Factors Influencing the Perceived Effectiveness of COVID-19 Risk Assessment Mobile Application “MorChana” in Thailand: UTAUT2 Approach
Abstract
:1. Introduction
2. Conceptual Framework
3. Methodology
3.1. Participants
3.2. Questionnaire
3.3. Structural Equation Modeling
4. Results
5. Discussion
5.1. Theoretical Contribution
5.2. Practical Implications
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, T.; Cobb, C.; Yang, J.J.; Baviskar, S.; Agarwal, Y.; Li, B.; Bauer, L.; Hong, J.I. What makes people install a COVID-19 contact-tracing app? Understanding the influence of app design and individual difference on contact-tracing app adoption intention. Pervasive Mob. Comput. 2021, 75, 101439. [Google Scholar] [CrossRef]
- Madoery, P.G.; Detke, R.; Blanco, L.; Comerci, S.; Fraire, J.; Montoro, A.G.; Bellassai, J.C.; Britos, G.; Ojeda, S.; Finochietto, J.M. Feature selection for proximity estimation in COVID-19 contact tracing apps based on Bluetooth Low Energy (BLE). Pervasive Mob. Comput. 2021, 77, 101474. [Google Scholar] [CrossRef] [PubMed]
- Barouki, R.; Kogevinas, M.; Audouze, K.; Belesova, K.; Bergman, A.; Birnbaum, L.; Boekhold, S.; Denys, S.; Desseille, C.; Drakvik, E. The COVID-19 pandemic and global environmental change: Emerging research needs. Environ. Int. 2021, 146, 106272. [Google Scholar] [CrossRef] [PubMed]
- Gallo Marin, B.; Aghagoli, G.; Lavine, K.; Yang, L.; Siff, E.J.; Chiang, S.S.; Salazar-Mather, T.P.; Dumenco, L.; Savaria, M.C.; Aung, S.N. Predictors of COVID-19 severity: A literature review. Rev. Med. Virol. 2021, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hidayat-ur-Rehman, I.; Ahmad, A.; Ahmed, M.; Alam, A. Mobile applications to fight against COVID-19 pandemic: The Case of Saudi Arabia. TEM J. Technol. Educ. Manag. Inform. 2021, 10, 69–77. [Google Scholar] [CrossRef]
- Zhou, S.L.; Jia, X.; Skinner, S.P.; Yang, W.; Claude, I. Lessons on mobile apps for COVID-19 from China. J. Saf. Sci. Resil. 2021, 2, 40–49. [Google Scholar] [CrossRef]
- Drew, D.A.; Nguyen, L.H.; Steves, C.J.; Menni, C.; Freydin, M.; Varsavsky, T.; Sudre, C.H.; Cardoso, M.J.; Ourselin, S.; Wolf, J. Rapid implementation of mobile technology for real-time epidemiology of COVID-19. Science 2020, 368, 1362–1367. [Google Scholar] [CrossRef]
- Noronha, N.; D’Elia, A.; Coletta, G.; Wagner, N.; Archer, N.; Navarro, T.; Lokker, C. Mobile Applications for COVID-19: A Scoping Review of the Initial Response in Canada. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Ming, L.C.; Untong, N.; Aliudin, N.A.; Osili, N.; Kifli, N.; Tan, C.S.; Goh, K.W.; Ng, P.W.; Al-Worafi, Y.M.; Lee, K.S. Mobile health apps on COVID-19 launched in the early days of the pandemic: Content analysis and review. JMIR mHealth uHealth 2020, 8, e19796. [Google Scholar] [CrossRef]
- Bassi, A.; Arfin, S.; John, O.; Jha, V. An overview of mobile applications (apps) to support the coronavirus disease 2019 response in India. Indian J. Med. Res. 2020, 151, 468. [Google Scholar]
- Islam, M.N.; Islam, I.; Munim, K.M.; Islam, A.N. A review on the mobile applications developed for COVID-19: An exploratory analysis. IEEE Access 2020, 8, 145601–145610. [Google Scholar] [CrossRef] [PubMed]
- Reinecke, K.; Bernstein, A. Improving performance, perceived usability, and aesthetics with culturally adaptive user interfaces. ACM Trans. Comput. Hum. Interact. (TOCHI) 2011, 18, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Issac, A.; Radhakrishnan, R.V.; Vijay, V.; Stephen, S.; Krishnan, N.; Jacob, J.; Jose, S.; Azhar, S.; Nair, A.S. An examination of Thailand’s health care system and strategies during the management of the COVID-19 pandemic. J. Glob. Health 2021, 11, 03002. [Google Scholar] [CrossRef] [PubMed]
