Investigation of the Relationship between Lean Muscle Mass and Erythropoietin Resistance in Maintenance Haemodialysis Patients: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Response to ESA
2.3. Laboratory Measurements
2.4. Malnutrition–Inflammation Score (MIS)
2.5. Measurement of Body Composition
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Associations between Haemoglobin Level and Relevant Parameters
3.3. Associations between ESA Responsiveness and Relevant Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovesdy, C.P.; Trivedi, B.K.; Kalantar-Zadeh, K.; Anderson, J.E. Association of anemia with outcomes in men with moderate and severe chronic kidney disease. Kidney Int. 2006, 69, 560–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Androne, A.S.; Katz, S.D.; Lund, L.; LaManca, J.; Hudaihed, A.; Hryniewicz, K.; Mancini, D.M. Hemodilution is common in patients with advanced heart failure. Circulation 2003, 107, 226–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, S.C.; Kuo, K.L.; Peng, C.H.; Wu, C.H.; Wang, Y.C.; Tarng, D.C. Association of fluid retention with anemia and clinical outcomes among patients with chronic kidney disease. J. Am. Heart Assoc. 2015, 4, e001480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoccali, C.; Moissl, U.; Chazot, C.; Mallamaci, F.; Tripepi, G.; Arkossy, O.; Wabel, P.; Stuard, S. Chronic Fluid Overload and Mortality in ESRD. J. Am. Soc. Nephrol. 2017, 28, 2491–2497. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.A.; Lobo, D.N.; Anderson, J.A.; Macdonald, I.A.; Perkins, A.C.; Neal, K.R.; Allison, S.P.; Rowlands, B.J. Body water compartment measurements: A comparison of bioelectrical impedance analysis with tritium and sodium bromide dilution techniques. Clin. Nutr. 2001, 20, 339–343. [Google Scholar] [CrossRef]
- Chen, Y.; Shlofmitz, E.; Khalid, N.; Bernardo, N.L.; Ben-Dor, I.; Weintraub, W.S.; Waksman, R. Right Heart Catheterization-Related Complications: A Review of the Literature and Best Practices. Cardiol. Rev. 2020, 28, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Cooper, B.A.; Aslani, A.; Ryan, M.; Zhu, F.Y.; Ibels, L.S.; Allen, B.J.; Pollock, C.A. Comparing different methods of assessing body composition in end-stage renal failure. Kidney Int. 2000, 58, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Crugliano, G.; Serra, R.; Ielapi, N.; Battaglia, Y.; Coppolino, G.; Bolignano, D.; Bracale, U.M.; Pisani, A.; Faga, T.; Michael, A.; et al. Hypoxia-Inducible Factor Stabilizers in End Stage Kidney Disease: “Can the Promise Be Kept?”. Int. J. Mol. Sci. 2021, 22, 12590. [Google Scholar] [CrossRef]
- Drueke, T.B.; Massy, Z.A. Erythropoiesis-Stimulating Agents and Mortality. J. Am. Soc. Nephrol. 2019, 30, 907–908. [Google Scholar] [CrossRef]
- Kotanko, P.; Thijssen, S.; Levin, N.W. Association between erythropoietin responsiveness and body composition in dialysis patients. Blood Purif. 2008, 26, 82–89. [Google Scholar] [CrossRef]
