appl. Physiol. 1985, 59, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Phillips, S.M.; Babraj, J.A.; Smith, K.; Rennie, M.J. Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E1153–E1159. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, J.; Elfegoun, T.; Nilson, J.; Köhnke, R.; Ekblom, B.; Blomstrand, E. Maximal lengthening contractions increase p70 S6 kinase phosphorilation in human skeletal muscle in the absence of nutritional supply. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E1197–E1205. [Google Scholar] [CrossRef] [Green Version]
- Gehlert, S.; Suhr, F.; Gutsche, K.; Willkomm, L.; Kern, J.; Jacko, D.; Knicker, A.; Schiffer, T.; Wackerhage, H.; Bloch, W. High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. PflÜGers Arch.-Eur. J. Physiol. 2015, 467, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Selby, A.; Rankin, D.; Patel, R.; Atherton, P.; Hildebrandt, W.; Williams, J.; Smith, K.; Seynnes, O.; Hiscock, N.; et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J. Physiol. 2009, 587, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Tannerstedt, J.; Apró, W.; Blomstrand, E. Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. J. Appl. Physiol. 2009, 106, 1412–1418. [Google Scholar] [CrossRef]
- Goldspink, G.F.; Cox, V.M.; Smith, S.K.; Eaves, L.A.; Osbaldeston, N.J.; Lee, D.M.; Mantle, D. Muscle growth in response to mechanical stimuli. Am. J. Physiol. Endocrinol. Metab. 1995, 268, E288–E297. [Google Scholar] [CrossRef]
- Hornberger, T.A.; Mateja, R.D.; Chin, E.R.; Andrews, J.L.; Esser, K.A. Aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle. J. Appl. Physiol. 2005, 98, 1562–1566. [Google Scholar] [CrossRef]
- Hornberger, T.A.; Stuppard, R.; Conley, K.E.; Fedele, M.J.; Fiorotto, M.L.; Chin, E.R.; Esser, K.A. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem. J. 2004, 380, 795–804. [Google Scholar] [CrossRef]
- O’Neil, T.K.; Duffy, L.R.; Frey, J.W.; Hornberger, T.A. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J. Physiol. 2009, 587, 3691–3701. [Google Scholar] [CrossRef]
- Spangenburg, E.E.; McBride, T.A. Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6k activation. J. Appl. Physiol. 2006, 100, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alway, S.E.; Winchester, P.K.; Davis, M.E.; Gonyea, W.J. Regionalized adaptations and muscle fiber proliferation in stretch-induced enlargement. J. Appl. Physiol. 1989, 66, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Antonio, J.; Gonyea, W.J. Muscle fiber splitting in stretch-enlarged avian muscle. Med. Sci. Sports Exerc. 1994, 26, 973–977. [Google Scholar] [CrossRef]
- Baar, K.; Esser, K. Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. Am. J. Physiol. Cell Physiol. 1999, 276, C120–C127. [Google Scholar] [CrossRef]
- Carson, J.A.; Schwartz, R.J.; Booth, F.W. SRF and TEF-1 control of chicken skeletal α-actin gene during slow-muscle hypertrophy. Am. J. Physiol. Cell Physiol. 1996, 39, C1624–C1633. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.L.; Etlinger, J.D.; Goldspink, D.F.; Jablecki, C. Mechanism of work-induced hypertrophy of skeletal muscle. Med. Sci. Sports 1975, 7, 185–198. [Google Scholar] [CrossRef]
- Laurent, G.J.; Sparrow, M.P.; Millward, D.J. Changes in rates of protein synthesis and breakdown during hypertrophy of the anterior and posterior latissimus dorsi muscles. Biochem. J. 1978, 176, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.A.; Always, S.E. Stretch-induced myogenin, MyoD, and MRF4 expression and acute hypertrophy in quail slow-tonic muscle are not dependent upon satellite cell proliferation. Cell Tissue Res. 1999, 296, 531–539. [Google Scholar] [CrossRef]
