Modeling the Impact of Climatological Factors and Technological Revolution on Soybean Yield: Evidence from 13-Major Provinces of China
Abstract
:1. Introduction
2. Literature Review
3. Data and Model Construction
3.1. Data, Variables, and Descriptive Statistics
3.2. Econometric Model
4. Estimations Strategy and Empirical Results
4.1. Cross-Sectional Dependency (CSD) and Panel Unit Root Test
4.2. Panel Cointegration Analysis
4.3. Long-Run Estimates and Causality Analysis
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Q.; Yu, Q. Developing higher resolution climate change scenarios for agricultural risk assessment: Progress, challenges and prospects. Int. J. Biometeorol. 2012, 56, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Li, R.-L.; Geng, S. Impacts of climate change on agriculture and adaptive strategies in China. J. Integr. Agric. 2013, 12, 1402–1408. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security–A review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Guo, L.; Li, H.; Cao, X.; Cao, A.; Huang, M. Effect of agricultural subsidies on the use of chemical fertilizer. J. Environ. Manag. 2021, 299, 113621. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef]
- Abbas, S.; Mayo, Z.A. Impact of temperature and rainfall on rice production in Punjab, Pakistan. Environ. Dev. Sustain. 2021, 23, 1706–1728. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Kumar, P.; Kumar, S.; Dagar, V.; Kumar, A. A district-level analysis for measuring the effects of climate change on production of agricultural crops, ie, wheat and paddy: Evidence from India. Environ. Sci. Pollut. Res. 2022, 29, 31861–31885. [Google Scholar] [CrossRef]
- Xie, W.; Huang, J.; Wang, J.; Cui, Q.; Robertson, R.; Chen, K. Climate change impacts on China’s agriculture: The responses from market and trade. China Econ. Rev. 2020, 62, 101256. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO A J. Hum. Environ. 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, H.; Xing, B. Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Sci. Total Environ. 2021, 760, 143342. [Google Scholar] [CrossRef]
- Wu, Z.; Dang, J.; Pang, Y.; Xu, W. Threshold effect or spatial spillover? The impact of agricultural mechanization on grain production. J. Appl. Econ. 2021, 24, 478–503. [Google Scholar] [CrossRef]
- Belton, B.; Win, M.T.; Zhang, X.; Filipski, M. The rapid rise of agricultural mechanization in Myanmar. Food Policy 2021, 101, 102095. [Google Scholar] [CrossRef]
- Chuanqi, H.; Jing, J. Challenges and Policy suggestions for China’s Agricultural Modernization. Mod. Sci. Newsl. 2017, 7, 392–400. [Google Scholar]
- He, P.; Zhang, J.; Li, W. The role of agricultural green production technologies in improving low-carbon efficiency in China: Necessary but not effective. J. Environ. Manag. 2021, 293, 112837. [Google Scholar] [CrossRef] [PubMed]
- Ennouri, K.; Kallel, A. Remote sensing: An advanced technique for crop condition assessment. Math. Probl. Eng. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, P. Relationship and integrated development of low-carbon economy, food safety, and agricultural mechanization. Environ. Sci. Pollut. Res. 2021, 28, 68679–68689. [Google Scholar] [CrossRef]
- Bai, Z.; Ma, W.; Ma, L.; Velthof, G.L.; Wei, Z.; Havlík, P.; Oenema, O.; Lee, M.R.; Zhang, F. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 2018, 4, eaar8534. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Song, L. Agricultural production and food consumption in China: A long-term projection. China Econ. Rev. 2019, 53, 15–29. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, C. Clustering analysis of soybean production to understand its spatiotemporal dynamics in the North China Plain. Sustainability 2020, 12, 6178. [Google Scholar] [CrossRef]
