Partial Nitrification and Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Treating High-Strength Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactor Setup and Operation
2.2. Typical Cycle Study and Biological Phosphorus Removal Batch Tests
2.3. Microbial Community Analysis
2.4. Chemical Analyses
3. Results
3.1. Pollutant Removal Performance
3.1.1. COD Removal Performance
3.1.2. Nitrogen Removal Performance
3.1.3. Phosphorus Removal Performance
3.2. Microbial Activities
3.2.1. Nitrogen Removal Activity
3.2.2. Phosphorus Removal Activity
3.3. Microbial Community Structure
3.3.1. Microbial Diversity
3.3.2. Microbial Community Composition
4. Discussion
4.1. Impact of Organic Load on Nitrogen-Removal-Related Microorganisms
4.2. Impact of Carbon Sources on Phosphorus Removal Activity
4.3. Impact of Organic Load on Phosphorus-Removal-Related Microorganisms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, M.; Huang, X.; Wu, G.; Hu, Y.; Yang, Y.; Zhan, X.J.W. Performance of denitrifying phosphate removal via nitrite from slaughterhouse wastewater treatment at low temperature. Water 2017, 9, 818. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Kuo, E.-W.; Nagarajan, D.; Ho, S.-H.; Dong, C.-D.; Lee, D.-J.; Chang, J.-S. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresour. Technol. 2020, 302, 122814. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, S.; Yang, C.; Zeng, G. Microalgal and duckweed based constructed wetlands for swine wastewater treatment: A review. Bioresour. Technol. 2020, 123858. [Google Scholar] [CrossRef]
- Cheng, H.-H.; Narindri, B.; Chu, H.; Whang, L.-M. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Bioresour. Technol. 2020, 303, 122861. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Ngo, H.; Guo, W.; Chang, S.; Nguyen, D.; Kumar, S. Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresour. Technol. 2019, 275, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Ndambi, O.A.; Pelster, D.E.; Owino, J.O.; De Buisonje, F.; Vellinga, T. Manure management practices and policies in sub-Saharan Africa: Implications on manure quality as a fertilizer. Front. Sustain. Food S. 2019, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.M.; Ha, J.H.; Kim, M.-S.; Kim, J.-O.; Kim, Y.M.; Park, J.M. Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure. Water Res. 2016, 99, 140–148. [Google Scholar] [CrossRef]
- Jang, H.M.; Kim, J.H.; Ha, J.H.; Park, J.M. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour. Technol. 2014, 165, 174–182. [Google Scholar] [CrossRef]
- Liew, Y.X.; Chan, Y.J.; Manickam, S.; Chong, M.F.; Chong, S.; Tiong, T.J.; Lim, J.W.; Pan, G.-T. Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewater to biogas: A review. Sci. Total Environ. 2020, 713, 136373. [Google Scholar] [CrossRef]
- Torres-Franco, A.; Passos, F.; Figueredo, C.; Mota, C.; Muñoz, R. Current advances in microalgae-based treatment of high-strength wastewaters: Challenges and opportunities to enhance wastewater treatment performance. Rev. Environ. Sci. Bio. 2021, 20, 209–235. [Google Scholar] [CrossRef]
- Wang, D.; Tooker, N.B.; Srinivasan, V.; Li, G.; Fernandez, L.A.; Schauer, P.; Menniti, A.; Maher, C.; Bott, C.B.; Dombrowski, P. Side-stream enhanced biological phosphorus removal (S2EBPR) process improves system performance-A full-scale comparative study. Water Res. 2019, 167, 115109. [Google Scholar] [CrossRef] [PubMed]