- Viwattanakulvanid, P. Ten commonly asked questions about COVID-19 and lessons learned from Thailand. J. Health Res. 2021, 35, 329–344. [Google Scholar] [CrossRef]
- Alam, M.Z.; Hu, W.; Kaium, M.A.; Hoque, M.R.; Alam, M.M.D. Understanding the determinants of mHealth apps adoption in Bangladesh: A SEM-Neural network approach. Technol. Soc. 2020, 61, 101255. [Google Scholar] [CrossRef]
- Badran, M.F. eHealth in Egypt: The demand-side perspective of implementing electronic health records. Telecommun. Policy 2019, 43, 576–594. [Google Scholar] [CrossRef]
- Ware, P.; Dorai, M.; Ross, H.J.; Cafazzo, J.A.; Laporte, A.; Boodoo, C.; Seto, E. Patient adherence to a Mobile phone–based heart failure Telemonitoring program: A longitudinal mixed-methods study. JMIR mHealth uHealth 2019, 7, e13259. [Google Scholar] [CrossRef]
- Mamra, A.; Sibghatullah, A.S.; Ananta, G.P.; Alazzam, M.B.; Ahmed, Y.H.; Doheir, M. A proposed framework to investigate the user acceptance of personal health records in Malaysia using UTAUT2 and PMT. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Ong, A.K.S.; Prasetyo, Y.T.; Salazar, J.M.L.D.; Erfe, J.J.C.; Abella, A.A.; Young, M.N.; Chuenyindee, T.; Nadlifatin, R.; Redi, A.A.N.P. Investigating the acceptance of the reopening bataan nuclear power plant: Integrating protection motivation theory and extended theory of planned behavior. Nucl. Eng. Technol. 2021, 54, 1115–1125. [Google Scholar] [CrossRef]
- Kurata, Y.B.; Prasetyo, Y.T.; Ong, A.K.S.; Nadlifatin, R.; Chuenyindee, T. Factors affecting perceived effectiveness of Typhoon Vamco (Ulysses) flood disaster response among Filipinos in Luzon, Philippines: An integration of protection motivation theory and extended theory of planned behavior. Int. J. Disaster Risk Reduct. 2022, 67, 102670. [Google Scholar] [CrossRef]
- Van Bavel, R.; Rodríguez-Priego, N.; Vila, J.; Briggs, P. Using protection motivation theory in the design of nudges to improve online security behavior. Int. J. Hum.-Comput. Stud. 2019, 123, 29–39. [Google Scholar] [CrossRef]
- Mousavi, R.; Chen, R.; Kim, D.J.; Chen, K. Effectiveness of privacy assurance mechanisms in users’ privacy protection on social networking sites from the perspective of protection motivation theory. Decis. Support Syst. 2020, 135, 113323. [Google Scholar] [CrossRef]
- Yu, C.-W.; Chao, C.-M.; Chang, C.-F.; Chen, R.-J.; Chen, P.-C.; Liu, Y.-X. Exploring Behavioral Intention to Use a Mobile Health Education Website: An Extension of the UTAUT 2 Model. SAGE Open 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Walrave, M.; Waeterloos, C.; Ponnet, K. Ready or not for contact tracing? Investigating the adoption intention of COVID-19 contact-tracing technology using an extended unified theory of acceptance and use of technology model. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 377–383. [Google Scholar] [CrossRef]
- Ezzaouia, I.; Bulchand-Gidumal, J. A Model to Predict Users’ Intentions to Adopt Contact-Tracing Apps for Prevention from COVID-19. In Information and Communication Technologies in Tourism 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 543–548. [Google Scholar]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Yu, C.-S.; Liu, C. Facilitating conditions, wireless trust and adoption intention. J. Comput. Inf. Syst. 2005, 46, 17–24. [Google Scholar]
- Lallmahomed, M.Z.; Lallmahomed, N.; Lallmahomed, G.M. Factors influencing the adoption of e-Government services in Mauritius. Telemat. Inform. 2017, 34, 57–72. [Google Scholar] [CrossRef]