- Torres, S.M.; Moran, E.F.; da Silva, R.F.B. Property rights and the soybean revolution: Shaping how China and Brazil are telecoupled. Sustainability 2017, 9, 954. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.; Yang, H.; Zhou, L.; Yang, Y.; Liu, W.; Hao, X.; Pan, P. The Land-Water-Food-Environment nexus in the context of China’s soybean import. Adv. Water Resour. 2021, 151, 103892. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, C.; Shi, X.; Bo, X.; Li, S.; Shang, M.; Chen, F.; Chu, Q. Modeling climatically suitable areas for soybean and their shifts across China. Agric. Syst. 2021, 192, 103205. [Google Scholar] [CrossRef]
- Pickson, R.B.; He, G.; Ntiamoah, E.B.; Li, C. Cereal production in the presence of climate change in China. Environ. Sci. Pollut. Res. 2020, 27, 45802–45813. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Chen, W.; Chandio, A.A.; Zhang, B.; Jiang, Y. Does Agricultural Credit Mitigate the Effect of Climate Change on Cereal Production? Evidence from Sichuan Province, China. Atmosphere 2022, 13, 336. [Google Scholar] [CrossRef]
- Pickson, R.B.; He, G.; Boateng, E. Impacts of climate change on rice production: Evidence from 30 Chinese provinces. Environ. Dev. Sustain. 2021, 24, 3907–3925. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Rehman, A.; Rauf, A. Short and long-run impacts of climate change on agriculture: An empirical evidence from China. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 201–221. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Irfan, M.; Ahmad, M. Does carbon dioxide, methane, nitrous oxide, and GHG emissions influence the agriculture? Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 28768–28779. [Google Scholar] [CrossRef]
- Chandio, A.A.; Jiang, Y.; Abbas, Q.; Amin, A.; Mohsin, M. Does financial development enhance agricultural production in the long-run? Evidence from China. J. Public Aff. 2020, e2342. [Google Scholar] [CrossRef]
- Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Bhattarai, M.D.; Secchi, S.; Schoof, J. Projecting corn and soybeans yields under climate change in a Corn Belt watershed. Agric. Syst. 2017, 152, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Yokozawa, M.; Liu, J.; Zhang, Z. Climate–crop yield relationships at provincial scales in China and the impacts of recent climate trends. Clim. Res. 2008, 38, 83–94. [Google Scholar] [CrossRef]
- Challinor, A.J.; Ewert, F.; Arnold, S.; Simelton, E.; Fraser, E. Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation. J. Exp. Bot. 2009, 60, 2775–2789. [Google Scholar] [CrossRef] [PubMed]
- Yuzbashkandi, S.S.; Khalilian, S. On projecting climate change impacts on soybean yield in Iran: An econometric approach. Environ. Processes 2020, 7, 73–87. [Google Scholar] [CrossRef]
- Chandio, A.A.; Magsi, H.; Ozturk, I. Examining the effects of climate change on rice production: Case study of Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 7812–7822. [Google Scholar] [CrossRef] [PubMed]
- Jan, I.; Ashfaq, M.; Chandio, A.A. Impacts of climate change on yield of cereal crops in northern climatic region of Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 60235–60245. [Google Scholar] [CrossRef]
- Zhai, S.; Song, G.; Qin, Y.; Ye, X.; Lee, J. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach. PLoS ONE 2017, 12, e0184474. [Google Scholar] [CrossRef]
- Li, S.; You, S.; Song, Z.; Zhang, L.; Liu, Y. Impacts of Climate and Environmental Change on Bean Cultivation in China. Atmosphere 2021, 12, 1591. [Google Scholar] [CrossRef]
