Study on the Spatiotemporal Evolution and Influencing Factors of Agricultural Carbon Emissions in the Counties of Zhejiang Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Framework
2.2. Research Methods
2.2.1. Method for Estimating ACE Emissions
2.2.2. Method for the Spatial Autocorrelation Test Model
2.2.3. Spatial Dubin Model
- (1)
- Agricultural technology factor (AM). The AM is the technical factor, representing the level of agricultural technological development. Advances in agricultural technology can improve the efficiency of the machinery used, which will then produce fewer carbon emissions on the same level as the output, expressed in terms of the total agricultural machinery power [47].
- (2)
- Agricultural industry structure (Str). The industrial structure of the agricultural sector has a direct relationship with carbon emissions. Compared with the forestry and fishery industries, plantation and livestock farming contribute the major share of carbon emissions [48]
- (3)
- The agricultural development level (AGDP). The agricultural development level is the key factor affecting agricultural carbon emissions, and the agricultural economic development level is the main factor driving greenhouse gas emissions, but whether or not it will drive the growth in greenhouse gas emissions depends on the quality and stage of economic development [26]. Therefore, the agricultural development level is also taken as an important explanatory variable in this paper, and the gross agricultural output value per capita is taken as an indicator, specifically the ratio of the gross agricultural output value to the total rural population.
- (4)
- Crop planting structure (Cps). The input and carbon emissions of grain and cash crops differ substantially [49]. In view of the fact that rice plays a leading role in contributing to ACESs in Zhejiang, this paper uses the proportion of grain crop sowing land in the total agricultural planting area to characterize the crop planting structure.
- (5)
- Industrial agglomeration (IA). Industrial agglomeration generally refers to the proximity of related activities in the same industry in a specific geographical space [50]. Studies have found that industrial agglomeration can have either positive or negative impacts on industrial development, thereby validating the Williamson hypothesis [51]. The measurement of the level of industrial agglomeration has been widely employed in research on the regional economy, resources and environment, as well as low-carbon production. The measurement methods include the industry concentration, Herfindahl–Hirschman index, location quotient, etc. Considering the availability of data and the benefit of eliminating regional-scale differences, this paper uses the location quotient to measure the level of industrial agglomeration. At the same time, in order to examine whether there is a nonlinear relationship between the level of industrial agglomeration and agricultural carbon emissions, this paper adds a quadratic term of the level of industrial agglomeration as an explanatory variable. The specific expression of the location quotient is . Here, represents the location quotient of the agricultural industry in region b, represents the number of primary industry employees in region b, represents the total number of primary, secondary and tertiary industry employees in region b, represents the number of primary industry employees in China and P represents the total number of primary, secondary and tertiary industry employees in China.
- (6)
- The rural population (RP). The rural population is an important factor influencing agricultural carbon emissions, and the research basically confirms that there is a positive relationship between the two. The more people employed in agriculture there are, the greater the agricultural carbon emissions will be, and the opposite is also true [52].
- (7)
- The urbanization rate (Urban) is a social concern factor. The urbanization rate has an uncertain effect on agricultural carbon emissions. On the one hand, with the increase in the urbanization rate, a large flow of rural labor moves into the cities, promoting large-scale and intensive agricultural production, improving labor productivity, resource utilization and green production efficiency, and reducing agricultural carbon emissions [26]. On the other hand, urbanization causes the agricultural labor force to acquire the characteristics of aging, feminization and part-time employment. In order to avoid reductions in agricultural production, farmers may increase their use of alternative labor factors such as chemical fertilizers, pesticides, agricultural film and mechanical facilities, thus increasing agricultural carbon emissions [53]. Therefore, we used the urbanization rate as a control variable, which is measured as the proportion of the urban population to the total population.
- (8)
- The disposable income of rural residents per capita (INC). The INC is a social concern factor. The impact of the INC on ACEs may follow the environmental Kuznets curve (EKC). The increase in the disposable income of rural residents per capita makes it possible for farmers to expand the input of the means of agricultural production such as pesticides and fertilizers and expand the scale of planting, thus producing an increase in greenhouse gas emissions. On the other hand, to a certain extent, the income level of farmers also reflects the ability of the farmers to pay for green production technology, and the increase in the farmers’ income may also encourage farmers to adopt green production technology for low-carbon production [23].
- (9)
- Human capital (Edu). The improvement of human capital can help agricultural producers to use environmentally friendly production technologies in order to implement the development of low-carbon agriculture [53]. Therefore, this paper analyzes whether human capital contributes to the reduction in agricultural carbon emissions. Due to the limited data available, we can assume that the number of students in ordinary middle schools is equal to the number of students per 10,000 people.
2.3. Study Area and Data Sources
3. Results
3.1. Analysis of the ACEs
3.1.1. Time Evolution Characteristics of the County’s Agricultural Carbon Emissions
- (1)
- Total emissions. On the whole, the agricultural greenhouse gas emissions in Zhejiang Province showed a downward trend from 2014 to 2019 and only rebounded slightly in 2018. In 2019, the total agricultural greenhouse gas emissions of Zhejiang County were 8.5882 million tons, a decrease of 18.13% compared to 2014. In 2019, the agricultural greenhouse gas emissions caused by rice planting, gastrointestinal fermentation, fecal management and land management in Zhejiang Province were 5,160,100 tons, 304,400 tons, 876,900 tons and 2,246,800 tons, respectively, accounting for 60.08%, 3.54%, 10.21% and 26.16%.
- (2)
- Emission intensity. From 2014 to 2019, the agricultural carbon emission intensity in Zhejiang Province was generally on the rise. In 2019, the agricultural carbon emission intensity in Zhejiang Province was 1.303 tons/CNY 10,000, an increase of 4.864% compared to 2014 and 2.31 tons/CNY 10,000 lower than the national agricultural carbon emission intensity in the same period.