- Tamilmani, K.; Rana, N.P.; Prakasam, N.; Dwivedi, Y.K. The battle of Brain vs. Heart: A literature review and meta-analysis of “hedonic motivation” use in UTAUT2. Int. J. Inf. Manag. 2019, 46, 222–235. [Google Scholar] [CrossRef]
- Chen, W.; Chan, T.W.; Wong, L.H.; Looi, C.K.; Liao, C.C.; Cheng, H.N.; Wong, S.L.; Mason, J.; So, H.-J.; Murthy, S. IDC theory: Habit and the habit loop. Res. Pract. Technol. Enhanc. Learn. 2020, 15, 10. [Google Scholar] [CrossRef]
- Amoroso, D.; Lim, R.; Roman, F.L. Developing and Testing a Smartphone Dependency Scale Assessing Addiction Risk. Int. J. Risk Conting. Manag. (IJRCM) 2021, 10, 14–38. [Google Scholar] [CrossRef]
- Featherman, M.S.; Pavlou, P.A. Predicting e-services adoption: A perceived risk facets perspective. Int. J. Hum.-Comput. Stud. 2003, 59, 451–474. [Google Scholar] [CrossRef] [Green Version]
- Ong, A.K.S.; Prasetyo, Y.T.; Lagura, F.C.; Ramos, R.N.; Sigua, K.M.; Villas, J.A.; Young, M.N.; Diaz, J.F.T.; Persada, S.F.; Redi, A.A.N.P. Factors affecting intention to prepare for mitigation of “the big one” earthquake in the Philippines: Integrating protection motivation theory and extended theory of planned behavior. Int. J. Disaster Risk Reduct. 2021, 63, 102467. [Google Scholar] [CrossRef]
- Kim, H.; Suh, E.E. The effects of an interactive nursing skills mobile application on nursing students’ knowledge, self-efficacy, and skills performance: A randomized controlled trial. Asian Nurs. Res. 2018, 12, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Thakur, R. The role of self-efficacy and customer satisfaction in driving loyalty to the mobile shopping application. Int. J. Retail. Distrib. Manag. 2018, 46, 283–303. [Google Scholar] [CrossRef]
- Cao, Q.; Niu, X. Integrating context-awareness and UTAUT to explain Alipay user adoption. Int. J. Ind. Ergon. 2019, 69, 9–13. [Google Scholar] [CrossRef]
- Martins, C.; Oliveira, T.; Popovič, A. Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. Int. J. Inf. Manag. 2014, 34, 1–13. [Google Scholar] [CrossRef]
- Mingxing, S.; Jing, F.; Yafang, L. An empirical study on consumer acceptance of mobile payment based on the perceived risk and trust. In Proceedings of the 2014 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Shanghai, China, 13–15 October 2014; pp. 312–317. [Google Scholar]
- Kapser, S.; Abdelrahman, M. Acceptance of autonomous delivery vehicles for last-mile delivery in Germany–Extending UTAUT2 with risk perceptions. Transp. Res. Part C Emerg. Technol. 2020, 111, 210–225. [Google Scholar] [CrossRef]
- Prasetyo, Y.T.; Castillo, A.M.; Salonga, L.J.; Sia, J.A.; Seneta, J.A. Factors affecting perceived effectiveness of COVID-19 prevention measures among Filipinos during enhanced community quarantine in Luzon, Philippines: Integrating Protection Motivation Theory and extended Theory of Planned Behavior. Int. J. Infect. Dis. 2020, 99, 312–323. [Google Scholar] [CrossRef]
- Janmaimool, P. Application of protection motivation theory to investigate sustainable waste management behaviors. Sustainability 2017, 9, 1079. [Google Scholar] [CrossRef] [Green Version]
- Balkhy, H.H.; Abolfotouh, M.A.; Al-Hathlool, R.H.; Al-Jumah, M.A. Awareness, attitudes, and practices related to the swine influenza pandemic among the Saudi public. BMC Infect. Dis. 2010, 10, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Du, H. Toward a better understanding of behavioral intention and system usage constructs. Eur. J. Inf. Syst. 2012, 21, 680–698. [Google Scholar] [CrossRef]
