Children’s Involvement in Different Sport Types Differentiates Their Motor Competence but Not Their Executive Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Motor Competence
2.2.2. Executive Functions
2.2.3. Procedure
2.2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Best, J.R. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev. Rev. 2010, 30, 331–351. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.; Parkinson, J. The potential for school-based interventions that target executive function to improve academic achievement: A review. Rev. Educ. Res. 2015, 85, 512–552. [Google Scholar] [CrossRef]
- Ionescu, T. Exploring the nature of cognitive flexibility. New Ideas Psychol. 2012, 30, 190–200. [Google Scholar] [CrossRef]
- Gathercole, S.E.; Alloway, T.P.; Willis, C.; Adams, A.M. Working memory in children with reading disabilities. J. Exp. Child. Psychol. 2006, 93, 265–281. [Google Scholar] [CrossRef] [Green Version]
- Choe, J.H.; Choe, J.H.; Jang, C.H.; Sim, Y.H. The relation between home environment and each domain of executive function skills of children. Early Child. Educ. J. 2021, 49, 1215. [Google Scholar] [CrossRef]
- Best, J.R.; Miller, P.H.; Naglieri, J.A. Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ Differ. 2011, 21, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Gale, C.R.; Cooper, R.; Craig, L.; Elliott, J.; Kuh, D.; Richards, M.; Starr, J.M.; Whalley, L.J.; Deary, I.J. Cognitive function in childhood and lifetime cognitive change in relation to mental wellbeing in four cohorts of older people. PLoS ONE 2012, 7, e44860. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A.; Ling, D.S. Review of the evidence on, and fundamental questions about, efforts to improve executive functions, including working memory. In Cognitive and Working Memory Training: Perspectives from Psychology, Neuroscience, and Human Development; Novick, J.M., Bunting, M.F., Dougherty, M.R., Engle, R.W., Eds.; Oxford University Press: Oxford, UK, 2020; pp. 143–431. [Google Scholar]
- Xue, Y.; Yang, Y.; Huang, T. Effects of chronic exercise interventions on executive function among children and adolescents: A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1397–1404. [Google Scholar] [CrossRef]
- Schmidt, M.; Jäger, K.; Egger, F.; Roebers, C.M.; Conzelmann, A. Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: A group-randomized controlled trial. Psychol. Sport Exerc. 2015, 37, 575–591. [Google Scholar] [CrossRef]
- Vazou, S.; Pesce, C.; Lakes, K.; Smiley-Oyen, A. More than one road leads to Rome: A narrative review and meta-analysis of physical activity intervention effects on cognition in youth. Int. J. Sport Exerc. Psychol. 2019, 17, 153–178. [Google Scholar] [CrossRef]
- Formenti, D.; Trecroci, A.; Duca, M.; Cavaggioni, L.; D’Angelo, F.; Passi, A.; Longo, S.; Alberti, G. Differences in inhibitory control and motor fitness in children practicing open and closed-skill sports. Sci. Rep. 2021, 11, 4033. [Google Scholar] [CrossRef] [PubMed]
- Singer, R.N. Performance and human factors: Considerations about cognition and attention for self-paced and externally-paced events. Ergonomics 2000, 43, 1661–1680. [Google Scholar] [CrossRef] [PubMed]