- Oehmen, A.; Lemos, P.C.; Carvalho, G.; Yuan, Z.; Keller, J.; Blackall, L.L.; Reis, M.A. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res. 2007, 41, 2271–2300. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Vazquez, C.M.; Oehmen, A.; Hooijmans, C.M.; Brdjanovic, D.; Gijzen, H.J.; Yuan, Z.; van Loosdrecht, M.C. Modeling the PAO–GAO competition: Effects of carbon source, pH and temperature. Water Res. 2009, 43, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Rincón, F.; Lopez-Vazquez, C.; Welles, L.; Van Loosdrecht, M.; Brdjanovic, D. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes. Water Res. 2017, 120, 156–164. [Google Scholar] [CrossRef]
- Rubio-Rincón, F.; Welles, L.; Lopez-Vazquez, C.; Nierychlo, M.; Abbas, B.; Geleijnse, M.; Nielsen, P.; van Loosdrecht, M.C.; Brdjanovic, D. Long-term effects of sulphide on the enhanced biological removal of phosphorus: The symbiotic role of Thiothrix caldifontis. Water Res. 2017, 116, 53–64. [Google Scholar] [CrossRef]
- Torresi, E.; Tang, K.; Deng, J.; Sund, C.; Smets, B.F.; Christensson, M.; Andersen, H.R. Removal of micropollutants during biological phosphorus removal: Impact of redox conditions in MBBR. Sci. Total Environ. 2019, 663, 496–506. [Google Scholar] [CrossRef]
- Yang, G.; Wang, D.; Yang, Q.; Zhao, J.; Liu, Y.; Wang, Q.; Zeng, G.; Li, X.; Li, H. Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. Chemosphere 2018, 196, 78–86. [Google Scholar] [CrossRef]
- Yuan, Z.; Kang, D.; Li, G.; Lee, J.; Han, I.; Wang, D.; Zheng, P.; Reid, M.C.; Gu, A.Z. Combined Enhanced Biological Phosphorus Removal (EBPR) and Nitrite Accumulation for Treating High-strength Wastewater. bioRxiv 2021. [Google Scholar] [CrossRef]
- Bickers, P.O.; Bhamidimarri, R.; Shepherd, J.; Russell, J. Biological phosphorus removal from a phosphorus-rich dairy processing wastewater. Water Sci. Technol. 2003, 48, 43–51. [Google Scholar] [CrossRef]
- Broughton, A.; Pratt, S.; Shilton, A. Enhanced biological phosphorus removal for high-strength wastewater with a low rbCOD: P ratio. Bioresour. Technol. 2008, 99, 1236–1241. [Google Scholar] [CrossRef]
- Liu, Z.h.; Pruden, A.; Ogejo, J.A.; Knowlton, K.F. Polyphosphate-and Glycogen-Accumulating Organisms in One EBPR System for Liquid Dairy Manure. Water Environ. Res. 2014, 86, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Jena, J.; Kumar, R.; Saifuddin, M.; Dixit, A.; Das, T. Anoxic–aerobic SBR system for nitrate, phosphate and COD removal from high-strength wastewater and diversity study of microbial communities. Biochem. Eng. J. 2016, 105, 80–89. [Google Scholar] [CrossRef]
- Randall, C.W.; Chapin, R.W. Acetic acid inhibition of biological phosphorus removal. Water Environ. Res. 1997, 69, 955–960. [Google Scholar] [CrossRef]
- Filipe, C.D.; Daigger, G.T.; Grady Jr, C.L. Effects of pH on the rates of aerobic metabolism of phosphate-accumulating and glycogen-accumulating organisms. Water Environ. Res. 2001, 73, 213–222. [Google Scholar] [CrossRef]
- Domingues, E.; Fernandes, E.; Gomes, J.; Martins, R.C. Advanced oxidation processes perspective regarding swine wastewater treatment. Sci. Total Environ. 2021, 776, 145958. [Google Scholar] [CrossRef]
- Sooknah, R.D.; Wilkie, A.C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol. Eng. 2004, 22, 27–42. [Google Scholar] [CrossRef]
- USEPA. NPDES Permit Writers’ Manual for Concentrated Animal Feeding Operations; USEPA: Washington DC, USA, 2012. Available online: https://www3.epa.gov/npdes/pubs/cafo_permitmanual_entire.pdf.