- Dehghani, M. Exploring the motivational factors on continuous usage intention of smartwatches among actual users. Behav. Inf. Technol. 2018, 37, 145–158. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Yang, M.-C. Empirical investigation of factors influencing consumer intention to use an artificial intelligence-powered mobile application for weight loss and health management. Telemed. e-Health 2020, 26, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Prasetyo, Y.T.; Ong, A.K.S.; Concepcion, G.K.F.; Navata, F.M.B.; Robles, R.A.V.; Tomagos, I.J.T.; Young, M.N.; Diaz, J.F.T.; Nadlifatin, R.; Redi, A.A.N.P. Determining factors Affecting acceptance of e-learning platforms during the COVID-19 pandemic: Integrating Extended technology Acceptance model and DeLone & Mclean is success model. Sustainability 2021, 13, 8365. [Google Scholar]
- Jun, J.; Park, H.; Cho, I. Study on initial adoption of advanced driver assistance system: Integrated model of PMT and UTAUT 2. Total Qual. Manag. Bus. Excell. 2019, 30, S83–S97. [Google Scholar] [CrossRef]
- Duarte, P.; Pinho, J.C. A mixed methods UTAUT2-based approach to assess mobile health adoption. J. Bus. Res. 2019, 102, 140–150. [Google Scholar] [CrossRef]
- Hair, J.F. Multivariate Data Analysis: A Global Perspective; Pearson: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Chuenyindee, T.; Ong, A.K.; Prasetyo, Y.T.; Persada, S.F.; Nadlifatin, R.; Sittiwatethanasiri, T. Factors affecting the perceived usability of the COVID-19 contact-tracing application “Thai chana” during the early COVID-19 omicron period. Int. J. Environ. Res. Public Health 2022, 19, 4383. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.; Boudreau, M.-C. Structural equation modeling and regression: Guidelines for research practice. Commun. Assoc. Inf. Syst. 2000, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Steiger, J.H. Understanding the limitations of global fit assessment in structural equation modeling. Personal. Individ. Differ. 2007, 42, 893–898. [Google Scholar] [CrossRef]
- Gumasing, M.J.J.; Prasetyo, Y.T.; Ong, A.K.S.; Nadlifatin, R. Determination of factors affecting the response efficacy of Filipinos under Typhoon Conson 2021 (Jolina): An extended protection motivation theory approach. Int. J. Disaster Risk Reduct. 2022, 70, 102759. [Google Scholar] [CrossRef]
- Gelderblom, H.; Matthee, M.; Hattingh, M.; Weilbach, L. High school learners’ continuance intention to use electronic textbooks: A usability study. Educ. Inf. Technol. 2019, 24, 1753–1776. [Google Scholar] [CrossRef]
- Pee, L.G.; Jiang, J.; Klein, G. Signaling effect of website usability on repurchase intention. Int. J. Inf. Manag. 2018, 39, 228–241. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, R.; Zhu, X.; Liu, M. Factors Influencing Continued Usage Behavior on Mobile Health Applications. Healthcare 2022, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulou, K.; Gialamas, V.; Lavidas, K. Habit, hedonic motivation, performance expectancy and technological pedagogical knowledge affect teachers’ intention to use mobile internet. Comput. Educ. Open 2021, 2, 100041. [Google Scholar] [CrossRef]
- Palau-Saumell, R.; Forgas-Coll, S.; Sánchez-García, J.; Robres, E. User acceptance of mobile apps for restaurants: An expanded and extended UTAUT-2. Sustainability 2019, 11, 1210. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.J.; Lee, S.-J.; Lee, S.J.; Rho, M.J.; Kim, D.-J.; Choi, I.Y. Behavioral Intention to Use a Smartphone Usage Management Application Between a Non-Problematic Smartphone Use Group and a Problematic Use Group. Front. Psychiatry 2021, 12, 571795. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P. Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. Int. J. Inf. Manag. 2017, 37, 99–110. [Google Scholar] [CrossRef]