- (3)
- From the change in the agricultural carbon emission structure, we can observe that the proportional agricultural carbon emission structure from 2014 to 2019 was relatively stable, and rice planting was the largest emission source (accounting for 56~60%). The second significant source was carbon emissions caused by land management, accounting for 24~27%. The carbon emissions caused by gastrointestinal fermentation and fecal excretion of livestock and poultry accounted for 13–19%. Among these, rice planting was the largest carbon emission source among Zhejiang’s agriculture. In 2019, the carbon emissions from rice planting reached 5,160,100 tons, a decrease of 796,000 tons compared with 2014. The greenhouse gas emissions caused by land management showed a slight upward trend, and the proportion increased from 24.82% in 2014 to 26.16% in 2019, rendering it the second-largest agricultural carbon source after rice planting. The greenhouse gas emissions caused by the gastrointestinal fermentation of livestock in animal husbandry and livestock manure management showed a downward trend. This decrease in livestock husbandry emissions is mainly due to the decrease in the number of livestock raised. Taking live pigs as an example, the number of live pigs in Zhejiang Province decreased annually from 2014 to 2019 and had decreased by 55.7% in 2019 compared with 2014.
3.1.2. Spatial Evolution Characteristics of County-Level Agricultural Carbon Emissions
3.2. Spatial Correlation Analysis
3.2.1. Global Moreland Index Analysis of Spatial Correlation of Agricultural Carbon Emissions
3.2.2. Local Moreland Index and LISA Analysis of the Spatial Correlation of Agricultural Carbon Emissions
3.3. Spatial Econometric Estimation and Results of the Analysis of the ACESs and Their Driving Factors
3.3.1. Estimation Results of the Spatial Dubin Model
3.3.2. Direct Effect and Spillover Effect Analysis
3.3.3. Analysis of the Regional Regression Results
4. Discussion
5. Conclusions
6. Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Cook, J.; Oreskes, N.; Doran, P.T.; Anderegg, W.R.L.; Verheggen, B.; Maibach, E.W.; Carlton, J.S.; Lewandowsky, S.; Skuce, A.G.; Green, S.A.; et al. Consensus on consensus: A synthesis of consensus estimates on human-caused global warming. Environ. Res. Lett. 2016, 11, 048002. [Google Scholar] [CrossRef]
- MARAPRC. 14th Five-Year Plan for National Agricultural Green Development; MARAPRC: Beijing, China, 2021. [Google Scholar]
- Norse, D. Low carbon agriculture: Objectives and policy pathways. Environ. Dev. 2012, 1, 25–39. [Google Scholar] [CrossRef]
- Charkovska, N.; Horabik-Pyzel, J.; Bun, R.; Danylo, O.; Nahorski, Z.; Jonas, M.; Xiangyang, X. High-resolution spatial distribution and associated uncertainties of greenhouse gas emissions from the agricultural sector. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 881–905. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Hubacek, K.; Weber, C.L.; Peters, G.P.; Reiner, D.M. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Chang. 2008, 18, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Wollenberg, E.; Richards, M.; Smith, P.; Havlík, P.; Obersteiner, M.; Tubiello, F.N.; Herold, M.; Gerber, P.; Carter, S.; Reisinger, A.; et al. Reducing emissions from agriculture to meet the 2 °C target. Glob. Chang. Biol. 2016, 22, 3859–3864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Lin, Q. Can the Adjustment of China’ s Grain Purchase and Storage Policy Improve Its Green Productivity? Int. J. Environ. Res. Public Health 2022, 19, 6310. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yang, L. Spatial pattern of China’s agricultural carbon emission performance. Ecol. Indic. 2021, 133, 108345. [Google Scholar] [CrossRef]
- Yadav, G.S.; Babu, S.; Das, A.; Mohapatra, K.P.; Singh, R.; Avasthe, R.K.; Roy, S. No-till and mulching enhance energy use efficiency and reduce carbon footprint of a direct-seeded upland rice production system. J. Clean. Prod. 2020, 271, 122700. [Google Scholar] [CrossRef]
- Wright, L.A.; Kemp, S.; Williams, I. ‘Carbon footprinting’: Towards a universally accepted definition. Carbon Manag. 2011, 2, 61–72. [Google Scholar] [CrossRef]
- Cui, Y.; Khan, S.U.; Deng, Y.; Zhao, M. Regional difference decomposition and its spatiotemporal dynamic evolution of Chinese agricultural carbon emission: Considering carbon sink effect. Environ. Sci. Pollut. Res. 2021, 28, 38909–38928. [Google Scholar] [CrossRef]
- Chen, X.; Ma, C.; Zhou, H.; Liu, Y.; Huang, X.; Wang, M.; Cai, Y.; Su, D.; Muneer, M.A.; Guo, M.; et al. Identifying the main crops and key factors determining the carbon footprint of crop production in China, 2001–2018. Resour. Conserv. Recycl. 2021, 172, 105661. [Google Scholar] [CrossRef]
- Berdanier, A.B.; Conant, R.T. Regionally differentiated estimates of cropland N2O emissions reduce uncertainty in global calculations. Glob. Chang. Biol. 2012, 18, 928–935. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.-B.; He, Y.-Y. Research on Spatial-Temporal Characteristics and Driving Factor of Agricultural Carbon Emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A.; Henry Janzen, H.; Little, S.M.; McAllister, T.A.; McGinn, S.M. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agric. Syst. 2010, 103, 371–379. [Google Scholar] [CrossRef]
- Huang, Z.; Mi, S. Research on Agricultural Carbon Footprint—Taking Zhejiang Province as an Example. Agric. Econ. Issues 2011, 32, 40–47+111. (In Chinese) [Google Scholar] [CrossRef]
- Yu, D.; Liu, L.; Gao, S.; Yuan, S.; Shen, Q.; Chen, H. Impact of carbon trading on agricultural green total factor productivity in China. J. Clean. Prod. 2022, 367, 132789. [Google Scholar] [CrossRef]