- Zheng, T.; Li, P.; Ma, X.; Sun, X.; Wu, C.; Wang, Q.; Gao, M. Pilot-scale experiments on multilevel contact oxidation treatment of poultry farm wastewater using saran lock carriers under different operation model. J. Environ. Sci. 2019, 77, 336–345. [Google Scholar] [CrossRef]
- Smolders, G.J.F.; Vandermeij, J.; Vanloosdrecht, M.C.M.; Heijnen, J.J. Model of the anaerobic metabolism of the biological phosphorus removal process - stoichiometry and pH influence. Biotechnol. Bioeng. 1994, 43, 461–470. [Google Scholar] [CrossRef]
- Oehmen, A.; Saunders, A.M.; Vives, M.T.; Yuan, Z.; Keller, J. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J. Biotechnol. 2006, 123, 22–32. [Google Scholar] [CrossRef]
- The Microbial Database for Activated Sludge (MiDAS). Available online: https://www.midasfieldguide.org/guide/search (accessed on 4 March 2022).
- Nierychlo, M.; Andersen, K.S.; Xu, Y.; Green, N.; Jiang, C.; Albertsen, M.; Dueholm, M.S.; Nielsen, P.H. knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge. Water Res. 2020, 182, 115955. [Google Scholar] [CrossRef]
- Ahpa, S.; Wef, S. Methods for the Examination of Water and Wastewater; American Public Health Association: Washington DC, USA, 2005. [Google Scholar]
- Domínguez, L.; Rodríguez, M.; Prats, D. Effect of different extraction methods on bound EPS from MBR sludges. Part I: Influence of extraction methods over three-dimensional EEM fluorescence spectroscopy fingerprint. Desalination 2010, 261, 19–26. [Google Scholar] [CrossRef]
- Griebe, T.; Nielsen, P. Enzymatic activity in the activated-sludge floc matrix. Appl. Microbiolol. Biot. 1995, 43, 755–761. [Google Scholar]
- Shen, Y.-x.; Xiao, K.; Liang, P.; Ma, Y.-w.; Huang, X. Improvement on the modified Lowry method against interference of divalent cations in soluble protein measurement. Appl. Microbiolol. Biot. 2013, 97, 4167–4178. [Google Scholar] [CrossRef] [PubMed]
- Zuriaga-Agustí, E.; Bes-Piá, A.; Mendoza-Roca, J.A.; Alonso-Molina, J.L. Influence of extraction methods on proteins and carbohydrates analysis from MBR activated sludge flocs in view of improving EPS determination. Sep. Purif. Technol. 2013, 112, 1–10. [Google Scholar] [CrossRef]
- Mishra, S.K.; Suh, W.I.; Farooq, W.; Moon, M.; Shrivastav, A.; Park, M.S.; Yang, J.-W. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 2014, 155, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Rahban, M.; Divsalar, A.; Saboury, A.A.; Golestani, A. Nanotoxicity and spectroscopy studies of silver nanoparticle: Calf thymus DNA and K562 as targets. J. Phys. Chem. C 2010, 114, 5798–5803. [Google Scholar] [CrossRef]
- Fonte, E.S.; Amado, A.M.; Meirelles-Pereira, F.; Esteves, F.A.; Rosado, A.S.; Farjalla, V.F. The combination of different carbon sources enhances bacterial growth efficiency in aquatic ecosystems. Microb. Ecol. 2013, 66, 871–878. [Google Scholar] [CrossRef]
- McAteer, P.G.; Trego, A.C.; Thorn, C.; Mahony, T.; Abram, F.; O’Flaherty, V. Reactor configuration influences microbial community structure during high-rate, low-temperature anaerobic treatment of dairy wastewater. Bioresour. Technol. 2020, 307, 123221. [Google Scholar] [CrossRef]
- Vidal, G.; Carvalho, A.; Mendez, R.; Lema, J. Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresour. Technol. 2000, 74, 231–239. [Google Scholar] [CrossRef]