- Vega, A.; Ruiz, C.; Abad, S.; Quiroga, B.; Velazquez, K.; Yuste, C.; Aragoncillo, I.; Lopez Gomez, J.M. Body composition affects the response to erythropoiesis-stimulating agents in patients with chronic kidney disease in dialysis. Ren. Fail. 2014, 36, 1073–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takata, T.; Mae, Y.; Yamada, K.; Taniguchi, S.; Hamada, S.; Yamamoto, M.; Iyama, T.; Isomoto, H. Skeletal muscle mass is associated with erythropoietin response in hemodialysis patients. BMC Nephrol. 2021, 22, 134. [Google Scholar] [CrossRef] [PubMed]
- Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease. Kidney Int. Suppl. 2012, 2, 279–335. [Google Scholar]
- Vega, A.; Abad, S.; Verdalles, U.; Aragoncillo, I.; Velazquez, K.; Quiroga, B.; Escudero, V.; Lopez-Gomez, J.M. Dose equivalence between continuous erythropoietin receptor activator (CERA), Darbepoetin and Epoetin in patients with advanced chronic kidney disease. Hippokratia 2014, 18, 315–318. [Google Scholar]
- Gunnell, J.; Yeun, J.Y.; Depner, T.A.; Kaysen, G.A. Acute-phase response predicts erythropoietin resistance in hemodialysis and peritoneal dialysis patients. Am. J. Kidney Dis. 1999, 33, 63–72. [Google Scholar] [CrossRef]
- Daugirdas, J.T. Second generation logarithmic estimates of single-pool variable volume Kt/V: An analysis of error. J. Am. Soc. Nephrol. 1993, 4, 1205–1213. [Google Scholar] [CrossRef]
- Kuo, K.L.; Hung, S.C.; Tseng, W.C.; Tsai, M.T.; Liu, J.S.; Lin, M.H.; Hsu, C.C.; Tarng, D.C.; Taiwan Society of Nephrology Renal Registry Data. Association of Anemia and Iron Parameters With Mortality Among Patients Undergoing Prevalent Hemodialysis in Taiwan: The AIM—HD Study. J. Am. Heart Assoc. 2018, 7, e009206. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Kopple, J.D.; Block, G.; Humphreys, M.H. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2001, 38, 1251–1263. [Google Scholar] [CrossRef] [Green Version]
- Moissl, U.M.; Wabel, P.; Chamney, P.W.; Bosaeus, I.; Levin, N.W.; Bosy-Westphal, A.; Korth, O.; Muller, M.J.; Ellegard, L.; Malmros, V.; et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol. Meas. 2006, 27, 921–933. [Google Scholar] [CrossRef]
- Hung, S.C.; Kuo, K.L.; Peng, C.H.; Wu, C.H.; Lien, Y.C.; Wang, Y.C.; Tarng, D.C. Volume overload correlates with cardiovascular risk factors in patients with chronic kidney disease. Kidney Int. 2014, 85, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Wizemann, V.; Wabel, P.; Chamney, P.; Zaluska, W.; Moissl, U.; Rode, C.; Malecka-Masalska, T.; Marcelli, D. The mortality risk of overhydration in haemodialysis patients. Nephrol. Dial. Transplant. 2009, 24, 1574–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, J.M.; Plumb, J.O.M.; Clissold, E.; Kumar, S.B.; Wakeham, D.J.; Schmidt, W.; Grocott, M.P.W.; Richards, T.; Montgomery, H.E. Hemoglobin concentration, total hemoglobin mass and plasma volume in patients: Implications for anemia. Haematologica 2017, 102, 1477–1485. [Google Scholar] [CrossRef]
- Gonzalez-Casas, R.; Jones, E.A.; Moreno-Otero, R. Spectrum of anemia associated with chronic liver disease. World J. Gastroenterol. 2009, 15, 4653–4658. [Google Scholar] [CrossRef] [PubMed]
- Cobo, G.; Lindholm, B.; Stenvinkel, P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol. Dial. Transplant. 2018, 33, iii35–iii40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gluba-Brzozka, A.; Franczyk, B.; Olszewski, R.; Rysz, J. The Influence of Inflammation on Anemia in CKD Patients. Int. J. Mol. Sci. 2020, 21, 725. [Google Scholar] [CrossRef] [Green Version]