- Ballester, R.; Huertas, F.; Pablos-Abella, C.; Llorens, F.; Pesce, C. Chronic participation in externally paced, but not self-paced sports is associated with the modulation of domain-general cognition. Eur. J. Sport Sci. 2019, 19, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Gökçe, E.; Güneş, E.; Arı, F.; Hayme, S.; Nalçacı, E. Comparison of the effects of open-and closed-skill exercise on cognition and peripheral proteins: A cross-sectional study. PLoS ONE 2021, 16, e0251907. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Chang, C.C.; Liang, Y.M.; Shih, C.M.; Muggleton, N.G.; Juan, C.H. Temporal preparation in athletes: A comparison of tennis players and swimmers with sedentary controls. J. Mot. Behav. 2013, 45, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Liang, W.K.; Moreau, D. Differential modulation of brain signal variability during cognitive control in athletes with different domains of expertise. Neuroscience 2020, 425, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Burris, K.; Liu, S.; Appelbaum, L. Visual-motor expertise in athletes: Insights from semiparametric modelling of 2317 athletes tested on the Nike SPARQ Sensory Station. J. Sports Sci. 2020, 38, 320–329. [Google Scholar] [CrossRef]
- Krenn, B.; Finkenzeller, T.; Würth, S.; Amesberger, G. Sport type determines differences in executive functions in elite athletes. Psychol. Sport Exerc. 2018, 38, 72–79. [Google Scholar] [CrossRef]
- Jacobson, J.; Matthaeus, L. Athletics and executive functioning: How athletic participation and sport type correlate with cognitive performance. Psychol. Sport Exerc. 2014, 15, 521–527. [Google Scholar] [CrossRef]
- De Waelle, S.; Laureys, F.; Lenoir, M.; Bennett, S.J.; Deconinck, F.J. Children involved in team sports show superior executive function compared to their peers involved in self-paced sports. Children 2021, 8, 264. [Google Scholar] [CrossRef]
- Ludyga, S.; Mücke, M.; Andrä, C.; Gerber, M.; Pühse, U. Neurophysiological correlates of interference control and response inhibition processes in children and adolescents engaging in open-and closed-skill sports. J. Sport Health Sci. 2021, 11, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.; Ottoboni, G.; Tessari, A.; Ceciliani, A. The positive impact of physical activity on working memory abilities: Evidence from a large Italian pre-adolescent sample. J. Hum. Sport Exerc. 2021, 16, 277–288. [Google Scholar]
- Field, S.C.; Temple, V.A. The relationship between fundamental motor skill proficiency and participation in organized sports and active recreation in middle childhood. Sports 2017, 5, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbard, C.P. Lifelong Motor Development, 5th ed.; Pearson Benjamin Cummings: San Francisco, CA, USA, 2008. [Google Scholar]
- Utesch, T.; Bardid, F. Motor competence. In Dictionary of Sport Psychology: Sport, Exercise, and Performing Arts, 1st ed.; Dieter Hackfort, D., Schinke, R., Strauss, B., Eds.; Academic Press: Cambridge, MA, USA, 2019; p. 186. [Google Scholar]
- Barnett, L.M.; Van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Childhood motor skill proficiency as a predictor of adolescent physical activity. J. Adolesc. Health 2009, 44, 252–259. [Google Scholar] [CrossRef]
- Lloyd, M.; Saunders, T.J.; Bremer, E.; Tremblay, M.S. Long-term importance of fundamental motor skills: A 20-year follow-up study. Adapt. Phys. Act. Q. 2014, 31, 67–78. [Google Scholar] [CrossRef]
- Venetsanou, F.; Kambas, A. Can motor proficiency in preschool age affect physical activity in adolescence? Pediatr. Exerc. Sci. 2017, 29, 254–259. [Google Scholar] [CrossRef]
- Goodway, J.D.; Ozmun, J.C.; Gallahue, D.L. Understanding Motor Development: Infants, Children, Adolescents, Adults, 8th ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2019. [Google Scholar]
- Damiris, A.P.; Selemidi, E.; Venetsanou, F.; Kaioglou, V. Physical literacy of children participating in different sports. Rev. Psicol. Deporte 2021, 30, 17–23. [Google Scholar]