- Yu, Z.; Lin, Q.; Huang, C. Re-Measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective. Agriculture 2022, 12, 2025. [Google Scholar] [CrossRef]
- Chen, J.; Pang, D.-W.; Jin, M.; Luo, Y.-L.; Li, H.-Y.; Li, Y.; Wang, Z.-L. Improved soil characteristics in the deeper plough layer can increase grain yield of winter wheat. J. Integr. Agric. 2020, 19, 1215–1226. [Google Scholar] [CrossRef]
- Zhang, M.; Song, D.; Pu, X.; Dang, P.; Qin, X.; Siddique, K.H.M. Effect of different straw returning measures on resource use efficiency and spring maize yield under a plastic film mulch system. Eur. J. Agron. 2022, 134, 126461. [Google Scholar] [CrossRef]
- Mushtaq, S.; Maraseni, T.N.; Reardon-Smith, K.; Bundschuh, J.; Jackson, T. Integrated assessment of water–energy–GHG emissions tradeoffs in an irrigated lucerne production system in eastern Australia. J. Clean. Prod. 2015, 103, 491–498. [Google Scholar] [CrossRef]
- Desjardins, R.L.; Smith, W.; Grant, B.; Campbell, C.; Riznek, R. Management Strategies to Sequester Carbon in Agricultural Soils and to Mitigate Greenhouse Gas Emissions. Clim. Chang. 2005, 70, 283–297. [Google Scholar] [CrossRef]
- Dyer, J.A.; Vergé, X.P.C.; Desjardins, R.L.; Worth, D.E.; McConkey, B.G. The impact of increased biodiesel production on the greenhouse gas emissions from field crops in Canada. Energy Sustain. Dev. 2010, 14, 73–82. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Zou, C. How does agricultural specialization affect carbon emissions in China? J. Clean. Prod. 2022, 370, 133463. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the relationship between urbanization and urban eco-efficiency: Evidence from prefecture-level cities in China. J. Clean. Prod. 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- Northrup, D.L.; Basso, B.; Wang, M.Q.; Morgan, C.L.S.; Benfey, P.N. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proc. Natl. Acad. Sci. USA 2021, 118, e2022666118. [Google Scholar] [CrossRef]
- Peter, C.; Helming, K.; Nendel, C. Do greenhouse gas emission calculations from energy crop cultivation reflect actual agricultural management practices?—A review of carbon footprint calculators. Renew. Sustain. Energy Rev. 2017, 67, 461–476. [Google Scholar] [CrossRef] [Green Version]
- Hinz, R.; Sulser, T.B.; Huefner, R.; Mason-D’Croz, D.; Dunston, S.; Nautiyal, S.; Ringler, C.; Schuengel, J.; Tikhile, P.; Wimmer, F.; et al. Agricultural Development and Land Use Change in India: A Scenario Analysis of Trade-Offs Between UN Sustainable Development Goals (SDGs). Earth’s Future 2020, 8, e2019EF001287. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Guo, L.; Cao, C.; Li, C. Integrated assessment of carbon footprint, energy budget and net ecosystem economic efficiency from rice fields under different tillage modes in central China. J. Clean. Prod. 2021, 295, 126398. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, S.; Song, M. Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013. Renew. Sustain. Energy Rev. 2018, 94, 748–761. [Google Scholar] [CrossRef]
- Hu, C.; Fan, J.; Chen, J. Spatial and Temporal Characteristics and Drivers of Agricultural Carbon Emissions in Jiangsu Province, China. Int. J. Environ. Res. Public Health 2022, 19, 12463. [Google Scholar] [CrossRef]
- Nuţă, F.M.; Nuţă, A.C.; Zamfir, C.G.; Petrea, S.-M.; Munteanu, D.; Cristea, D.S. National Carbon Accounting—Analyzing the Impact of Urbanization and Energy-Related Factors upon CO2 Emissions in Central–Eastern European Countries by Using Machine Learning Algorithms and Panel Data Analysis. Energies 2021, 14, 2775. [Google Scholar] [CrossRef]
- Lin, J.; Lu, S.; He, X.; Wang, F. Analyzing the impact of three-dimensional building structure on CO2 emissions based on random forest regression. Energy 2021, 236, 121502. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Lu, S. The impact of agricultural trade on agricultural carbon emissions—Also on the threshold effect of digital rural development. J. Huazhong Agric. Univ. (Soc. Sci. Ed.) 2022, 45–57. (In Chinese) [Google Scholar] [CrossRef]
- Yan, G.; Chen, W.; Qian, H. Effects of agricultural technical efficiency on agricultural carbon emission—Based on spatial spillover effect and threshold effect analysis. Chin. J. Eco-Agric. 2022, 30, 1–16. (In Chinese) [Google Scholar]
- Wei, Q.; Zhang, B.; Jin, S. A study on Construction and regional comparison of agricultural green development index in China. Agric. Econ. Issues (In Chinese). 2018, 39, 11–20. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Liu, L.; Wang, S.; Zhao, L.; Wu, X.; Zhang, W.; Huang, X. Estimates of methane emissions from Chinese rice fields using the DNDC model. Agric. For. Meteorol. 2021, 303, 108368. [Google Scholar] [CrossRef]
- Dubey, A.; Lal, R. Carbon Footprint and Sustainability of Agricultural Production Systems in Punjab, India, and Ohio, USA. J. Crop Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Bo, L.; Junbiao, Z.; Haipeng, L. Research on Spatial-temporal Characteristics and Affecting Factors Decomposition of Agricultural Carbon Emission in China. China Popul. Resour. Environ. 2011, 21, 80–86. (In Chinese) [Google Scholar]
- Xianrong, W.; Junbiao, Z.; Yun, T.; Peng, L. Provincial Agricultural Carbon Emissions in China: Calculation, Performance Change and Influencing Factors. Resour. Sci. 2014, 36, 129–138. (In Chinese) [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Kanagawa, Japan, 2006. [Google Scholar]
- FAO. Livestock Long Shadow; Food and Agricultural Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L. GeoDa 0.9 User’s Guide. Available online: http://geodacenter.org (accessed on 4 June 2003).