- do Sameiro-Faria, M.; Ribeiro, S.; Rocha-Pereira, P.; Fernandes, J.; Reis, F.; Bronze-da-Rocha, E.; Miranda, V.; Quintanilha, A.; Costa, E.; Belo, L.; et al. Body mass index and resistance to recombinant human erythropoietin therapy in maintenance hemodialysis patients. Ren. Fail. 2013, 35, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.J.F.; Hortegal, E.V.; Serra, H.O.; Lages, J.S.; Salgado-Filho, N.; Dos Santos, A.M. Epoetin alfa resistance in hemodialysis patients with chronic kidney disease: A longitudinal study. Braz. J. Med. Biol. Res. 2018, 51, e7288. [Google Scholar] [CrossRef]
- El-Kannishy, G.M.; Megahed, A.F.; Tawfik, M.M.; El-Said, G.; Zakaria, R.T.; Mohamed, N.A.; Taha, E.M.; Ammar, A.A.; Abd Eltawab, A.M.; Sayed-Ahmed, N.A. Obesity may be erythropoietin dose-saving in hemodialysis patients. Kidney Res. Clin. Pract. 2018, 37, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.L.; Kalantar-Zadeh, K.; Ma, J.Z.; Quarles, L.D.; Kovesdy, C.P. Association of body mass index with outcomes in patients with CKD. J. Am. Soc. Nephrol. 2014, 25, 2088–2096. [Google Scholar] [CrossRef] [Green Version]
- Leavey, S.F.; McCullough, K.; Hecking, E.; Goodkin, D.; Port, F.K.; Young, E.W. Body mass index and mortality in ‘healthier’ as compared with ‘sicker’ haemodialysis patients: Results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol. Dial. Transplant. 2001, 16, 2386–2394. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ortiz, A.; Correa-Rotter, R.; Vazquez-Rangel, A.; Vega-Vega, O.; Espinosa-Cuevas, A. Relationship between protein-energy wasting in adults with chronic hemodialysis and the response to treatment with erythropoietin. BMC Nephrol. 2019, 20, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axelsson, J.; Qureshi, A.R.; Heimburger, O.; Lindholm, B.; Stenvinkel, P.; Barany, P. Body fat mass and serum leptin levels influence epoetin sensitivity in patients with ESRD. Am. J. Kidney Dis. 2005, 46, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Lamon, S.; Zacharewicz, E.; Stephens, A.N.; Russell, A.P. EPO-receptor is present in mouse C2C12 and human primary skeletal muscle cells but EPO does not influence myogenesis. Physiol. Rep. 2014, 2, e00256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogilvie, M.; Yu, X.; Nicolas-Metral, V.; Pulido, S.M.; Liu, C.; Ruegg, U.T.; Noguchi, C.T. Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts. J. Biol. Chem. 2000, 275, 39754–39761. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.M.; Parise, G. Skeletal Muscle Erythropoietin Expression Is Responsive to Hypoxia and Exercise. Med. Sci. Sports Exerc. 2016, 48, 1294–1301. [Google Scholar] [CrossRef] [Green Version]
- Sandnes, M.; Ulvik, R.J.; Vorland, M.; Reikvam, H. Hyperferritinemia-A Clinical Overview. J. Clin. Med. 2021, 10, 2008. [Google Scholar] [CrossRef]
- Ifudu, O.; Feldman, J.; Friedman, E.A. The intensity of hemodialysis and the response to erythropoietin in patients with end-stage renal disease. N. Engl. J. Med. 1996, 334, 420–425. [Google Scholar] [CrossRef]