- Dania, A.; Kaioglou, V.; Venetsanou, F. Validation of the Canadian Assessment of Physical Literacy for Greek children: Understanding assessment in response to culture and pedagogy. Eur. Phy. Educ. Rev. 2020, 26, 903–919. [Google Scholar] [CrossRef]
- Herrmann, C.; Heim, C.; Seelig, H. Construct and correlates of basic motor competencies in primary school-aged children. J. Sport Health Sci. 2019, 8, 63–70. [Google Scholar] [CrossRef]
- Kaioglou, V.; Dania, A.; Venetsanou, F. How physically literate are children today? A baseline assessment of Greek children 8–12 years of age. J. Sports Sci. 2020, 38, 741–750. [Google Scholar] [CrossRef]
- Kambas, A.; Michalopoulou, M.; Fatouros, I.G.; Christoforidis, C.; Manthou, E.; Giannakidou, D.; Venetsanou, F.; Haberer, E.; Chatzinikolaou, A.; Gourgoulis, V.; et al. The relationship between motor proficiency and pedometer-determined physical activity in young children. Pediatr. Exerc. Sci. 2012, 24, 34. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.; Hinkley, T.; Okely, A.D.; Salmon, J. Child, family and environmental correlates of children’s motor skill proficiency. J. Sci. Med. Sport 2013, 16, 332–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karachle, N.; Dania, A.; Venetsanou, F. Effects of a recreational gymnastics program on the motor proficiency of young children. Sci. Gymnast J. 2017, 9, 17–25. [Google Scholar]
- Venetsanou, F.; Kambas, A. How can a traditional Greek dances programme affect the motor proficiency of pre-school children? Res. Dance Educ. 2004, 5, 127–138. [Google Scholar] [CrossRef]
- Mehamad, M.F.Z.B.; Abdullah, B.B.; Samsuddin, S. Differences in gross motor development among early school children: Comparison on team and individual sports. Acpes J. Phys. Educ. Sport Health 2021, 1, 22–30. [Google Scholar] [CrossRef]
- Ulrich, D. Test of Gross Motor Development 2; Prod-Ed: Austin, TX, USA, 2000. [Google Scholar]
- Holfelder, B.; Klotzbier, T.J.; Eisele, M.; Schott, N. Hot and cool executive function in elite-and amateur-adolescent athletes from open and closed skills sports. Front. Psychol. 2020, 11, 694. [Google Scholar] [CrossRef] [Green Version]
- Chrysochoou, E.; Bablekou, Z. Phonological loop and central executive contributions to oral comprehension skills of 5.5 to 9.5 years old children. Appl. Cogn. Psychol. 2011, 25, 576–583. [Google Scholar] [CrossRef]
- Chrysochoou, E.; Bablekou, Z.; Masoura, E.; Tsigilis, N. Working memory and vocabulary development in Greek preschool and primary school children. Eur. J. Dev. Psychol. 2013, 10, 417–432. [Google Scholar] [CrossRef]
- Fairclough, S.J.; Tyler, R.; Dainty, J.R.; Dumuid, D.; Richardson, C.; Shepstone, L.; Atkin, A.J. Cross-sectional associations between 24-h activity behaviours and mental health indicators in children and adolescents: A compositional data analysis. J. Sports Sci. 2021, 39, 1602–1614. [Google Scholar] [CrossRef]
- Giordano, G.; Gómez-López, M.; Alesi, M. Sports, executive functions and academic performance: A comparison between martial arts, team sports, and sedentary children. Int. J. Environ. Res. Public Health 2021, 18, 11745. [Google Scholar] [CrossRef]
- Bruininks, R.; Bruininks, B. Bruininks-Oseretsky Test of Motor Proficiency, 2nd ed.; NCS Pearson: Minneapolis, MN, USA, 2005. [Google Scholar]