- Zhong, R.; He, Q.; Qi, Y. Digital Economy, Agricultural Technological Progress, and Agricultural Carbon Intensity: Evidence from China. Int. J. Environ. Res. Public Health 2022, 9, 6488. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, M.; Su, K.; Li, X. Spatial-Temporal Characteristics of the Driving Factors of Agricultural Carbon Emissions: Empirical Evidence from Fujian, China. Energies 2019, 12, 3102. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Li, Y.; Ge, D.; Tu, S. How does off-farm work affect chemical fertilizer application? Evidence from China’s mountainous and plain areas. Land Use Policy 2020, 99, 104848. [Google Scholar] [CrossRef]
- Billings, S.B.; Johnson, E.B. Agglomeration within an urban area. J. Urban Econ. 2016, 91, 13–25. [Google Scholar] [CrossRef]
- Wu, J.; Ge, Z.; Han, S.; Xing, L.; Zhu, M.; Zhang, J.; Liu, J. Impacts of agricultural industrial agglomeration on China’s agricultural energy efficiency: A spatial econometrics analysis. J. Clean. Prod. 2020, 260, 121011. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, W.; Wu, S.; Shi, Z. Research on the Impact of Rural Population Structure Changes on the Net Carbon Sinkof Agricultural Produc-tion-Take Huan County in the Loess Hilly Region of China as an Example. Front. Environ. Sci. 2022, 10, 911403. [Google Scholar] [CrossRef]
- Chien, F.; Hsu, C.; Ozturk, I.; Sharif, A.; Sadiq, M. The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations. Renew. Energy 2022, 186, 207–216. [Google Scholar] [CrossRef]
- Elhorst, J.P. Matlab Software for Spatial Panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef] [Green Version]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2009. [Google Scholar]
- Li, H.; Liu, B. The effect of industrial agglomeration on China’s carbon intensity: Evidence from a dynamic panel model and a mediation effect model. Energy Rep. 2022, 8, 96–103. [Google Scholar] [CrossRef]
- Verhoef, E.T.; Nijkamp, P. Externalities in urban sustainability: Environmental versus localization-type agglomeration externalities in a general spatial equilibrium model of a single-sector monocentric industrial city. Ecol. Econ. 2002, 40, 157–179. [Google Scholar] [CrossRef]
- Lian, Z. Governing China’s Local Officials: An Analysis of Promotion Tournament Model. Econ. Res. J. 2007, 53, 36–50. (In Chinese) [Google Scholar]
Greenhouse Gas Emission Sources | Emission Coefficient | Data Sources | ||
---|---|---|---|---|
Rice planting | Early rice | 14.37 g/m2 | Wang Zhen et al. [38] | |
Medium-season rice | 57.96 g/m2 | |||
Late rice | 34.5 g/m2 | |||
Land administration | Agricultural machinery | 0.18 kg·kW−1 | Dubey [39] | |
Chemical fertilizer | Nitrogenous fertilizer | 857.54 kg·Mg−1 | West and Marland [40] | |
Phosphate fertilizer | 165.09 kg·Mg−1 | |||
Potash fertilizer | 120.28 kg·Mg−1 | |||
Compound fertilizer | 380.97 kg·Mg−1 | |||
Pesticides | 18.1 kg·kg−1 | |||
Agricultural film | 19.0 kg·kg−1 | ORNL [41] | ||
Ploughing | 312.6 kg·hm−2 | IABCAU [42] | ||
Irrigation | 266.48 kg·hm−2 | West and Marland [40] | ||
Gastrointestinal fermentation (CH4) | Cattle | 54.33 kg/(head·a) | IPCC [43] | |
Pig | 1 kg/(head·a) | |||
Sheep | 5 kg/(head·a) | |||
Rabbit | 0.254 kg/(head·a) | |||
Livestock manure (CH4 N2O) | Cattle (CH4) | 5.33 kg/(head·a) | IPCC [43], FAO [44] | |
Cattle (N2O) | 1.24 kg/(head·a) | |||
Pig (CH4) | 3 kg/(head·a) | |||
Pig (N2O) | 0.53 kg/(head·a) | |||
Sheep (CH4) | 0.16 kg/(head·a) | |||
Sheep (N2O) | 0.33 kg/(head·a) | |||
Rabbit (CH4) | 0.08 kg/(head·a) | |||
Rabbit (N2O) | 0.02 kg/(head·a) |