- Elenter, D.; Milferstedt, K.; Zhang, W.; Hausner, M.; Morgenroth, E. Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm. Water Res. 2007, 41, 4657–4671. [Google Scholar] [CrossRef]
- Navada, S.; Knutsen, M.F.; Bakke, I.; Vadstein, O. Nitrifying biofilms deprived of organic carbon show higher functional resilience to increases in carbon supply. Scientific Reports 2020, 10, 7121. [Google Scholar] [CrossRef]
- Du, R.; Cao, S.; Li, B.; Zhang, H.; Li, X.; Zhang, Q.; Peng, Y. Step-feeding organic carbon enhances high-strength nitrate and ammonia removal via DEAMOX process. Chem. Eng. J. 2019, 360, 501–510. [Google Scholar] [CrossRef]
- Qureshi, A.; Lo, K.V.; Mavinic, D.S.; Liao, P.H.; Koch, F.; Kelly, H. Dairy manure treatment, digestion and nutrient recovery as a phosphate fertilizer. J. Environ. Sci. Health Part B 2006, 41, 1221–1235. [Google Scholar] [CrossRef]
- Ding, Y.; Dai, X.; Wu, B.; Liu, Z.; Dai, L. Targeted clean extraction of phosphorus from waste activated sludge: From a new perspective of phosphorus occurrence states to an innovative approach through acidic cation exchange resin. Water Res. 2022, 215, 118190. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-W.; Zhang, H.-L.; Sheng, G.-P.; Yu, H.-Q. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. Water Res. 2015, 86, 85–95. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Liu, Z.; Huang, X.; Fang, F.; Guo, J.; Yan, P. Effect of EPS and its forms of aerobic granular sludge on sludge aggregation performance during granulation process based on XDLVO theory. Sci. Total Environ. 2021, 795, 148682. [Google Scholar] [CrossRef]
- Seuntjens, D.; Han, M.; Kerckhof, F.-M.; Boon, N.; Al-Omari, A.; Takacs, I.; Meerburg, F.; De Mulder, C.; Wett, B.; Bott, C.; et al. Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants. Water Res. 2018, 138, 37–46. [Google Scholar] [CrossRef]
- Schuler, A.J.; Jenkins, D. Enhanced Biological Phosphorus Removal from Wastewater by Biomass with Different Phosphorus Contents, Part I: Experimental Results and Comparison with Metabolic Models. Water Environ. Res. 2003, 75, 485–498. [Google Scholar] [CrossRef]
- Gu, A.Z.; Saunders, A.; Neethling, J.; Stensel, H.; Blackall, L. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States. Water Environ. Res. 2008, 80, 688–698. [Google Scholar] [CrossRef]
- Onnis-Hayden, A.; Srinivasan, V.; Tooker, N.B.; Li, G.; Wang, D.; Barnard, J.L.; Bott, C.; Dombrowski, P.; Schauer, P.; Menniti, A. Survey of full-scale sidestream enhanced biological phosphorus removal (S2EBPR) systems and comparison with conventional EBPRs in North America: Process stability, kinetics, and microbial populations. Water Environ. Res. 2020, 92, 403–417. [Google Scholar] [CrossRef]
- Majed, N.; Gu, A.Z. Phenotypic dynamics in polyphosphate and glycogen accumulating organisms in response to varying influent C/P ratios in EBPR systems. Sci. Total Environ. 2020, 743, 140603. [Google Scholar] [CrossRef]
- Pijuan, M.; Baeza, J.A.; Casas, C.; Lafuente, J. Response of an EBPR population developed in an SBR with propionate to different carbon sources. Water Sci. Technol. 2004, 50, 131–138. [Google Scholar] [CrossRef]
- Qiu, G.; Zuniga-Montanez, R.; Law, Y.; Thi, S.S.; Nguyen, T.Q.N.; Eganathan, K.; Liu, X.; Nielsen, P.H.; Williams, R.B.; Wuertz, S. Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. Water Res. 2019, 149, 496–510. [Google Scholar] [CrossRef]