- Sharma, S.K.; Al-Badi, A.; Rana, N.P.; Al-Azizi, L. Mobile applications in government services (mG-App) from user’s perspectives: A predictive modelling approach. Gov. Inf. Q. 2018, 35, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.Z.; Khalid, K. The adoption of M-government services from the user’s perspectives: Empirical evidence from the United Arab Emirates. Int. J. Inf. Manag. 2017, 37, 367–379. [Google Scholar] [CrossRef]
- Chao, C.-M. Factors determining the behavioral intention to use mobile learning: An application and extension of the UTAUT model. Front. Psychol. 2019, 10, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, A.K.; Cleofas, M.A.; Prasetyo, Y.T.; Chuenyindee, T.; Young, M.N.; Diaz, J.F.; Nadlifatin, R.; Redi, A.A. Consumer behavior in clothing industry and its relationship with open innovation dynamics during the COVID-19 pandemic. J. Open Innov. Technol. Mark. Complex. 2021, 7, 211. [Google Scholar] [CrossRef]
- Zhao, B.; Kim, M.; Nam, E.W. Information disclosure contents of the COVID-19 data dashboard websites for South Korea, China, and Japan: A comparative study. Healthcare 2021, 9, 1487. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, S.M.; Alsulayyim, A.S.; Alqahtani, J.S.; Aldhahir, A.M. Digital Health platforms in Saudi Arabia: Determinants from the COVID-19 pandemic experience. Healthcare 2021, 9, 1517. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, I.; Rodríguez, J.-V.; Shirvanizadeh, N.; Ortiz, A.; Pardo-Quiles, D.-J. Applications of artificial intelligence, Machine Learning, Big Data and the internet of things to the COVID-19 pandemic: A Scientometric Review using text mining. Int. J. Environ. Res. Public Health 2021, 18, 8578. [Google Scholar] [CrossRef] [PubMed]
- Rashed, E.A.; Hirata, A. Infectivity upsurge by COVID-19 viral variants in Japan: Evidence from Deep Learning Modeling. Int. J. Environ. Res. Public Health 2021, 18, 7799. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Category | N | % |
---|---|---|---|
Gender | Male | 430 | 47.4 |
Female | 477 | 52.6 | |
Age | 15–24 | 338 | 37.3 |
25–34 | 378 | 41.7 | |
35–44 | 111 | 12.2 | |
45–54 | 55 | 6.1 | |
55–64 | 22 | 2.4 | |
More than 64 | 3 | 0.3 | |
Education Level | High school graduate | 108 | 11.91 |
Bachelor’s degree | 545 | 60.09 | |
Master’s degree | 244 | 26.90 | |
Doctoral degree | 10 | 1.100 | |
Monthly Salary/Allowance | Less than 10,000 THB | 142 | 15.7 |
10,001–20,000 THB | 244 | 26.9 | |
20,001–30,000 THB | 258 | 28.4 | |
30,001–40,000 THB | 125 | 13.8 | |
40,001–50,000 THB | 103 | 11.4 | |
More than 50,000 THB | 35 | 3.9 | |
Enrolled in COVID-19 insurance? | Yes | 96 | 10.6 |
No | 811 | 89.4 |
Constructs | Item | Measurement | References |
---|---|---|---|
Performance Expectancy | PE1 | I find MorChana apps useful in my life. | Alam et al. [16] |
PE2 | Using MorChana apps increases my prevention of COVID-19. | Alam et al. [16] | |
PE3 | Using MorChana apps helps me prepare for COVID-19 prevention more easily. | Venkatesh et al. [15] | |
PE4 | Using MorChana apps helps me assess the risk of COVID-19 in my daily life. | Venkatesh et al. [15] | |
Effort Expectancy | EE1 | Learning to use MorChana apps is easy for me. | Venkatesh et al. [15] |
EE2 | My interaction with MorChana apps is clear and understandable. | Alam et al. [16] | |
EE3 | I find MorChana apps easy to use. | Venkatesh et al. [15] | |
EE4 | I find it easy to use the MorChana apps proficiently. | Alam et al. [16] | |