- Siamabele, B. The significance of soybean production in the face of changing climates in Africa. Cogent Food Agric. 2021, 7, 1933745. [Google Scholar] [CrossRef]
- Lybbert, T.J.; Sumner, D.A. Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food Policy 2012, 37, 114–123. [Google Scholar] [CrossRef]
- Caetano, J.M.; Tessarolo, G.; De Oliveira, G.; Souza, K.D.S.E.; Diniz-Filho, J.A.F.; Nabout, J.C. Geographical patterns in climate and agricultural technology drive soybean productivity in Brazil. PLoS ONE 2018, 13, e0191273. [Google Scholar] [CrossRef] [Green Version]
- Tolasa, M.; Gedamu, F.; Woldetsadik, K. Impacts of harvesting stages and pre-storage treatments on shelf life and quality of tomato (Solanum lycopersicum L.). Cogent Food Agric. 2021, 7, 1863620. [Google Scholar] [CrossRef]
- Wang, J.-X.; Huang, J.-K.; Jun, Y. Overview of impacts of climate change and adaptation in China’s agriculture. J. Integr. Agric. 2014, 13, 1–17. [Google Scholar] [CrossRef]
- Abbas, S. Climate change and major crop production: Evidence from Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 5406–5414. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, R.; Masud, M.M. Dynamic linkages between climatic variables and agriculture production in Malaysia: A generalized method of moments approach. Environ. Sci. Pollut. Res. 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chandio, A.A.; Jiang, Y.; Amin, A.; Ahmad, M.; Akram, W.; Ahmad, F. Climate change and food security of South Asia: Fresh evidence from a policy perspective using novel empirical analysis. J. Environ. Plan. Manag. 2021, 1–22. [Google Scholar] [CrossRef]
- Ozdemir, D. The Impact of Climate Change on Agricultural Productivity in Asian Countries: A heterogeneous panel data approach. Environ. Sci. Pollut. Res. 2021, 29, 8205–8217. [Google Scholar] [CrossRef]
- Rehman, A.; Chandio, A.A.; Hussain, I.; Jingdong, L. Fertilizer consumption, water availability and credit distribution: Major factors affecting agricultural productivity in Pakistan. J. Saudi Soc. Agric. Sci. 2019, 18, 269–274. [Google Scholar] [CrossRef]
- Ali, S.; Liu, Y.; Nazir, A.; Ishaq, M.; Khan, S.; Abdullah, S.T.; Shah, T. Does technical progress mitigate climate effect on crops yield in Pakistan. J. Anim. Plant Sci. 2020, 30, 663–676. [Google Scholar]
- Chandio, A.A.; Jiang, Y.; Akram, W.; Adeel, S.; Irfan, M.; Jan, I. Addressing the effect of climate change in the framework of financial and technological development on cereal production in Pakistan. J. Clean. Prod. 2021, 288, 125637. [Google Scholar] [CrossRef]
- Xiaoman, W.; Majeed, A.; Vasbieva, D.G.; Yameogo, C.E.W.; Hussain, N. Natural resources abundance, economic globalization, and carbon emissions: Advancing sustainable development agenda. Sustain. Dev. 2021, 29, 1037–1048. [Google Scholar] [CrossRef]
- Usman, M.; Makhdum, M.S.A. What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew. Energy 2021, 179, 12–28. [Google Scholar] [CrossRef]
- Baloch, M.A.; Wang, B. Analyzing the role of governance in CO2 emissions mitigation: The BRICS experience. Struct. Chang. Econ. Dyn. 2019, 51, 119–125. [Google Scholar]
- Chen, S.; Chen, X.; Xu, J. Impacts of Climate Change on Corn and Soybean Yields in China. In Proceedings of the 2013 Annual Meeting, Washington, DC, USA, 4–6 August 2013; Agricultural and Applied Economics Association: Milwaukee, WI, USA, 2013. [Google Scholar]
- Sarkar, M.S.K.; Begum, R.A.; Pereira, J.J. Impacts of climate change on oil palm production in Malaysia. Environ. Sci. Pollut. Res. 2020, 27, 9760–9770. [Google Scholar] [CrossRef] [PubMed]