Variable | Mean | SD | Min | Max |
---|---|---|---|---|
Development level of the agricultural economy (AGDP) yuan (CNY)/person | 3282.730 | 1825.931 | 23.838 | 8205.791 |
Urbanization rate (Urban) % | 0.354 | 0.131 | 0.088 | 0.767 |
Rural population (R), 10,000 persons | 49.438 | 31.513 | 4.010 | 130.360 |
Total power of agricultural machinery (AM) 10,000 kW | 28.389 | 19.605 | 5.767 | 119.644 |
Disposable income of rural residents per capita (INC) yuan (CNY) | 23,304.390 | 6835.956 | 11,739.000 | 39,529.000 |
Structure of the agricultural industry (Str) % | 0.569 | 0.210 | 0.002 | 0.841 |
Crop planting structure (Cps) % | 0.494 | 0.157 | 0.101 | 2.308 |
Agglomeration degree of the agricultural industry (IA) % | 0.982 | 0.519 | 0.239 | 2.321 |
Human capital (Edu), 10,000 persons | 2.597 | 1.671 | 0.187 | 7.669 |
Year | Rice Planting | Gastrointestinal Fermentation | Fecal Excretion | Land Administration | Total Amount * (10,000 tons) | Strength (ton/CNY 10,000) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Emissions (10,000 tons) | Proportion (%) | Emissions (10,000 tons) | Proportion (%) | Emissions (10,000 tons) | Proportion (%) | Emissions (10,000 tons) | Proportion (%) | |||
2014 | 595.640 | 56.778 | 40.369 | 3.848 | 152.669 | 14.553 | 260.386 | 24.821 | 1049.063 | 1.242 |
2015 | 570.925 | 58.999 | 36.094 | 3.667 | 117.320 | 11.918 | 260.031 | 26.416 | 984.370 | 1.207 |
2016 | 563.821 | 59.614 | 31.583 | 3.339 | 100.278 | 10.603 | 250.109 | 26.444 | 945.791 | 1.181 |
2017 | 530.950 | 59.173 | 31.608 | 3.523 | 93.127 | 10.379 | 241.600 | 26.926 | 897.285 | 1.253 |
2018 | 544.112 | 59.818 | 31.596 | 3.474 | 95.093 | 10.454 | 238.809 | 26.254 | 909.609 | 1.337 |
2019 | 516.009 | 60.084 | 30.438 | 3.544 | 87.686 | 10.210 | 224.683 | 26.162 | 858.817 | 1.303 |
County | Year 2014 | Year 2019 | Rate of Change I | Rate of Change II | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total Amount (10,000 tons) | Rank | Strength (ton/CNY 10,000) | Rank | Total Amount (10,000 tons) | Rank | Strength (ton/CNY 10,000) | Rank | |||
Anji | 20.576 | 21 | 0.899 | 40 | 17.684 | 24 | 1.032 | 36 | −14.054 | 14.823 |
Cangnan | 23.716 | 16 | 1.605 | 13 | 18.557 | 23 | 1.874 | 12 | −21.752 | 16.768 |
Changshan | 13.627 | 34 | 2.022 | 8 | 10.397 | 35 | 1.994 | 10 | −23.701 | −1.400 |
Chunan | 17.624 | 26 | 0.663 | 49 | 10.164 | 36 | 0.444 | 50 | −42.329 | −33.086 |
Cixi | 31.388 | 11 | 0.726 | 48 | 31.762 | 3 | 0.900 | 42 | 1.191 | 23.938 |
Daishan | 1.786 | 51 | 0.952 | 38 | 1.045 | 51 | 0.948 | 40 | −41.516 | −0.422 |
Deqing | 27.514 | 14 | 3.830 | 2 | 12.902 | 30 | 2.504 | 5 | −53.108 | −34.624 |
Dongyang | 21.622 | 20 | 1.168 | 30 | 17.618 | 25 | 1.299 | 26 | −18.518 | 11.164 |
Haining | 31.645 | 8 | 1.783 | 11 | 23.352 | 13 | 2.005 | 9 | −26.207 | 12.440 |
Haiyan | 38.456 | 6 | 2.518 | 4 | 24.975 | 12 | 2.550 | 4 | −35.056 | 1.276 |
Jiashan | 31.577 | 9 | 1.067 | 35 | 25.529 | 10 | 1.322 | 25 | −19.153 | 23.917 |
Jiande | 20.301 | 24 | 0.783 | 44 | 18.629 | 22 | 0.773 | 47 | −8.240 | −1.292 |
Jiangshan | 38.390 | 7 | 2.168 | 6 | 28.781 | 7 | 2.257 | 6 | −25.029 | 4.112 |
Jinyun | 10.684 | 40 | 1.204 | 25 | 8.222 | 43 | 1.128 | 35 | −23.044 | −6.302 |
Jingning | 8.795 | 46 | 1.309 | 21 | 7.151 | 46 | 1.518 | 20 | −18.694 | 15.971 |
Kaihua | 15.093 | 31 | 1.300 | 22 | 10.907 | 32 | 1.296 | 27 | −27.737 | −0.244 |
Lanxi | 28.836 | 13 | 1.480 | 17 | 19.183 | 20 | 1.245 | 32 | −33.478 | −15.863 |
Leqing | 17.289 | 28 | 1.327 | 19 | 19.342 | 18 | 2.082 | 8 | 11.871 | 56.844 |
Linhai | 27.282 | 15 | 0.928 | 39 | 24.987 | 11 | 0.967 | 38 | −8.413 | 4.253 |