Social Influence | SI1 | People who are important to me think I should use MorChana apps. | Alam et al. [16] |
SI2 | People who influence my behavior think I should use MorChana apps. | Alam et al. [16] | |
SI3 | People whose opinions I value prefer that I use MorChana apps. | Venkatesh et al. [15] | |
SI4 | People who use MorChana apps have more prestige in my society. | ||
Facilitating Conditions | FC1 | I have the necessary resources to use MorChana apps. | Venkatesh et al. [15] |
FC2 | I have the necessary knowledge and skills to use MorChana apps. | Alam et al. [16] | |
FC3 | I can get help from others if I have difficulty using MorChana apps. | Venkatesh et al. [15] | |
FC4 | MorChana apps are easy to use with my mobile phone. | Alam et al. [16] | |
Hedonic Motivation | HM1 | Using MorChana apps is fun. | Alam et al. [16] |
HM2 | Using MorChana apps is enjoyable. | Venkatesh et al. [15] | |
HM3 | Using MorChana apps is entertaining. | Alam et al. [16] | |
HM4 | Using MorChana apps is pleasurable. | Alam et al. [16] | |
Habit | HB1 | Using MorChana apps has become a habit for me. | Venkatesh et al. [15] |
HB2 | I am addicted to using MorChana apps. | Alam et al. [16] | |
HB3 | Using MorChana apps has been a regular activity for me. | Venkatesh et al. [15] | |
HB4 | Using MorChana apps has become a natural activity for me. | Alam et al. [16] | |
Perceive Risk | PCR1 | Using MorChana apps helps me assess symptoms of COVID-19. | Ong et al. [20] |
PCR2 | Using MorChana apps helps me to identify the risk area for COVID-19. | Ong et al. [20] | |
PCR3 | Using MorChana apps helps me identify who is at risk of COVID-19. | Ong et al. [20] | |
PCR4 | Using MorChana apps still makes you an at-risk person of COVID-19. | Ong et al. [20] | |
PCR5 | Using MorChana apps helps warn other users who visited the same place as the infected person at the same time. | ||
Self-Efficacy | SEF1 | It is convenient for me to use MorChana apps. | Alam et al. [16] |
SEF2 | I am able to use MorChana apps. | Alam et al. [16] | |
SEF3 | I would be able to use MorChana apps to access health services if there was no one around to tell me what to do. | Alam et al. [16] | |
SEF4 | I could access COVID-tracking system using MorChana apps if I had never used one before. | Alam et al. [16] | |
Privacy | PR1 | I believe that the privacy of users of MorChana apps is protected. | Alam et al. [16] |
PR2 | I believe that personal information stored in MorChana apps system is secure. | Alam et al. [16] | |
PR3 | I believe that MorChana apps keeps participants’ information secure. | Alam et al. [16] | |
PR4 | I believe that MorChana apps do not use GPS or track mobile phone location. | Alam et al. [16] | |
Trust | TR1 | I know that MorChana apps is trustworthy. | Alam et al. [16] |
TR2 | I know that MorChana Apps is not opportunistic. | Alam et al. [16] | |
TR3 | I know that MorChana Apps keeps its promises to its users. | Alam et al. [16] | |
TR4 | The content of MorChana apps is reliable. | Alam et al. [16] | |
Understanding of COVID-19 | U1 | I do understand the distribution of COVID-19 before using MorChana apps. | Prasetyo et al. [41] |
U2 | I do understand the incubation period of COVID-19 before using MorChana apps. | Prasetyo et al. [41] | |
U3 | I do understand the symptoms of COVID-19 before using MorChana apps. | Prasetyo et al. [41] | |
U4 | I do understand how to prevent COVID-19 before I use MorChana apps. | Prasetyo et al. [41] | |
Intention to use MorChana application | IU1 | I intend to continue using MorChana apps in the future. | Venkatesh et al. [15] |