- Lucas, B.R.; Latimer, J.; Doney, R.; Ferreira, M.L.; Adams, R.; Hawkes, G.; Fitzpatrick, J.P.; Hand, M.; Oscar, J.; Carter, M.; et al. The Bruininks-Oseretsky Test of Motor Proficiency-Short Form is reliable in children living in remote Australian aboriginal communities. BMC Pediatr. 2013, 13, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venetsanou, F.; Voukias, K.; Zavolas, G.; Mitsios, O.; Kambas, A. Aspects of validity and reliability of the Bruininks-Oseretsky Test of Motor Proficiency-Short Form (BOT-SF) in Greek children. In Crossing Borders through Sport Science, Proceedings of the 21st Annual Congress of the ECSS, Vienna, Austria, 6–9 July 2016; Baca, A., Ed.; University of Vienna: Vienna, Austria, 2016; p. 427. [Google Scholar]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; McCandliss, B.D.; Fossella, J.; Flombaum, J.I.; Posner, M.I. The activation of attentional networks. Neuroimage 2005, 26, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 2002, 14, 340–347. [Google Scholar] [CrossRef]
- Vivas, A.B.; Chrysochoou, E.; Ladas, A.I.; Salvari, V. The moderating effect of bilingualism on lifespan cognitive development. Cogn. Dev. 2020, 55, 100890. [Google Scholar] [CrossRef]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters on the identification of a target letter in a nonsearch task. Percept Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Ishigami, Y.; Eskes, G.A.; Tyndall, A.V.; Longman, R.S.; Drogos, L.L.; Poulin, M.J. The Attention Network Test-Interaction (ANT-I): Reliability and validity in healthy older adults. Exp. Brain Res. 2016, 234, 815–827. [Google Scholar] [CrossRef]
- Kazali, E. Logical Thinking, Self-Awareness and Processing Efficiency: Interactions from 4 to 10 Years of Age. Ph.D. Thesis, School of Social Science and Psychology, Panteion University of Social and Political Sciences, Athens, Greece, 2016. [Google Scholar]
- Tourva, A.; Spanoudis, G.; Demetriou, A. Cognitive correlates of developing intelligence: The contribution of working memory, processing speed and attention. Intelligence 2016, 54, 136–146. [Google Scholar] [CrossRef]
- Cepeda, N.J.; Cepeda, M.L.; Kramer, A.F. Task switching and attention deficit hyperactivity disorder. J. Abnorm. Child Psychol. 2000, 28, 213–226. [Google Scholar] [CrossRef]
- Ralli, A.M.; Chrysochoou, E.; Roussos, P.; Diakogiorgi, K.; Dimitropoulou, P.; Filippatou, D. Executive function, working memory, and verbal fluency in relation to non-verbal intelligence in Greek-speaking school-age children with Developmental Language Disorder. Brain Sci. 2021, 11, 604. [Google Scholar] [CrossRef]
- Cepeda, N.J.; Kramer, A.F.; de Sather, J.G. Changes in executive control across the life span: Examination of task-switching performance. Dev. Psychol. 2001, 37, 715. [Google Scholar] [CrossRef] [PubMed]
- Im-Bolter, N.; Johnson, J.; Pascual-Leone, J. Processing limitations in children with specific language impairment: The role of executive function. Child Dev. 2006, 77, 1822–1841. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.F.; Cepeda, N.J.; Cepeda, M.L. Methylphenidate effects on task-switching performance in attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psych. 2001, 40, 1277–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, S.; Gathercole, S.E. Working Memory Test Battery for Children (WMTB-C); Psychological Corporation: London, UK, 2001. [Google Scholar]
- Müller, U.; Kerns, K.A.; Konkin, K. Test–retest reliability and practice effects of executive function tasks in preschool children. Clin. Neuropsychol. 2012, 26, 271–287. [Google Scholar] [CrossRef]
- Wells, E.L.; Kofler, M.J.; Soto, E.F.; Schaefer, H.S.; Sarver, D.E. Assessing working memory in children with ADHD: Minor administration and scoring changes may improve digit span backward’s construct validity. Res. Dev. Disabil. 2018, 72, 166–178. [Google Scholar] [CrossRef]