- McKoy, G.; Ashley, W.; Mander, J.; Yang, S.Y.; Williams, N.; Russell, B.; Goldspink, G. Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J. Physiol. 1999, 516, 583–592. [Google Scholar] [CrossRef]
- Sola, O.M.; Christensen, D.L.; Martin, A.W. Hypertrophy and hyperplasia of adult chicken anterior latissimus dorsi muscles following stretch with and without denervation. Exp. Neurol. 1973, 41, 76–100. [Google Scholar] [CrossRef]
- Yang, S.; Alnaqeeb, M.; Simpson, H.; Goldspink, G. Changes in muscle fibre type, muscle mass and IGF-1 gene expression in rabbit skeletal muscle subjected to stretch. J. Anat. 1997, 190, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Aoki, M.S.; Miyabara, E.H.; Soares, A.G.; Saito, E.T.; Moriscot, A.S. mTOR pathway inhibition attenuates skeletal muscle growth induced by stretching. Cell Tissue Res. 2006, 324, 149–156. [Google Scholar] [CrossRef]
- Alway, S.E.; MacDougal, J.D.; Sale, D.G.; Sutton, J.R.; McComas, A.J. Functional and structural adaptations in skeletal muscle of trained athletes. J. Appl. Physiol. 1988, 64, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Flück, M. Regulation of protein synthesis in skeletal muscle. Dtsch. Z. FÜR Sportmed. 2012, 63, 75–80. [Google Scholar] [CrossRef]
- Folland, J.P.; Williams, A.G. The adaptations to strength training. Morphological and neurological contributions to increased strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, B.L.; You, J.S.; Frey, J.W.; Goodman, C.A.; Gundermann, D.M.; Hornberger, T.A. Eccentric contractions increase the phosphorilation of tuberous sclerosis complex-2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome. J. Physiol. 2013, 591, 4611–4620. [Google Scholar] [CrossRef]
- Jones, D.A.; Newham, D.J.; Torgan, C. Mechanical influences on long-lasting human muscle fatigue and delayed-onset pain. J. Physiol. 1989, 412, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, H.; Nagareda, H.; Kawakami, Y.; Akima, H.; Masani, K.; Kouzaki, M.; Fukunaga, T. Effects of equivolume isometric training programs comprising medium or high resistance on muscle size and strength. Eur. J. Appl. Physiol. 2002, 87, 112–119. [Google Scholar] [CrossRef]
- Parkington, J.D.; Siebert, A.P.; LeBrasseur, N.K.; Fielding, R.A. Differential activation of mTOR signaling by contractile activity in skeletal muscle. Am. J. Physiol. Regul. Integr. Physiol. 2003, 285, R1086–R1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, R.M.; Reeds, P.J.; Atkinson, T.; Smith, R.H. The influence of changes in tension on protein synthesis and prostaglandin release in isolated rabbit muscles. Biochem. J. 1983, 214, 1011–1014. [Google Scholar] [CrossRef] [Green Version]
- Wackerhage, H.; Ratkevicius, A. Signal transduction pathways that regulate muscle growth. Essays Biochem. 2008, 44, 99–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanchi, N.E.; Lancha, A.H. Mechanical stimuli of skeletal muscle: Implications on mTOR/p70s6k and protein synthesis. Eur. J. Appl. Physiol. 2008, 102, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Dudley, G.A.; Tesch, P.A.; Miller, B.J.; Buchanan, P. Importance of eccentric actions in performance adaptations to resistance training. Aviat. Space Environ. Med. 1991, 62, 543–550. [Google Scholar]
- Hather, B.M.; Tesch, P.A.; Buchanan, P.; Dudley, G.A. Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiol. Scand. 1991, 143, 177–185. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, F.T.; Sale, D.G.; MacDougall, J.D.; Garner, S.H. Comparative effectiveness of accommodating and weight resistance training modes. Med. Sci. Sports Exerc. 1995, 27, 1210–1219. [Google Scholar]