- Warsame, A.A.; Sheik-Ali, I.A.; Ali, A.O.; Sarkodie, S.A. Climate change and crop production nexus in Somalia: An empirical evidence from ARDL technique. Environ. Sci. Pollut. Res. 2021, 28, 19838–19850. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, S.; Ozkaya, I.; Caliskan, M.; Arslan, M. The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crops Res. 2008, 108, 126–132. [Google Scholar] [CrossRef]
- Ramteke, R.; Gupta, G.K.; Singh, D.V. Growth and yield responses of soybean to climate change. Agric. Res. 2015, 4, 319–323. [Google Scholar] [CrossRef]
- Janagard, M.S.; Raei, Y.; Gasemi-Golezani, K.; Aliasgarzad, N. Soybean response to biological and chemical fertilizers. Int. J. Agric. Crop Sci. 2013, 5, 261–266. [Google Scholar]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Xin, L.; Li, X.; Tan, M.; Wang, Y. Exploring a moderate operation scale in China’s grain production: A perspective on the costs of machinery services. Sustainability 2019, 11, 2213. [Google Scholar] [CrossRef] [Green Version]
- Ansah, I.K.; Toatoba, J.; Donkoh, S. The effect of credit constraints on crop yield: Evidence from soybean farmers in Northern Region of Ghana. Ghana J. Sci. Technol. Dev. 2016, 4, 51–67. [Google Scholar]
Variables | Symbol | Measurement | Source |
---|---|---|---|
Yield of soybean | soyby | kg/ha | CSY |
Mean annual temperature | temp | Degree Celsius | CSY |
Mean annual rainfall | rf | Mm | CSY |
Fertilizers consumption | ferc | 10,000 tons | CSY |
Pesticides used | pestc | Tons | CSY |
Farm size | fs | 1000 ha | CSY |
Agricultural credit | cr | RMB 100 million | CSY |
Public investment | pinvest | RMB 100 million | CSY |
Agricultural power consumption | agrpc | 10,000 kilowatts | CSY |
Variables | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
lnsoyby | 4.0918 | 0.8886 | 2.5885 | 6.8246 |
lntemp | 2.3899 | 0.5218 | 0.8329 | 2.9231 |
lnrf | 6.4813 | 0.4707 | 5.2183 | 7.8702 |
lnferc | 5.5275 | 0.4541 | 4.3141 | 6.5738 |
pestc | 7.7633 | 4.1510 | 0.8900 | 17.3500 |
lnfs | 8.7474 | 0.3544 | 7.9842 | 9.7523 |
lncredit | 7.6070 | 1.7138 | 4.4434 | 10.5751 |
lnpinvet | 5.3345 | 1.3065 | 2.2310 | 8.7098 |
lnagrpc | 8.2550 | 0.6452 | 6.9230 | 9.4994 |
Variables | Breusch-Pagan LM | Pesaran Scaled LM | Pesaran CD |
---|---|---|---|
lnsoyby | 311.6154 (0.0000) | 17.6633 (0.0000) | 5.2415 (0.0000) |
lntemp | 230.7756 (0.0000) | 11.1910 (0.0000) | 6.4063 (0.0000) |
lnrf | 173.0196 (0.0000) | 6.5668 (0.0000) | 6.6930 (0.0000) |
lnferc | 420.3057 (0.0000) | 26.3655 (0.0000) | 4.2402 (0.0000) |
pestc | 228.0176 (0.0000) | 10.9701 (0.0000) | 10.1171 (0.0000) |
lnfs | 359.0804 (0.0000) | 21.4636 (0.0000) | 5.9248 (0.0000) |
lncredit | 394.5919 (0.0000) | 24.3068 (0.0000) | 15.1850 (0.0000) |
lnpinvet | 455.5671 (0.0000) | 29.1887 (0.0000) | 15.0127 (0.0000) |
lnagrpc | 422.8512 (0.0000) | 26.5693 (0.0000) | 7.1716 (0.0000) |
CADF Test | ||||
---|---|---|---|---|
Level | p-Value | Fist-Difference | p-Value | |
lnsoyby | −1.517 | 0.827 | −3.039 *** | 0.000 |
lntemp | −1.194 | 0.984 | −3.463 *** | 0.000 |
lnrf | −1.780 | 0.485 | −2.302 ** | 0.026 |
lnferc | −2.278 ** | 0.029 | −2.161 * | 0.073 |
pestc | −2.010 | 0.186 | −2.951 *** | 0.000 |
lnfs | 1.608 | 1.000 | −3.519 *** | 0.000 |
lncredit | −1.967 | 0.232 | −3.006 *** | 0.000 |
lnpinvet | −1.131 | 0.991 | −2.850 *** | 0.000 |
lnagrpc | −2.334 ** | 0.018 | −2.345 ** | 0.015 |
Pedroni Test | Panel Tests | Statistics | p-Value |
---|---|---|---|
Within dimension | Panel PP-Stat | −3.055407 *** | 0.0011 |
Panel ADF-Stat | −3.079233 *** | 0.0010 | |
Between dimension | Group PP-Stat | −2.775922 *** | 0.0028 |
Group ADF-Stat | −2.859674 *** | 0.0021 | |
Kao Test | ADF t-Statistic | −2.275874 ** | 0.0114 |