- Kim, B.-R.; Shin, J.; Guevarra, R.B.; Lee, J.H.; Kim, D.W.; Seol, K.-H.; Lee, J.-H.; Kim, H.B.; Isaacson, R.E. Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol. Biotechn. 2017, 27, 2089–2093. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, A.L.; Souza, A.J.; Andrade, P.A.M.; Andreote, F.D.; Coscione, A.R.; Oliveira, F.C.; Regitano, J.B. Sewage sludge microbial structures and relations to their sources, treatments, and chemical attributes. Front. Microbiol. 2018, 9, 1462. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Mielczarek, A.T.; Kragelund, C.; Nielsen, J.L.; Saunders, A.M.; Kong, Y.; Hansen, A.A.; Vollertsen, J. A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res. 2010, 44, 5070–5088. [Google Scholar] [CrossRef]
- Lawson, C.E.; Strachan, B.J.; Hanson, N.W.; Hahn, A.S.; Hall, E.R.; Rabinowitz, B.; Mavinic, D.S.; Ramey, W.D.; Hallam, S.J. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 2015, 17, 4979–4993. [Google Scholar] [CrossRef]
- Eilersen, A.M.; Henze, M.; Kløft, L. Effect of volatile fatty acids and trimethylamine on nitrification in activated sludge. Water Res. 1994, 28, 1329–1336. [Google Scholar] [CrossRef]
- Cao, Y.; van Loosdrecht, M.C.M.; Daigger, G.T. Mainstream partial nitritation–anammox in municipal wastewater treatment: Status, bottlenecks, and further studies. Appl. Microbiolol. Biot. 2017, 101, 1365–1383. [Google Scholar] [CrossRef]
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; van Loosdrecht, M.C.M. Full-scale partial nitritation/anammox experiences – An application survey. Water Res. 2014, 55, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Liang, B.; Zhang, K.; Wang, Y.; Jin, D.; Zhang, Q.; Hao, L.; Zhu, T. Simultaneous shortcut nitrification and denitrification in a hybrid membrane aerated biofilms reactor (H-MBfR) for nitrogen removal from low COD/N wastewater. Water Res. 2022, 211, 118027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, C.; Wu, P.; Xia, Y.; Chen, Y.; Liu, W.; Xu, L.; Faustin, F. A novel denitrifying phosphorus removal and partial nitrification, anammox (DPR-PNA) process for advanced nutrients removal from high-strength wastewater. Chemosphere 2021, 265, 129165. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Li, X.; Jia, S.; Peng, Y. Combining partial nitrification and post endogenous denitrification in an EBPR system for deep-level nutrient removal from low carbon/nitrogen (C/N) domestic wastewater. Chemosphere 2018, 210, 19–28. [Google Scholar] [CrossRef]
- Lv, X.m.; Shao, M.f.; Li, C.l.; Li, J.; Xia, X.; Liu, D.y. Bacterial diversity and community structure of denitrifying phosphorus removal sludge in strict anaerobic/anoxic systems operated with different carbon sources. J. Chem. Technol. Biotechnol. 2014, 89, 1842–1849. [Google Scholar] [CrossRef]
- Shen, N.; Zhou, Y. Enhanced biological phosphorus removal with different carbon sources. Appl. Microbiolol. Biot. 2016, 100, 4735–4745. [Google Scholar] [CrossRef]
- Vargas, M.; Guisasola, A.; Artigues, A.; Casas, C.; Baeza, J. Comparison of a nitrite-based anaerobic–anoxic EBPR system with propionate or acetate as electron donors. Process Biochem. 2011, 46, 714–720. [Google Scholar] [CrossRef]