Longquan | 20.510 | 22 | 1.585 | 15 | 15.034 | 27 | 1.519 | 19 | −26.697 | −4.161 |
Longyou | 44.967 | 1 | 4.965 | 1 | 31.423 | 4 | 4.859 | 1 | −30.120 | −2.133 |
Ninghai | 23.279 | 17 | 1.414 | 18 | 19.310 | 19 | 1.440 | 21 | −17.050 | 1.809 |
Panan | 3.824 | 50 | 0.330 | 52 | 3.710 | 50 | 0.389 | 52 | −2.975 | 18.131 |
Pinghu | 42.571 | 4 | 3.040 | 3 | 28.552 | 9 | 3.235 | 2 | −32.932 | 6.426 |
Pingyang | 20.409 | 23 | 2.168 | 5 | 19.506 | 16 | 2.636 | 3 | −4.426 | 21.575 |
Pujiang | 9.740 | 44 | 1.130 | 33 | 5.666 | 47 | 0.743 | 48 | −41.833 | −34.290 |
Qingtian | 10.402 | 42 | 1.481 | 16 | 9.089 | 40 | 1.524 | 18 | −12.618 | 2.945 |
Qingyuan | 12.692 | 36 | 1.958 | 10 | 7.741 | 44 | 1.845 | 14 | −39.008 | −5.771 |
Ruian | 16.339 | 30 | 1.321 | 20 | 18.679 | 21 | 1.850 | 13 | 14.317 | 40.032 |
Sanmen | 9.087 | 45 | 1.010 | 37 | 9.270 | 39 | 1.253 | 31 | 2.018 | 23.962 |
Chengsi | 0.168 | 52 | 1.170 | 29 | 0.069 | 52 | 0.847 | 45 | −59.242 | −27.639 |
Chengzhou | 31.589 | 10 | 0.831 | 43 | 28.583 | 8 | 1.019 | 37 | −9.516 | 22.686 |
Songyang | 11.403 | 38 | 0.843 | 42 | 8.373 | 42 | 0.848 | 44 | −26.575 | 0.543 |
Suichang | 12.193 | 37 | 1.253 | 24 | 9.346 | 38 | 1.172 | 34 | −23.349 | −6.450 |
Taishun | 11.046 | 39 | 1.673 | 12 | 10.419 | 34 | 1.714 | 16 | −5.671 | 2.421 |
Tiantai | 15.061 | 32 | 1.282 | 23 | 16.278 | 26 | 1.583 | 17 | 8.085 | 23.495 |
Tonglu | 13.937 | 33 | 0.776 | 45 | 12.336 | 31 | 0.824 | 46 | −11.485 | 6.224 |
Tongxiang | 44.684 | 3 | 2.018 | 9 | 30.795 | 5 | 2.169 | 7 | −31.082 | 7.445 |
Wenling | 22.244 | 18 | 0.892 | 41 | 19.501 | 17 | 0.934 | 41 | −12.333 | 4.667 |
Wencheng | 8.778 | 47 | 1.139 | 31 | 9.371 | 37 | 1.352 | 23 | 6.760 | 18.730 |
Wuyi | 17.466 | 27 | 1.190 | 26 | 14.919 | 28 | 1.271 | 30 | −14.583 | 6.857 |
Xianju | 16.385 | 29 | 1.180 | 27 | 14.547 | 29 | 1.226 | 33 | −11.218 | 3.882 |
Xiangshan | 21.932 | 19 | 1.131 | 32 | 19.639 | 14 | 1.285 | 29 | −10.455 | 13.629 |
Xinchang | 10.436 | 41 | 0.498 | 51 | 9.076 | 41 | 0.560 | 49 | −13.031 | 12.483 |
Yiwu | 10.308 | 43 | 0.525 | 50 | 7.511 | 45 | 0.424 | 51 | −27.129 | −19.151 |
Yongjia | 19.641 | 25 | 2.156 | 7 | 19.633 | 15 | 1.936 | 11 | −0.040 | −10.169 |
Yongkang | 12.953 | 35 | 1.588 | 14 | 10.630 | 33 | 1.807 | 15 | −17.934 | 13.781 |
Yuyao | 31.093 | 12 | 0.764 | 46 | 30.775 | 6 | 0.892 | 43 | −1.025 | 16.830 |
Yuhuan | 4.647 | 49 | 0.759 | 47 | 4.662 | 49 | 0.957 | 39 | 0.304 | 26.135 |
Yunhe | 6.020 | 48 | 1.177 | 28 | 4.996 | 48 | 1.291 | 28 | −17.009 | 9.665 |
Changxing | 42.252 | 5 | 1.119 | 34 | 36.508 | 2 | 1.325 | 24 | −13.596 | 18.401 |
Zhuji | 44.802 | 2 | 1.060 | 36 | 41.683 | 1 | 1.359 | 22 | −6.963 | 28.176 |
Year | W1 | W2 | W3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Moran’s I | z | p | Moran’s I | z | p | Moran’s I | z | p | |
2014 | 0.310 | 6.151 | 0.002 | 0.105 | 2.850 | 0.003 | 0.267 | 5.121 | 0.002 |
2015 | 0.245 | 5.020 | 0.011 | 0.082 | 2.285 | 0.021 | 0.214 | 4.187 | 0.013 |
2016 | 0.239 | 4.733 | 0.013 | 0.076 | 2.241 | 0.022 | 0.207 | 4.052 | 0.017 |
2017 | 0.183 | 3.266 | 0.040 | 0.046 | 1.755 | 0.075 | 0.154 | 3.100 | 0.050 |
2018 | 0.248 | 4.052 | 0.010 | 0.062 | 2.310 | 0.040 | 0.198 | 3.886 | 0.019 |
2019 | 0.240 | 4.146 | 0.012 | 0.064 | 2.245 | 0.041 | 0.184 | 3.656 | 0.023 |
Year | HH Region | LH Region | LL Region | HL Region |
---|---|---|---|---|