- Campos, G.E.R.; Luecke, T.; Wendeln, H.K.; Toma, K.; Hagerman, F.C.; Murray, T.F.; Ragg, K.E.; Ratamess, N.A.; Kraemer, W.J.; Staron, R.S. Muscular adaptations in response to three different resistance-training regimes. Specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 2002, 88, 50–60. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, M.J.N.; Davies, C.T.M. Adaptive response of mammilian skeletal muscle to exercise with high loads. Eur. J. Appl. Physiol. 1984, 52, 139–155. [Google Scholar] [CrossRef]
- Fry, A.C. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004, 34, 663–679. [Google Scholar] [CrossRef]
- Häkkinen, K.; Komi, P.V.; Alén, M.; Kauhanen, H. EMG, muscle fibre and force production characteristics during a 1-year training period in elite weightlifters. Eur. J. Appl. Physiol. 1987, 56, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Rhea, M.R.; Alvar, B.A.; Burkett, L.N.; Ball, S.D. A Meta-analysis to determine the dose response for strength development. Med. Sci. Sports Exerc. 2003, 35, 456–464. [Google Scholar] [CrossRef]
- Zaras, N.D.; Stasinaki, A.-E.; Krase, A.A.; Methenitis, S.K.; Karampatsos, G.P.; Georgiadis, G.V.; Spengos, K.M.; Terzis, G.D. Effects of tapering with light vs. heavy loads on track and field throwing performance. J. Strength Cond. Res. 2014, 28, 3484–3495. [Google Scholar] [CrossRef]
- Dickerman, R.D.; Pertusi, R.; Smith, G.H. The upper range of lumbar spine bone mineral density? An examination of the current world record holder in the squat lift. Int. J. Sports Med. 2000, 21, 469–470. [Google Scholar] [CrossRef]
- Karlsson, M.K.; Johnell, O.; Obrant, K.J. Is bone mineral density advantage maintained long-term in previous weight lifters? Calcif. Tissue Int. 1995, 57, 325–328. [Google Scholar] [CrossRef]
- Rhodes, E.C.; Martin, A.D.; Taunton, J.E.; Donnelly, M.; Warren, J.; Elliot, J. Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br. J. Sports Med. 2000, 34, 18–22. [Google Scholar] [CrossRef]
- Tsuzuku, S.; Ikegami, Y.; Yabe, K. Effects of high-intensity resistance training on bone mineral density in young male powerlifters. Calcif. Tissue Int. 1998, 63, 283–286. [Google Scholar] [CrossRef]
- Kraemer, W.; Patton, J.; Gordon, S.; Harman, E.; Deschenes, M.; Reynolds, K.; Newton, R.; Triplett, N.; Dziados, J. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptions. J. Appl. Physiol. 1995, 78, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Newton, R.U. Training for muscle power. Phys. Med. Rehabil. Clin. N. Am. 2000, 11, 341–368. [Google Scholar] [CrossRef]
- Newton, R.U.; Jones, J.; Kraemer, W.J.; Wardle, H. Strength and power training of Australian olympic swimmers. Strength Cond. J. 2002, 24, 7–15. [Google Scholar] [CrossRef]
- Cochrane, K.C.; Housh, T.J.; Smith, C.M.; Hill, E.C.; Jenkins, N.D.M.; Johnson, G.O.; Housh, D.J.; Schmidt, R.J.; Schmidt, R.J.; Cramer, J.T. Relative contributions of strength, anthropometric, and body composition characteristics to estimated propulsive force in young male swimmers. J. Strength Cond. Res. 2015, 29, 1473–1479. [Google Scholar] [CrossRef]
- Geladas, N.D.; Nassis, G.P.; Pavlicevic, S. Somatic and physical traits affecting speint swimming performance in young swimmers. Int. J. Sports Med. 2005, 26, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Helmuth, H.S. Anthropometric survey of young swimmers. Anthropol. Anz. 1980, 38, 17–34. [Google Scholar]