- Chrysochoou, Ε. Working Memory Contributions to Children’s Listening Comprehension in Early and Middle Childhood Years. Ph.D. Thesis, Department of Early Childhood Education, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2006. [Google Scholar]
- Kazi, S.; Kazali, E.; Makris, N.; Spanoudis, G.; Demetriou, A. Cognizance in cognitive development: A longitudinal study. Cogn. Dev. 2019, 52, 100805. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA; New York, NY, USA, 1988. [Google Scholar]
- Burton, A.W.; Miller, D.E. Movement Skill Assessment; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Sheerin, K.; Williams, S.; Hume, P.; Whatman, C.; Gleave, J. Effects of gymnastics training on physical function in children. In Proceedings of the ISBS-Conference Proceedings Archive of 30th Annual Conference of Biomechanics in Sports, Melbourne, Australia, 2–6 July 2012. [Google Scholar]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Afthentopoulou, A.E.; Venetsanou, F.; Zounhia, A.; Petrogiannis, K. Physical activity, motor competence, and perceived physical competence: What is their relationship in children aged 6–9 years. Hum. Mov. 2018, 19, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Longmuir, P.E.; Boyer, C.; Lloyd, M.; Borghese, M.M.; Knight, E.; Saunders, T.J.; Boiarskaia, E.; Zhu, W.; Tremblay, M.S. Canadian Agility and Movement Skill Assessment (CAMSA): Validity, objectivity, and reliability evidence for children 8–12 years of age. J. Sport Health Sci. 2017, 6, 231–240. [Google Scholar] [CrossRef]
- Venetsanou, F.; Kambas, A. Motor proficiency in young children: A closer look at potential gender differences. Sage Open 2016, 6, 2158244015626226. [Google Scholar] [CrossRef] [Green Version]
- Grissom, N.M.; Reyes, T.M. Let’s call the whole thing off: Evaluating gender and sex differences in executive function. Neuropsychopharmacology 2019, 44, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.C.; Laird, A.R.; Robinson, J.L. Gender differences in working memory networks: A brain map meta-analysis. Biol. Psychol. 2014, 102, 18–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyde, J.S. Sex and cognition: Gender and cognitive functions. Curr. Opin. Neurobiol. 2016, 38, 53–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, R.A.; Wrisberg, C.A. Motor Learning and Performance: A Situation-Based Learning Approach, 4th ed.; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
Boys | Girls | |||||
---|---|---|---|---|---|---|
Team | OS | CS | Team | OS | CS | |
Age | 10.65 ± 1.36 | 10.61 ± 0.83 | 10.72 ± 1.43 | 10.06 ± 0.98 | 10.05 ± 1.11 | 10.03 ± 1.30 |
Years of Sport Participation | 4.25 ± 2.32 | 4.23 ± 2.39 | 2.73 ± 1.85 | 1.8 ± 1.17 | 3.36 ± 1.34 | 3.36 ± 4.88 |
Boys | Girls | ANCOVA Results | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Team | OS | CS | Team | OS | CS | Gender × ToS | Gender | ToS | ||
BOT-2SF | TPS | 70.67 ± 0.92 | 72.58 ± 0.97 | 75.52 ± 1.24 | 70.03 ± 0.86 | 73.48 ± 1.06 | 75.56 ± 0.78 | F = 0.33, η2p = 0.01 | F = 0.02, η2p = 0.00 | F = 14.79 **, η2p = 0.22 |
Drawing lines through paths | 6.85 ± 0.08 | 7 ± 0.08 | 6.82 ± 0.11 | 7 ± 0.07 | 7 ± 0.09 | 7 ± 0.07 | F = 0.51, η2p = 0.01 | F = 1.84, η2p = 0.02 | F = 0.83, η2p = 0.02 | |
Folding paper | 5.02 ± 0.32 | 5.47 ± 0.33 | 6.33 ± 0.42 | 6.11 ± 0.29 | 6.16 ± 0.36 | 6.67 ± 0.27 | F = 0.66, η2p = 0.01 | F = 6.26 *, η2p = 0.06 | F = 4.18 *, η2p = 0.07 | |
Copying a square | 4.90 ± 0.06 | 4.9 ± 0.06 | 4.91 ± 0.08 | 4.83 ± 0.06 | 5 ± 0.07 | 5 ± 0.05 | F = 1.38, η2p = 0.03 | F = 0.83, η2p = 0.01 | F = 1.34, η2p = 0.02 | |