2014 | Anji, Cixi, Deqing, Haining, Haiyan, Jiashan, Jiande, Lanxi, Longyou, Pinghu, Shengzhou, Tongxiang, Xiangshan, Yuyao, Changxing | Changshan, Yueqing, Pujiang, Sanmen, Suichang, Tonglu, Yiwu, Yuhuan | Chun’an, Daishan, Jinyun, Jingning, Kaihua, Pan’an, Qingtian, Qingyuan, Ryan, Shengsi, Songyang, Taishun, Tiantai, Wencheng, Wuyi, Xianju, Xinchang, Yongjia, Yongkang, Yunhe | Cangnan, Dongyang, Jiangshan, Linhai, Longquan, Ninghai, Pingyang, Wenling, Zhuji |
2015 | Anji, Cixi, Deqing, Haining, Haiyan, Jiashan, Jiande, Lanxi, Longyou, Pinghu, Shengzhou, Tongxiang, Xiangshan, Yuyao, Changxing | Changshan, Yueqing, Pujiang, Sanmen, Suichang, Tonglu, Yiwu, Yuhuan | Chun’an, Daishan, Dongyang, Jinyun, Jingning, Kaihua, Pan’an, Pingyang, Qingtian, Qingyuan, Ryan, Shengsi, Songyang, Taishun, Tiantai, Wencheng, Wuyi, Xianju, Xinchang, Yongkang, Yunhe | Cangnan, Jiangshan, Linhai, Longquan, Ninghai, Wenling, Yongjia, Zhuji |
2016 | Anji, Cixi, Deqing, Haining, Haiyan, Jiashan, Jiande, Lanxi, Longyou, Pinghu, Shengzhou, Tongxiang, Xiangshan, Yuyao, Changxing | Changshan, Yueqing, Pujiang, Sanmen, Suichang, Tonglu, Yiwu, Yuhuan | Chun’an, Daishan, Dongyang, Jinyun, Jingning, Kaihua, Pan’an, Pingyang, Qingtian, Qingyuan, Ryan, Shengsi, Songyang, Taishun, Tiantai, Wencheng, Wuyi, Xianju, Xinchang, Yongkang, Yunhe | Cangnan, Jiangshan, Linhai, Longquan, Ninghai, Wenling, Yongjia, Zhuji |
2017 | Cixi, Haining, Haiyan, Jiashan, Jiande, Lanxi, Yueqing, Longyou, Pinghu, Pingyang, Shengzhou, Tongxiang, Xiangshan, Yuyao | Anji, Changshan, Deqing, Pujiang, Sanmen, Suichang, Tonglu, Yiwu, Yuhuan | Chun’an, Daishan, Dongyang, Jinyun, Jingning, Kaihua, Longquan, Pan’an, Qingtian, Qingyuan, Shengsi, Songyang, Taishun, Tiantai, Wencheng, Wuyi, Xianju, Xinchang, Yongkang, Yunhe | Cangnan, Jiangshan, Linhai, Ninghai, Ruian, Wenling, Yongjia, Changxing, Zhuji |
2018 | Anji, Cixi, Haining, Haiyan, Jiashan, Jiande, Lanxi, Yueqing, Longyou, Pinghu, Shengzhou, Tongxiang, Wenling, Xiangshan, Yuyao, Yuhuan, Changxing | Changshan, Deqing, Pujiang, Suichang, Tonglu, Yiwu | Chun’an, Daishan, Dongyang, Jinyun, Jingning, Kaihua, Pan’an, Qingtian, Qingyuan, Sanmen, Shengsi, Songyang, Taishun, Tiantai, Wencheng, Wuyi, Xianju, Xinchang, Yongkang, Yunhe | Cangnan, Jiangshan, Linhai, Longquan, Ninghai, Pingyang, Ruian, Yongjia, Zhuji |
2019 | Anji, Cixi, Dongyang, Haining, Haiyan, Jiashan, Yueqing, Pinghu, Shengzhou, Tongxiang, Xiangshan, Yuyao, Changxing | Changshan, Deqing, Pujiang, Sanmen, Suichang, Tonglu, Xinchang, Yiwu, Yuhuan | Chun’an, Daishan, Jinyun, Jingning, Kaihua, Longquan, Pan’an, Qingtian, Qingyuan, Shengsi, Songyang, Taishun, Tiantai, Wencheng, Wuyi, Xianju, Yongkang, Yunhe | Cangnan, Jiande, Jiangshan, Lanxi, Linhai, Longyou, Ninghai, Pingyang, Ruian, Wenling, Yongjia, Zhuji |
YEAR | WSQT | AGDP | Urban | RP | AM | INC | Str | Cps | IA | Edu |
---|---|---|---|---|---|---|---|---|---|---|
2014 | 0.310 *** | 0.364 *** | 0.563 *** | 0.437 *** | 0.088 | 0.675 *** | 0.354 *** | 0.143 * | 0.578 *** | 0.288 *** |
2015 | 0.245 ** | 0.346 *** | 0.564 *** | 0.430 *** | 0.073 | 0.672 *** | 0.364 *** | 0.153 * | 0.589 *** | 0.300 *** |
2016 | 0.239 ** | 0.336 *** | 0.550 *** | 0.394 *** | 0.145 * | 0.666 *** | 0.354 *** | 0.141 * | 0.584 *** | 0.311 *** |
2017 | 0.183 ** | 0.300 *** | 0.582 *** | 0.399 *** | 0.125 * | 0.664 *** | 0.359 *** | 0.170 ** | 0.590 *** | 0.311 *** |
2018 | 0.248 ** | 0.306 *** | 0.598 *** | 0.401 *** | 0.115 * | 0.658 *** | 0.364 *** | −0.107 | 0.583 *** | 0.312 *** |
2019 | 0.240 ** | 0.299 *** | 0.586 *** | 0.423 *** | 0.077 | 0.653 *** | 0.355 *** | 0.196 ** | 0.590 *** | 0.342 *** |
Variable | Regression I * | Regression II | Regression III | |||
---|---|---|---|---|---|---|
Coefficient | Z-Value | Coefficient | Z-Value | Coefficient | Z-Value | |