Variables | Coef. | Std. Err. | z | p > z |
---|---|---|---|---|
DOLS | ||||
lntemp | −0.979 *** | 0.164 | −5.960 | 0.000 |
lnrf | 0.721 *** | 0.103 | 7.010 | 0.000 |
lnferc | 0.562 *** | 0.171 | 3.280 | 0.001 |
pestc | −0.043 *** | 0.014 | −3.030 | 0.002 |
lnfs | 1.183 *** | 0.190 | 6.220 | 0.000 |
lncredit | −0.203 *** | 0.056 | −3.590 | 0.000 |
lnpinvet | 0.085 | 0.068 | 1.260 | 0.208 |
lnagrpc | 0.060 | 0.113 | 0.530 | 0.596 |
_Cons | −10.770 *** | 1.666 | −6.460 | 0.000 |
FMOLS | ||||
lntemp | −1.202 ** | 0.478 | −2.520 | 0.012 |
lnrf | 1.055 *** | 0.281 | 3.750 | 0.000 |
lnferc | 0.817 * | 0.473 | 1.730 | 0.084 |
pestc | −0.031 | 0.039 | −0.800 | 0.425 |
lnfs | 0.958 * | 0.538 | 1.780 | 0.075 |
lncredit | −0.356 ** | 0.154 | −2.310 | 0.021 |
lnpinvet | 0.148 | 0.192 | 0.770 | 0.440 |
lnagrpc | 0.301 | 0.318 | 0.950 | 0.344 |
_Cons | −12.394 *** | 4.566 | −2.710 | 0.007 |
Null Hypothesis: | W-Stat. | Zbar-Stat. | p-Value |
---|---|---|---|
lntemp does not homogeneously cause lnsoyby | 1.27581 | 0.28890 | 0.7727 |
lnsoyby does not homogeneously cause lntemp | 2.25402 | 2.27245 | 0.0231 ** |
lnrf does not homogeneously cause lnsoyby | 0.69129 | −0.89634 | 0.3701 |
lnsoyby does not homogeneously cause lnrf | 4.06778 | 5.95028 | 3 × 10−9 *** |
lnferc does not homogeneously cause lnsoyby | 4.48484 | 6.79596 | 1 × 10−11 *** |
lnsoyby does not homogeneously cause lnferc | 6.72337 | 11.3351 | 0.0000 *** |
pestc does not homogeneously cause lnsoyby | 3.10588 | 3.99980 | 6 × 10−5 *** |
lnsoyby does not homogeneously cause pestc | 2.50988 | 2.79127 | 0.0053 *** |
lnfs does not homogeneously cause lnsoyby | 0.89766 | −0.47788 | 0.6327 |
lnsoyby does not homogeneously cause lnfs | 0.76569 | −0.74549 | 0.4560 |
lncredit does not homogeneously cause lnsoyby | 2.36589 | 2.49930 | 0.0124 ** |
lnsoyby does not homogeneously cause lncredit | 2.51493 | 2.80151 | 0.0051 *** |
lnpinvet does not homogeneously cause lnsoyby | 3.01979 | 3.82523 | 0.0001 *** |
lnsoyby does not homogeneously cause lnpinvet | 3.84148 | 5.49141 | 4 × 10−8 *** |
lnagrpc does not homogeneously cause lnsoyby | 3.98780 | 5.78810 | 7 × 10−9 *** |
lnsoyby does not homogeneously cause lnagrpc | 3.19739 | 4.18535 | 3 × 10−5 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Chandio, A.A.; Yang, F.; Tang, Y.; Ankrah Twumasi, M.; Sargani, G.R. Modeling the Impact of Climatological Factors and Technological Revolution on Soybean Yield: Evidence from 13-Major Provinces of China. Int. J. Environ. Res. Public Health 2022, 19, 5708. https://doi.org/10.3390/ijerph19095708
Zhang H, Chandio AA, Yang F, Tang Y, Ankrah Twumasi M, Sargani GR. Modeling the Impact of Climatological Factors and Technological Revolution on Soybean Yield: Evidence from 13-Major Provinces of China. International Journal of Environmental Research and Public Health. 2022; 19(9):5708. https://doi.org/10.3390/ijerph19095708
Chicago/Turabian StyleZhang, Huaquan, Abbas Ali Chandio, Fan Yang, Yashuang Tang, Martinson Ankrah Twumasi, and Ghulam Raza Sargani. 2022. "Modeling the Impact of Climatological Factors and Technological Revolution on Soybean Yield: Evidence from 13-Major Provinces of China" International Journal of Environmental Research and Public Health 19, no. 9: 5708. https://doi.org/10.3390/ijerph19095708
APA StyleZhang, H., Chandio, A. A., Yang, F., Tang, Y., Ankrah Twumasi, M., & Sargani, G. R. (2022). Modeling the Impact of Climatological Factors and Technological Revolution on Soybean Yield: Evidence from 13-Major Provinces of China. International Journal of Environmental Research and Public Health, 19(9), 5708. https://doi.org/10.3390/ijerph19095708