- Zeng, T.; Wang, D.; Li, X.; Ding, Y.; Liao, D.; Yang, Q.; Zeng, G. Comparison between acetate and propionate as carbon sources for phosphorus removal in the aerobic/extended-idle regime. Biochem. Eng. J. 2013, 70, 151–157. [Google Scholar] [CrossRef]
- Zhu, R.; Wu, M.; Zhu, H.; Wang, Y.; Yang, J. Enhanced phosphorus removal by a humus soil cooperated sequencing batch reactor using acetate as carbon source. Chem. Eng. J. 2011, 166, 687–692. [Google Scholar] [CrossRef]
- Lanham, A.B.; Oehmen, A.; Saunders, A.M.; Carvalho, G.; Nielsen, P.H.; Reis, M.A.M. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal. Water Res. 2013, 47, 7032–7041. [Google Scholar] [CrossRef]
- Oehmen, A.; Yuan, Z.; Blackall, L.L.; Keller, J. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol. Bioeng. 2005, 91, 162–168. [Google Scholar] [CrossRef]
- Marques, R.; Santos, J.; Nguyen, H.; Carvalho, G.; Noronha, J.P.; Nielsen, P.H.; Reis, M.A.M.; Oehmen, A. Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal. Water Res. 2017, 122, 159–171. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Cope, H.A.; Li, X.; He, P.; Liu, C.; Li, G.; Rahman, S.M.; Tooker, N.B.; Bott, C.B.; et al. Intracellular polyphosphate length characterization in polyphosphate accumulating microorganisms (PAOs): Implications in PAO phenotypic diversity and enhanced biological phosphorus removal performance. Water Res. 2021, 206, 117726. [Google Scholar] [CrossRef]
- Gu, Y.; Wei, Y.; Xiang, Q.; Zhao, K.; Yu, X.; Zhang, X.; Li, C.; Chen, Q.; Xiao, H.; Zhang, X. C: N ratio shaped both taxonomic and functional structure of microbial communities in livestock and poultry breeding wastewater treatment reactor. Sci. Total Environ. 2019, 651, 625–633. [Google Scholar] [CrossRef]
- Pelissari, C.; Guivernau, M.; Viñas, M.; de Souza, S.S.; García, J.; Sezerino, P.H.; Ávila, C. Unraveling the active microbial populations involved in nitrogen utilization in a vertical subsurface flow constructed wetland treating urban wastewater. Sci. Total Environ. 2017, 584, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, G.; Lemos, P.C.; Oehmen, A.; Reis, M.A. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure. Water Res. 2007, 41, 4383–4396. [Google Scholar] [CrossRef]
- Nielsen, P.H.; McIlroy, S.J.; Albertsen, M.; Nierychlo, M. Re-evaluating the microbiology of the enhanced biological phosphorus removal process. Curr. Opin. Biotech. 2019, 57, 111–118. [Google Scholar] [CrossRef]
- McIlroy, S.J.; Albertsen, M.; Andresen, E.K.; Saunders, A.M.; Kristiansen, R.; Stokholm-Bjerregaard, M.; Nielsen, K.L.; Nielsen, P.H. ’Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME J. 2014, 8, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Marques, R.; Ribera-Guardia, A.; Santos, J.; Carvalho, G.; Reis, M.A.M.; Pijuan, M.; Oehmen, A. Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes. Water Res. 2018, 137, 262–272. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Chen, P.; Min, M.; Chen, Y.; Zhu, J.; Ruan, R.R. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 2010, 101, 2623–2628. [Google Scholar]
- Li, S.; Fei, X.; Chi, Y.; Jiao, X.; Wang, L. Integrated temperature and DO effect on the lab scale A2O process: performance, kinetics and microbial community. Int. Biodeterior. Biodegrad. 2018, 133, 170–179. [Google Scholar]
- Yao, Q.; Peng, D.-C. Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants. Amb Express 2017, 7, 25. [Google Scholar]