IU2 | I will always try to use MorChana apps in my daily life. | Venkatesh et al. [15] | |
IU3 | I plan to continue to use MorChana apps frequently. | Venkatesh et al. [15] | |
IU4 | I would install MorChana apps when I get a new mobile phone. | Venkatesh et al. [15] | |
Actual Usage Behavior | AU1 | MorChana apps are a pleasant experience. | Prasetyo et al. [41] |
AU2 | I really use MorChana apps to protect my health. | Alam et al. [16] | |
AU3 | I spend a lot of time using MorChana apps. | Venkatesh et al. [15] | |
AU4 | I use MorChana apps on a regular basis. | Prasetyo et al. [41] |
Variable | Item | Mean | StD | Factor Loading | |
---|---|---|---|---|---|
Initial | Final | ||||
Performance Expectancy | PE1 | 4.1422 | 1.11514 | 0.750 | 0.733 |
PE2 | 4.0573 | 1.11235 | 0.368 | - | |
PE3 | 4.1312 | 1.13318 | 0.690 | 0.693 | |
PE4 | 3.5877 | 1.45187 | 0.702 | 0.704 | |
Understanding COVID-19 | U1 | 4.3495 | 0.86265 | 0.617 | 0.617 |
U2 | 4.2194 | 0.91669 | 0.811 | 0.809 | |
U3 | 4.2966 | 0.87472 | 0.628 | 0.629 | |
U4 | 4.1125 | 1.02858 | 0.801 | 0.802 | |
Trust | PT1 | 3.6604 | 1.38957 | 0.643 | 0.643 |
PT2 | 3.7365 | 1.34952 | 0.735 | 0.735 | |
PT3 | 4.2095 | 1.01653 | 0.943 | 0.944 | |
PT4 | 4.3230 | 0.91005 | 0.836 | 0.748 | |
Perceived Risk | PCR1 | 3.5777 | 1.48475 | 0.983 | 0.983 |
PCR2 | 3.7630 | 1.36982 | 0.978 | 0.978 | |
PCR3 | 3.7277 | 1.37051 | 0.975 | 0.974 | |
PCR4 | 3.5193 | 1.49997 | 0.748 | 0.674 | |
Self-Efficacy | SEF1 | 4.1345 | 1.03557 | 0.827 | 0.827 |
SEF2 | 4.2183 | 1.03833 | 0.692 | 0.692 | |
SEF3 | 3.5215 | 1.48217 | 0.950 | 0.949 | |
SEF4 | 4.1621 | 1.10246 | 0.702 | 0.703 | |
Habit | HB1 | 3.3462 | 1.58264 | 0.834 | 0.817 |
HB2 | 3.2679 | 1.69791 | 0.867 | 0.833 | |
HB3 | 3.2900 | 1.59841 | 0.836 | 0.867 | |
HB4 | 3.2900 | 1.65939 | 0.867 | 0.836 | |
Hedonic Motivation | HM1 | 3.3374 | 1.54504 | 0.817 | 0.838 |
HM2 | 3.4465 | 1.52614 | 0.838 | 0.828 | |
HM3 | 3.3506 | 1.58863 | 0.828 | 0.642 | |
HM4 | 3.8875 | 1.13859 | 0.942 | 0.942 | |
Facilitating Conditions | FC1 | 3.7398 | 1.30485 | 0.924 | 0.923 |
FC2 | 3.2834 | 1.68036 | 0.839 | 0.623 | |
FC3 | 4.0959 | 1.08708 | 0.686 | 0.686 | |
FC4 | 4.0276 | 1.10103 | 0.838 | 0.838 | |
Social Influence | SI1 | 3.8148 | 1.34742 | 0.966 | 0.966 |
SI2 | 3.7552 | 1.34035 | 0.987 | 0.987 | |
SI3 | 3.6759 | 1.40273 | 0.721 | 0.663 | |
SI4 | 3.6615 | 1.39973 | 0.963 | 0.963 | |
Effort Expectancy | EE1 | 4.1698 | 1.00871 | 0.681 | 0.681 |
EE2 | 3.9327 | 1.22650 | 0.841 | 0.841 | |
EE3 | 3.9857 | 1.20742 | 0.761 | 0.761 | |
EE4 | 3.9338 | 1.22431 | 0.944 | 0.945 | |
Intention to Use | IU1 | 3.6549 | 1.35888 | 0.752 | 0.753 |
IU2 | 4.0176 | 1.09872 | 0.685 | 0.686 | |
IU3 | 4.0386 | 1.08046 | 0.655 | 0.658 | |
IU4 | 3.7343 | 1.34335 | 0.740 | 0.740 | |
Actual Use | AU1 | 3.7817 | 1.30831 | 0.697 | 0.697 |
AU2 | 3.8886 | 1.17543 | 0.678 | 0.678 | |
AU3 | 3.1709 | 1.68637 | 0.940 | 0.941 | |
AU4 | 3.4388 | 1.58196 | 0.771 | 0.772 |
Goodness of Fit Measures of SEM | Parameter Estimates | Minimum Cut-Off | Suggested by |
---|---|---|---|
Incremental Fit Index (IFI) | 0.901 | >0.80 | Gefen et al. [52] |
Tucker–Lewis Index (TLI) | 0.893 | >0.80 | Gefen et al. [52] |
Comparative Fit Index (CFI) | 0.900 | >0.80 | Gefen et al. [52] |
Goodness of Fit Index (GFI) | 0.837 | >0.80 | Gefen et al. [52] |
Adjusted Goodness of Fit Index (AGFI) | 0.859 | >0.80 | Gefen et al. [52] |
Root Mean Square Error (RMSEA) | 0.062 | <0.07 | Steiger [53] |
Factor | Cronbach’s α | Composite Reliability (CR) | Average Variance Extracted (AVE) | Variance Inflation Factor (VIF) |
---|---|---|---|---|
Performance Expectancy | 0.753 | 0.791 | 0.504 | 2.166 |