- Jürimäe, J.; Haljaste, K.; Cicchella, A.; Lätt, E.; Purge, P.; Leppik, A.; Jürimäe, T. Analysis of swimming performance from physical, physiological, and biomechanical parameters in young swimmers. Pediatr. Exerc. Sci. 2007, 19, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Klika, R.J.; Thorland, W.G. Physiological determinants of sprint swimming performance in children and young adults. Paediatr. Exerc. Sci. 1994, 6, 59–68. [Google Scholar] [CrossRef]
- Rohrs, D.M.; Stager, J.M. Evaluation of anaerobic power and capacity in competitive swimmers. J. Swim. Res. 1991, 7, 12–16. [Google Scholar]
- Chatard, J.C.; Bourgoin, B.; Lacour, J.R. Passive drag is still a good evaluator of swimming aptitude. Eur. J. Appl. Physiol. 1990, 59, 399–404. [Google Scholar] [CrossRef]
- Chatard, J.C.; Lavoie, J.M.; Lacour, J.R. Analysis of determinants of swimming economy in front crawl. Eur. J. Appl. Physiol. 1990, 61, 88–92. [Google Scholar] [CrossRef]
- Roelofs, E.J.; Smith-Ryan, A.E.; Trexler, E.T.; Hirsch, K.R. Seasonal effects on body composition, muscle characteristics, and performance of collegiate swimmers and divers. J. Athl. Train. 2017, 52, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Baechle, T.R.; Earle, R.W.; Wathen, D. Resistance Training. In Essentials of Strength Training and Conditioning; Baechle, T.R., Earle, R.W., Eds.; Human Kinetics: Champaign, IL, USA, 2000; pp. 395–426. [Google Scholar]
- Fleck, S.J.; Kraemer, W.J. Resistance Training. Basic Principles (Part 1 of 4). Physician Sportsmed. 1988, 16, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, K.; Komi, P.V.; Pakarinen, A. Neuromuscular adaptations during strength and power training. In Paavo Nurmi Congress Book; Krist, M., Ed.; The Finnish Society of Sports Medicine: Turkuu, Finland, 1989; pp. 49–52. [Google Scholar]
- McMillian, J.L.; Stone, M.H.; Sartin, J.; Keith, R.; Marple, D.; Brown, C.; Lewis, R.D. 20-hour physiological responses to a single weight-training session. J. Strength Cond. Res. 1993, 7, 9–21. [Google Scholar]
- Roetert, E.P. Strength training. What is the proper dose? Strength Cond. J. 2003, 25, 72–73. [Google Scholar] [CrossRef]
- Stone, M.H.; Plisk, S.S.; Stone, M.E.; Schilling, B.K.; O’Bryant, H.S.; Pierce, K.C. Athletic performance development volume load—1 set vs. multiple sets, training velocity and training variation. J. Strength Cond. Res. 1998, 20, 22–31. [Google Scholar] [CrossRef]
- Heusner, W. The theory of strength development for swimming and other sports—part 2. Strength Cond. J. 1981, 3, 36–39. [Google Scholar]
- Rodeo, S. Swimming the breaststroke—A kinesiological analysis and considerations for strength training. Strength Cond. J. 1984, 6, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Rouard, A.H.; Schleihauf, R.E.; Troup, J.P. Hand forces and phases in freestyle stroke. In Biomechanics and Medicine in Swimming VII; Troup, J.P., Hollander, A.P., Strasse, D., Trappe, S.W., Cappaert, J.M., Trappe, T.A., Eds.; E & FN Spon: London, UK, 1996; pp. 34–44. [Google Scholar]
- Rasulbekov, R.A.; Fomin, R.A.; Chulkov, V.U.; Chudovsky, V.I. Does a swimmer need explosive strength? J. Strength Cond. Res. 1986, 8, 56–57. [Google Scholar] [CrossRef]
- Stamm, A.; Thiel, D.V. Investigating forward velocity and symmetry in freestyle swimming using inertial sensors. Procedia Eng. 2015, 112, 522–527. [Google Scholar] [CrossRef] [Green Version]
- Wirtz, W.; Wilke, K.; Klauck, J.; Langnickel, B. A method to analyze kinematic parameters during crawl sprint swimming. In Biomechanics and Medicine in Swimming VII; Troup, J.P., Hollander, A.P., Strasse, D., Trappe, S.W., Cappaert, J.M., Trappe, T.A., Eds.; E & FN Spon: London, UK, 1996; pp. 70–75. [Google Scholar]
- Schmidtbleicher, D. Training for power events. In Strength and Power in Sport; Komi, P.V., Ed.; Blackwell Sciences: Oxford, UK, 1992; pp. 381–395. [Google Scholar]