- Movilli, E.; Cancarini, G.C.; Zani, R.; Camerini, C.; Sandrini, M.; Maiorca, R. Adequacy of dialysis reduces the doses of recombinant erythropoietin independently from the use of biocompatible membranes in haemodialysis patients. Nephrol. Dial. Transplant. 2001, 16, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Gaweda, A.E.; Goldsmith, L.J.; Brier, M.E.; Aronoff, G.R. Iron, inflammation, dialysis adequacy, nutritional status, and hyperparathyroidism modify erythropoietic response. Clin. J. Am. Soc. Nephrol. 2010, 5, 576–581. [Google Scholar] [CrossRef] [Green Version]
- Movilli, E.; Cancarini, G.C.; Vizzardi, V.; Camerini, C.; Brunori, G.; Cassamali, S.; Maiorca, R. Epoetin requirement does not depend on dialysis dose when Kt/N > 1.33 in patients on regular dialysis treatment with cellulosic membranes and adequate iron stores. J. Nephrol. 2003, 16, 546–551. [Google Scholar]
- Lopez-Gomez, J.M.; Portoles, J.M.; Aljama, P. Factors that condition the response to erythropoietin in patients on hemodialysis and their relation to mortality. Kidney Int. Suppl. 2008, 74, S75–S81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Data |
---|---|
Sex (% male) | 51.9 |
Age (years) | 60.7 ± 12.8 |
Diabetes mellitus (%) | 59.7 |
Cardiovascular disease (%) | 72.7 |
Chronic lung disease (%) | 5.2 |
Liver disease (%) | 11.7 |
Residual diuresis (%) | 23.4 |
ACEI/ARB (%) | 66.2 |
Dialysis vintage (months) | 59.9 (36.3–93.7) * |
Vascular access (% AVF) | 55.8 |
Kt/V | 1.6 ± 0.2 |
nPCR (g/kg/day) | 1.1 ± 0.2 |
Haemoglobin (g/dL) | 10.3 ± 1.4 |
MCV (fL) | 88.0 ± 7.9 |
Transferrin saturation (%) | 24.9 ± 6.9 |
Ferritin (ng/mL) | 349.2 ± 263.1 |
Albumin (g/dL) | 3.8 ± 0.3 |
Intact-PTH (pg/mL) | 315.9 (151.6–497.9) * |
Total cholesterol (mg/dL) | 152.6 ± 31.6 |
MIS | 5.3 ± 2.2 |
BMI (kg/m2) | 25.8 ± 3.8 |
IDWG (%) | 4.9 ± 2.5 |
Relative OH (%) | 11.1 ± 6.8 |
LTI (kg/m2) | 12.9 ± 3.3 |
FTI (kg/m2) | 12.0 ± 4.6 |
Iron dose (mg) # | 650.0 ± 372.9 |
ESA dose (IU/week/kg) | 67.8 ± 25.0 |
ERI (IU/week/kg/g/dL) | 7.0 ± 3.0 |
Variable | Haemoglobin < 10 g/dL (N = 27) | Haemoglobin ≥ 10 g/dL (N = 50) | p |
---|---|---|---|
Sex (% male) | 40.7 | 58.0 | NS |
Age (years) | 64.5 ± 11.6 | 58.6 ± 13.1 | NS |
Diabetes mellitus (%) | 66.7 | 56.0 | NS |
Cardiovascular disease (%) | 81.5 | 68.0 | NS |
Chronic lung disease (%) | 3.7 | 6.0 | NS |
Liver disease (%) | 18.5 | 8.0 | NS |
Residual diuresis (%) | 22.2 | 24.0 | NS |
ACEI/ARB (%) | 63.0 | 68.0 | NS |
Dialysis vintage (months) | 71.5 (36.1–106.1) * | 57.1 (36.0–92.7) * | NS |
Vascular access (% AVF) | 40.7 | 64.0 | NS |
Kt/V | 1.6 ± 0.2 | 1.6 ± 0.3 | NS |
nPCR (g/kg/day) | 1.1 ± 0.2 | 1.1 ± 0.2 | NS |
Haemoglobin (g/dL) | 8.7 ± 0.8 | 11.1 ± 0.8 | <0.001 |
MCV (fL) | 87.9 ± 10.8 | 88.0 ± 6.0 | NS |
Transferrin saturation (%) | 24.3 ± 6.1 | 25.3 ± 7.3 | NS |
Ferritin (ng/mL) | 518.1 ± 341.8 | 258.0 ± 145.5 | <0.001 |
Albumin (g/dL) | 3.7 ± 0.3 | 3.9 ± 0.3 | NS |
Intact-PTH (pg/mL) | 275.4 (145.5–387.7) * | 321.6 (167.8–533.6) * | NS |
Total cholesterol (mg/dL) | 145.1 ± 38.9 | 156.6 ± 26.5 | NS |
MIS | 6.5 ± 2.1 | 4.6 ± 2.1 | <0.001 |
BMI (kg/m2) | 25.7 ± 3.5 | 25.8 ± 4.0 | NS |
IDWG (%) | 5.0 ± 2.3 | 4.8 ± 2.7 | NS |
Relative OH (%) | 13.9 ± 6.4 | 9.5 ± 6.6 | 0.006 |
LTI (kg/m2) | 11.9 ± 2.9 | 13.4 ± 3.4 | NS |