Influent Concentration | Start-Up Phase | Phase I Days 61–142 | Phase II Days 143–183 | Phase III Days 184–224 | ||
---|---|---|---|---|---|---|
Days 1–16 | Days 17–40 | Days 41–60 | ||||
COD (mg/L) | 192 ± 27 | 289 ± 20 | 333 ± 55 | 388 ± 25 | 696 ± 27 | 983 ± 49 |
TN (mg/L) | 23.1 ± 4.3 | 22.1 ± 2.0 | 24.1± 1.0 | 23.3 ± 3.1 | 43.5 ± 7.3 | 56.1 ± 10.4 |
NH4+-N (mg/L) | 21.4 ± 0.7 | 19.8 ± 2.3 | 19.3 ± 0.9 | 19.8 ± 1.1 | 35.4 ± 2.9 | 49.9 ± 1.3 |
PO43−-P (mg/L) | 8.2 ± 1.5 | 7.6 ± 2.3 | 8.3 ± 0.4 | 8.1 ± 0.6 | 13.9 ± 1.0 | 19.2 ± 1.5 |
COD/N ratio | 9.0 | 14.6 | 17.2 | 19.6 | 19.7 | 19.7 |
COD/P ratio | 23.4 | 38.0 | 40.1 | 47.9 | 50.1 | 51.2 |
Carbon Source | P Release Rate [mg P/(g VSS·h)] | Substrate Uptake Rate [mg C/(g VSS·h)] | P Uptake Rate [mg P/(g VSS·h)] | P Release/Substrate Uptake Ratio (P-mol/C-mol) | Reference | |
---|---|---|---|---|---|---|
Acetate | Phase I | 10.3 | 6.2 | 4.1 | 0.64 | This study |
Phase II | 4.7 | 6.4 | 1.2 | 0.30 | This study | |
Phase III | 7.0 | 7.3 | 3.2 | 0.38 | This study | |
Full-scale sludge | 5.6-31.9 | 16.1-42.5 | 2.4-9.7 | 0.29-0.75 | [52] | |
Full-scale sludge | 2.8-5.3 | 7.7-24.9 | 0.6-2.6 | 0.16-0.54 | [53] | |
Lab-scale sludge | 4.4-50.6 | 7.7-32.7 | 9.8-23.8 | 0.22-0.60 | [54] | |
Propionate | Phase I | 9.8 | 5.2 | 3.7 | 0.73 | This study |
Phase II | 7.3 | 4.7 | 1.5 | 0.60 | This study | |
Phase III | 6.4 | 3.0 | 2.6 | 0.81 | This study | |
Lab-scale sludge | 13.6 | 36.7 | 18.6 | 0.27 | [55] | |
Full-scale sludge | - | - | - | 0.38-0.60 | [56] |
Samples | Observed Species | Good’s Coverage | Pielou’s Evenness | Chao1 | Gini–Simpson | Shannon |
---|---|---|---|---|---|---|
Raw sludge | 2768 | 0.990 | 0.792 | 3024 | 0.994 | 9.063 |
Phase I | 3035 | 0.995 | 0.736 | 3090 | 0.984 | 8.515 |
Phase II | 3070 | 0.996 | 0.698 | 3085 | 0.968 | 8.090 |
Phase III | 3065 | 0.990 | 0.723 | 3208 | 0.986 | 8.378 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Qian, Y.; Xi, P.; Cao, R.; Qin, L.; Zhang, S.; Chai, G.; Huang, M.; Li, K.; Xiao, Y.; et al. Partial Nitrification and Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Treating High-Strength Wastewater. Int. J. Environ. Res. Public Health 2022, 19, 5653. https://doi.org/10.3390/ijerph19095653
Feng X, Qian Y, Xi P, Cao R, Qin L, Zhang S, Chai G, Huang M, Li K, Xiao Y, et al. Partial Nitrification and Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Treating High-Strength Wastewater. International Journal of Environmental Research and Public Health. 2022; 19(9):5653. https://doi.org/10.3390/ijerph19095653
Chicago/Turabian StyleFeng, Xiaojun, Yishi Qian, Peng Xi, Rui Cao, Lu Qin, Shengwei Zhang, Guodong Chai, Mengbo Huang, Kailong Li, Yi Xiao, and et al. 2022. "Partial Nitrification and Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Treating High-Strength Wastewater" International Journal of Environmental Research and Public Health 19, no. 9: 5653. https://doi.org/10.3390/ijerph19095653
APA StyleFeng, X., Qian, Y., Xi, P., Cao, R., Qin, L., Zhang, S., Chai, G., Huang, M., Li, K., Xiao, Y., Xie, L., Song, Y., & Wang, D. (2022). Partial Nitrification and Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Treating High-Strength Wastewater. International Journal of Environmental Research and Public Health, 19(9), 5653. https://doi.org/10.3390/ijerph19095653