- Wirth, K.; Hartmann, H.; Mickel, C.; Szilvas, E.; Keiner, M.; Sander, A. Core Stability in Athletes—A Critical Analysis. Sports Med. 2017, 47, 401–414. [Google Scholar] [CrossRef]
- Monu, J.M. Sport-specific training for a competitive freestyle sprint swimmer. J. Strength Cond. Res. 2013, 35, 48–55. [Google Scholar] [CrossRef]
- Riewald, S. Strength and Conditioning for performance enhancement. In Science of Swimming Faster; Riewald, S., Rodeo, S., Eds.; Human Kinetics: Champaign, IL, USA, 2015; pp. 401–448. [Google Scholar]
- Almåsbakk, B.; Hoff, J. Coordination, the determinant of velocity specificity? J. Appl. Physiol. 1996, 81, 2046–2052. [Google Scholar] [CrossRef]
- DeVos, N.J.; Singh, N.A.; Ross, D.A.; Stavrinos, T.M.; Orr, R.; Singh, M.A.F. Optimal load for increasing muscle power during explosive resistance training in older adults. J. Gerontol. 2005, 60, 638–647. [Google Scholar] [CrossRef] [Green Version]
- Van den Tillmar, R. Effect of different training programs on the velocity of overarm throwing: A brief review. J. Strength Cond. Res. 2004, 18, 388–396. [Google Scholar] [CrossRef]
- Young, W.B. The planning of resistance training for power sports. Natl. Strength Cond. Assoc. J. 1991, 13, 26–29. [Google Scholar] [CrossRef]
- Marandino, R. Using weightlifiting and powerlifting combinations to train for multiple sports: Pros and cons. Natl. Strength Cond. Assoc. J. 1999, 21, 38–39. [Google Scholar]
- Taber, C.; Bellon, C.; Abbott, H.; Bingham, G.E. Roles of maximal strength and rate of force development in maximizing muscular power. Strength Cond. J. 2016, 38, 71–78. [Google Scholar] [CrossRef]
- Bryant, C.X. How to Develop Muscular Power—The Essentials: Strength, Skills, and Flexibility; Little Brown & Co: Boston, MA, USA, 1988. [Google Scholar]
- Clarys, J.P.; Toussaint, H.M.; Bollens, E.; Vaes, W.; Huijing, P.A.; de Groot, G.; Hollander, A.P.; de Witte, B.; Capri, J. Muscular specificity and intensity in swimming against a mechanical resistance-surface EMG in MAD and free swimming. In Swimming Science V. International Series on Sports Sciences; Ungerechts, B., Wilke, K., Reischle, K., Eds.; Human Kinetics: Champaign, IL, USA, 1988; pp. 191–199. [Google Scholar]
- Zatsiorsky, V.M.; Kraemer, W.J. Science and Practice of Strength Training; Human Kinetics: Champaign, IL, USA, 2006. [Google Scholar]
- Sandler, D. Sports Power, 1st ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Haycraft, J.; Robertson, S. The effects of concurrent aerobic training and maximal strength, power and swim-specific dry-land training methods on swim performance: A review. J. Aust. Strength Cond. 2015, 23, 91–99. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wirth, K.; Keiner, M.; Fuhrmann, S.; Nimmerichter, A.; Haff, G.G. Strength Training in Swimming. Int. J. Environ. Res. Public Health 2022, 19, 5369. https://doi.org/10.3390/ijerph19095369
Wirth K, Keiner M, Fuhrmann S, Nimmerichter A, Haff GG. Strength Training in Swimming. International Journal of Environmental Research and Public Health. 2022; 19(9):5369. https://doi.org/10.3390/ijerph19095369
Chicago/Turabian StyleWirth, Klaus, Michael Keiner, Stefan Fuhrmann, Alfred Nimmerichter, and G. Gregory Haff. 2022. "Strength Training in Swimming" International Journal of Environmental Research and Public Health 19, no. 9: 5369. https://doi.org/10.3390/ijerph19095369
APA StyleWirth, K., Keiner, M., Fuhrmann, S., Nimmerichter, A., & Haff, G. G. (2022). Strength Training in Swimming. International Journal of Environmental Research and Public Health, 19(9), 5369. https://doi.org/10.3390/ijerph19095369