FTI (kg/m2) | 12.7 ± 4.1 | 11.7 ± 4.8 | NS |
Iron supplementation (%) | 66.0 | 70.4 | NS |
Iron dose (mg) # | 778.9 ± 291.7 | 575.8 ± 398.7 | NS |
ESA dose (IU/week/kg) | 81.5 ± 14.4 | 60.5 ± 26.5 | <0.001 |
ERI (IU/week/kg/g/dL) | 9.5 ± 2.1 | 5.6 ± 2.5 | <0.001 |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
b | OR (95% CI) | p | b | OR (95% CI) | p | |
Age | 0.04 | 1.04 (0.99−1.09) | 0.060 | |||
Sex | −0.70 | 0.50 (0.19−1.29) | 0.151 | |||
Diabetes mellitus | −0.45 | 0.64 (0.24−1.69) | 0.364 | |||
Ferritin | 0.01 | 1.01 (1.00−1.01) | 0.001 | 0.01 | 1.01 (1.00−1.01) | 0.004 |
MIS | 0.41 | 1.50 (1.17−1.93) | 0.001 | 0.32 | 1.38 (1.04−1.83) | 0.025 |
BMI | −0.01 | 0.99 (0.88−1.12) | 0.906 | |||
Relative OH | 0.10 | 1.11 (1.03−1.20) | 0.010 | 0.06 | 1.06 (1.00−1.16) | 0.206 |
LTI | −0.15 | 0.86 (0.74−1.01) | 0.059 | |||
FTI | 0.05 | 1.05 (0.95−1.17) | 0.329 |
Variable | ESA Dose | ERI | ||
---|---|---|---|---|
r | p | r | p | |
Age | 0.339 | 0.003 | 0.320 | 0.005 |
Dialysis vintage | −0.090 | NS | −0.099 | NS |
Kt/V | 0.554 | <0.001 | 0.417 | <0.001 |
nPCR | 0.149 | NS | 0.102 | NS |
MCV | 0.069 | NS | 0.007 | NS |
Transferrin saturation | −0.103 | NS | −0.098 | NS |
Ferritin | 0.363 | 0.001 | 0.550 | <0.001 |
Albumin | −0.352 | 0.002 | −0.317 | 0.005 |
Intact-PTH | −0.182 | NS | −0.170 | NS |
Total cholesterol | 0.101 | NS | −0.035 | NS |
MIS | 0.462 | <0.001 | 0.496 | <0.001 |
BMI | −0.516 | <0.001 | −0.415 | <0.001 |
IDWG | 0.091 | NS | 0.078 | NS |
Relative OH | 0.112 | NS | 0.180 | NS |
LTI | −0.500 | <0.001 | −0.473 | <0.001 |
FTI | −0.076 | NS | −0.019 | NS |
Iron dose | 0.161 | NS | 0.162 | NS |
Variable | ESA Dose | ERI | ||
---|---|---|---|---|
β | p | β | p | |
Ferritin | 0.260 | 0.003 | 0.463 | <0.001 |
Kt/V | 0.281 | 0.006 | 0.181 | 0.071 |
BMI | −0.351 | <0.001 | −0.275 | 0.002 |
LTI | −0.230 | 0.019 | −0.214 | 0.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, W.-F.; Hsiao, P.-J.; Wu, K.-L.; Chen, H.-M.; Chu, C.-M.; Chan, J.-S. Investigation of the Relationship between Lean Muscle Mass and Erythropoietin Resistance in Maintenance Haemodialysis Patients: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 5704. https://doi.org/10.3390/ijerph19095704
Chiang W-F, Hsiao P-J, Wu K-L, Chen H-M, Chu C-M, Chan J-S. Investigation of the Relationship between Lean Muscle Mass and Erythropoietin Resistance in Maintenance Haemodialysis Patients: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2022; 19(9):5704. https://doi.org/10.3390/ijerph19095704
Chicago/Turabian StyleChiang, Wen-Fang, Po-Jen Hsiao, Kun-Lin Wu, Hung-Ming Chen, Chi-Ming Chu, and Jenq-Shyong Chan. 2022. "Investigation of the Relationship between Lean Muscle Mass and Erythropoietin Resistance in Maintenance Haemodialysis Patients: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 19, no. 9: 5704. https://doi.org/10.3390/ijerph19095704
APA StyleChiang, W. -F., Hsiao, P. -J., Wu, K. -L., Chen, H. -M., Chu, C. -M., & Chan, J. -S. (2022). Investigation of the Relationship between Lean Muscle Mass and Erythropoietin Resistance in Maintenance Haemodialysis Patients: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19(9), 5704. https://doi.org/10.3390/ijerph19095704