Effort Expectancy | 0.885 | 0.788 | 0.661 | 2.071 |
Social Influence | 0.946 | 0.779 | 0.819 | 3.323 |
Facilitating Conditions | 0.856 | 0.784 | 0.603 | 3.111 |
Hedonic Motivation | 0.889 | 0.861 | 0.672 | 4.312 |
Habit | 0.904 | 0.913 | 0.703 | 4.576 |
Self-Efficacy | 0.875 | 0.757 | 0.639 | 2.160 |
Perceived Risk | 0.951 | 0.789 | 0.831 | 1.161 |
Trust | 0.855 | 0.752 | 0.601 | 2.605 |
Understanding COVID-19 | 0.851 | 0.713 | 0.519 | 1.341 |
Intention to Use | 0.802 | 0.727 | 0.505 | 3.084 |
Actual Use | 0.858 | 0.834 | 0.607 | - |
No | Variable | Direct Effect | p-Value | Indirect Effect | p-Value | Total Effect | p-Value |
---|---|---|---|---|---|---|---|
1 | PE → IU | 0.253 | 0.011 | - | - | 0.253 | 0.011 |
2 | EE → IU | 0.204 | 0.012 | - | - | 0.204 | 0.012 |
3 | SI → IU | 0.150 | 0.007 | - | - | 0.150 | 0.007 |
4 | FC → IU | 0.359 | 0.012 | - | - | 0.359 | 0.012 |
5 | HM → IU | 0.512 | 0.004 | - | - | 0.512 | 0.004 |
6 | HB → IU | 0.786 | 0.005 | - | - | 0.786 | 0.005 |
7 | SEF → IU | 0.268 | 0.017 | - | - | 0.268 | 0.017 |
8 | PR → IU | 0.433 | 0.007 | - | - | 0.433 | 0.007 |
9 | TR → IU | 0.175 | 0.004 | - | - | 0.175 | 0.004 |
10 | U → IU | 0.353 | 0.012 | - | - | 0.353 | 0.012 |
11 | IU → AU | 0.924 | 0.003 | - | - | 0.924 | 0.003 |
12 | PE → AU | - | - | 0.152 | 0.001 | 0.152 | 0.001 |
13 | EE → AU | - | - | 0.180 | 0.002 | 0.180 | 0.002 |
14 | SI → AU | - | - | 0.019 | 0.005 | 0.019 | 0.005 |
15 | FC → AU | - | - | 0.186 | 0.002 | 0.186 | 0.002 |
16 | HM → AU | - | - | 0.323 | 0.003 | 0.323 | 0.003 |
17 | HB → AU | - | - | 0.421 | 0.010 | 0.421 | 0.010 |
18 | SEF → AU | - | - | 0.087 | 0.008 | 0.087 | 0.008 |
19 | PR → AU | - | - | 0.215 | 0.002 | 0.215 | 0.002 |
20 | TR → AU | - | - | 0.054 | 0.002 | 0.054 | 0.002 |
21 | U → AU | - | - | 0.201 | 0.008 | 0.201 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuduang, N.; Ong, A.K.S.; Prasetyo, Y.T.; Chuenyindee, T.; Kusonwattana, P.; Limpasart, W.; Sittiwatethanasiri, T.; Gumasing, M.J.J.; German, J.D.; Nadlifatin, R. Factors Influencing the Perceived Effectiveness of COVID-19 Risk Assessment Mobile Application “MorChana” in Thailand: UTAUT2 Approach. Int. J. Environ. Res. Public Health 2022, 19, 5643. https://doi.org/10.3390/ijerph19095643
Yuduang N, Ong AKS, Prasetyo YT, Chuenyindee T, Kusonwattana P, Limpasart W, Sittiwatethanasiri T, Gumasing MJJ, German JD, Nadlifatin R. Factors Influencing the Perceived Effectiveness of COVID-19 Risk Assessment Mobile Application “MorChana” in Thailand: UTAUT2 Approach. International Journal of Environmental Research and Public Health. 2022; 19(9):5643. https://doi.org/10.3390/ijerph19095643
Chicago/Turabian StyleYuduang, Nattakit, Ardvin Kester S. Ong, Yogi Tri Prasetyo, Thanatorn Chuenyindee, Poonyawat Kusonwattana, Waranya Limpasart, Thaninrat Sittiwatethanasiri, Ma. Janice J. Gumasing, Josephine D. German, and Reny Nadlifatin. 2022. "Factors Influencing the Perceived Effectiveness of COVID-19 Risk Assessment Mobile Application “MorChana” in Thailand: UTAUT2 Approach" International Journal of Environmental Research and Public Health 19, no. 9: 5643. https://doi.org/10.3390/ijerph19095643
APA StyleYuduang, N., Ong, A. K. S., Prasetyo, Y. T., Chuenyindee, T., Kusonwattana, P., Limpasart, W., Sittiwatethanasiri, T., Gumasing, M. J. J., German, J. D., & Nadlifatin, R. (2022). Factors Influencing the Perceived Effectiveness of COVID-19 Risk Assessment Mobile Application “MorChana” in Thailand: UTAUT2 Approach. International Journal of Environmental Research and Public Health, 19(9), 5643. https://doi.org/10.3390/ijerph19095643