Copying a star | 4 ± 0.15 | 4.06 ± 0.16 | 3.93 ± 0.20 | 3.95 ± 0.14 | 4.11 ± 0.17 | 4.26 ± 0.13 | F = 0.75, η2p = 0.01 | F = 0.68, η2p = 0.01 | F = 0.41, η2p = 0.01 | |
Transferring pennies | 5.82 ± 0.21 | 5.94 ± 0.22 | 6.30 ± 0.28 | 6.35 ± 0.20 | 6.69 ± 0.24 | 6.81 ± 0.18 | F = 0.17, η2p = 0.00 | F = 10.08 *, η2p = 0.09 | F = 2.34, η2p = 0.04 | |
Jumping in place | 3 ± 0.05 | 2.94 ± 0.05 | 3 ± 0.06 | 3.09 ± 0.04 | 3 ± 0.05 | 3 ± 0.04 | F = 0.38, η2p = 0.01 | F = 1.61, η2p = 0.02 | F = 1.10, η2p = 0.02 | |
Tapping feet and fingers | 3.89 ± 0.05 | 3.99 ± 0.05 | 3.99 ± 0.07 | 3.88 ± 0.05 | 4 ± 0.06 | 3.97 ± 0.04 | F = 0.05, η2p = 0.00 | F = 0.00, η2p = 0.00 | F = 3.10 *, η2p = 0.05 | |
Walking forward on a line | 4 ± 0 | 4 ± 0 | 4 ± 0 | 4 ± 0 | 4 ± 0 | 4 ± 0 | - | - | - | |
Standing on one leg on a balance beam | 3.76 ± 0.13 | 3.73 ± 0.14 | 4.01 ± 0.18 | 3.82 ± 0.12 | 3.6 ± 0.15 | 3.92 ± 0.11 | F = 0.31, η2p = 0.01 | F = 0.27, η2p = 0.02 | F = 2.26, η2p = 0.04 | |
One-legged stationary hop | 8.33 ± 0.17 | 8.76 ± 0.17 | 8.98 ± 0.22 | 8.32 ± 0.15 | 8.68 ± 0.19 | 8.59 ± 0.14 | F = 0.65, η2p = 0.01 | F = 1.18, η2p = 0.00 | F = 4.39 *, η2p = 0.08 | |
Dropping and catching a ball | 4.95 ± 0.09 | 4.94 ± 0.10 | 5 ± 0.12 | 4.87 ± 0.09 | 4.94 ± 0.11 | 4.79 ± 0.08 | F = 0.50, η2p = 0.00 | F = 1.35, η2p = 0.01 | F = 0.11 *, η2p = 0.00 | |
Dribbling a ball | 6.35 ± 0.33 | 6.75 ± 0.34 | 6.25 ± 0.44 | 4.98 ± 0.30 | 6.07 ± 0.38 | 5.79 ± 0.28 | F = 1.03, η2p = 0.02 | F = 8.19*, η2p = 0.07 | F = 2.43, η2p = 0.04 | |
Knee push-ups | 4.21 ± 0.29 | 4.18 ± 0.31 | 5.04 ± 0.40 | 3.55 ± 0.27 | 3.83 ± 0.34 | 4.64 ± 0.25 | F = 0.15, η2p = 0.00 | F = 3.16, η2p = 0.03 | F = 5.44 *, η2p = 0.09 | |
Sit-ups | 5.53 ± 0.22 | 5.95 ± 0.23 | 6.85 ± 0.29 | 5.3 ± 0.20 | 6.42 ± 0.25 | 6.85 ± 0.18 | F = 1.23, η2p = 0.02 | F = 0.17, η2p = 0.00 | F = 20.32 **, η2p = 0.27 | |
EFs protocols | WM | 12.68 ± 0.97 | 14.61 ± 1.01 | 14.40 ± 1.32 | 13.41 ± 0.87 | 16.52 ± 1.16 | 14.98 ± 0.87 | F = 0.23, η2p = 0.01 | F = 1.50, η2p = 0.02 | F = 3.34 *, η2p = 0.06 |
Interference control | 97.94 ± 17.04 | 109.47 ± 16.87 | 90.76 ± 21.36 | 114.44 ± 15.01 | 99.16 ± 18.72 | 76.83 ± 14.36 | F = 0.50, η2p = 0.01 | F = 0.29, η2p = 0.00 | F = 0.98, η2p = 0.02 | |
Switch costs | 57.54 ± 93.46 | 63.94 ± 92.50 | 94.27 ± 117.11 | 14.35 ± 82.31 | 240.67 ± 102.67 | −16.68 ± 78.72 | F = 1.23, η2p = 0.03 | F = 0.01, η2p = 0.00 | F = 0.98, η2p = 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spanou, M.; Stavrou, N.; Dania, A.; Venetsanou, F. Children’s Involvement in Different Sport Types Differentiates Their Motor Competence but Not Their Executive Functions. Int. J. Environ. Res. Public Health 2022, 19, 5646. https://doi.org/10.3390/ijerph19095646
Spanou M, Stavrou N, Dania A, Venetsanou F. Children’s Involvement in Different Sport Types Differentiates Their Motor Competence but Not Their Executive Functions. International Journal of Environmental Research and Public Health. 2022; 19(9):5646. https://doi.org/10.3390/ijerph19095646
Chicago/Turabian StyleSpanou, Martha, Nektarios Stavrou, Aspasia Dania, and Fotini Venetsanou. 2022. "Children’s Involvement in Different Sport Types Differentiates Their Motor Competence but Not Their Executive Functions" International Journal of Environmental Research and Public Health 19, no. 9: 5646. https://doi.org/10.3390/ijerph19095646
APA StyleSpanou, M., Stavrou, N., Dania, A., & Venetsanou, F. (2022). Children’s Involvement in Different Sport Types Differentiates Their Motor Competence but Not Their Executive Functions. International Journal of Environmental Research and Public Health, 19(9), 5646. https://doi.org/10.3390/ijerph19095646