lnAGDP | 0.005 | 0.320 | 0.017 | 0.890 | 0.021 | 1.250 |
Urban | 0.014 | 0.140 | 0.154 | 1.410 | 0.200 * | 1.890 |
lnRP | 0.245 ** | 2.150 | 0.306 ** | 2.270 | 0.326 *** | 2.660 |
lnAM | −0.003 | −0.050 | 0.069 | 0.880 | 0.061 | 0.840 |
lnINC | −1.576 *** | −10.030 | −3.153 *** | −3.220 | −3.426 *** | −3.240 |
Str | 0.267 | 0.820 | 0.069 | 0.200 | 0.270 | 0.810 |
Cps | 0.671 *** | 16.090 | 0.682 *** | 14.530 | 0.682 *** | 15.840 |
IA | −0.168 | −0.870 | −0.160 | −0.750 | −0.224 | −1.130 |
IA2 | 0.088 * | 1.190 | 0.125 * | 1.530 | 0.130 * | 1.700 |
Edu | 0.050 * | 1.530 | 0.042 | 1.150 | 0.049 | 1.430 |
WlnAGDP | −0.003 | −0.080 | −0.178 * | −0.870 | −0.059 | −0.930 |
WUrban | −0.116 | −0.910 | −0.396 | −1.450 | −0.411 ** | −2.430 |
WlnRP | 0.085 | 0.450 | −0.804 | −0.670 | 0.040 | 0.100 |
WlnAM | 0.126 | 1.140 | −0.052 | −0.100 | 0.155 | 0.770 |
WlnINC | 1.454 *** | 8.450 | 2.654 ** | 2.400 | 3.341 *** | 3.060 |
WStr | −1.315 *** | −2.670 | −5.435 *** | −3.610 | −1.709 ** | −2.400 |
WCps | −0.156 * | −1.650 | −0.118 | −0.330 | −0.191 * | −1.710 |
WIA | 0.244 | 0.770 | 0.949 | 0.610 | 1.022 * | 1.720 |
WIA2 | 0.024 | 0.180 | 0.542 | 0.980 | −0.139 | −0.600 |
WEdu | 0.039 | 0.670 | 0.316 | 1.190 | 0.057 | 0.550 |
ρ | 0.373 *** | 6.070 | 0.573 *** | 3.800 | 0.572 *** | 6.240 |
sigma2_e | 0.006 *** | 12.220 | 0.008 *** | 12.400 | 0.007 *** | 12.280 |
Variable | Direct Effect | Indirect Effect | Total Effect | |||
---|---|---|---|---|---|---|
Coefficient | Z-Value | Coefficient | Z-Value | Coefficient | Z-Value | |
lnAGDP | 0.005 | 0.290 | −0.004 | −0.090 | 0.001 | 0.010 |
Urban | −0.003 | −0.040 | −0.142 | −0.910 | −0.145 | −0.950 |
RP | 0.280 ** | 2.460 | 0.234 | 0.920 | 0.514 * | 1.680 |
AM | 0.014 | 0.200 | 0.179 | 1.210 | 0.193 | 1.080 |
lnINC | −1.456 *** | −10.100 | 1.205 *** | 7.360 | −0.251 ** | −2.000 |
Str | 0.124 | 0.400 | −1.692 *** | −2.800 | 1.568 ** | −2.390 |
Cps | 0.684 *** | 13.810 | 0.138 | 1.150 | 0.822 *** | 5.320 |
IA | −0.153 | −0.760 | 0.221 | 0.470 | 0.068 | 0.120 |
IA2 | 0.101 * | 1.320 | 0.091 | 0.490 | 0.191 | 0.860 |
Edu | 0.059 * | 1.740 | 0.086 | 1.080 | 0.145 | 1.540 |
Variable | The 26 Counties in Mountainous Areas | Counties in Non-Mountainous Areas | ||
---|---|---|---|---|
Coefficient | Z-Value | Coefficient | Z-Value | |
lnAGDP | −0.001 | 0.020 | 0.032 | 0.780 |
Urban | 0.009 | 0.060 | −0.025 | −0.160 |
lnRP | 0.084 | 0.680 | 0.520 * | 1.870 |
lnAM | −0.017 | −0.210 | −0.018 | −0.150 |
lnINC | 0.228 | 0.160 | −0.526 *** | −3.340 |
Str | 0.273 | 0.800 | 1.174 * | 1.730 |
Cps | 0.619 *** | 2.790 | 0.653 *** | 11.790 |
IA | 0.117 | 0.470 | −0.056 | −0.120 |
IA2 | 0.013 | 0.170 | 0.071 | 0.280 |
Edu | 0.139 *** | 3.580 | −0.019 | −0.310 |
WlnAGDP | 0.040 | 1.290 | 0.381 | 1.620 |
WUrban | −0.393 ** | −2.080 | 0.004 | 0.020 |
WlnRP | −0.472 *** | −3.030 | 0.293 | 0.620 |
WlnAM | −0.271 ** | −2.100 | 0.106 | 0.610 |
WlnINC | −0.388 | −0.280 | 0.661 *** | 2.580 |
WStr | −1.199 ** | −2.150 | −2.944 *** | −3.830 |
WCps | 1.098 *** | 3.040 | −0.056 | −0.440 |
WIA | 0.424 | 0.090 | 0.316 | 0.480 |
WIA2 | 0.033 | 0.220 | −0.123 | −0.280 |
WEdu | −0.029 | −0.450 | 0.135 | 1.170 |
ρ | 0.443 *** | 5.400 | 0.201 *** | 2.150 |
sigma2_e | 0.003 *** | 8.080 | 0.010 *** | 9.230 |
Variable | Direct Effect | Indirect Effect | Total Effect | |||
---|---|---|---|---|---|---|
Coefficient | Z-Value | Coefficient | Z-Value | Coefficient | Z-Value | |
lnAGDP | 0.008 | 0.470 | 0.061 | 1.220 | 0.068 | 1.160 |
Urban | −0.062 | −0.440 | −0.614 ** | −2.510 | −0.677 *** | −2.970 |
lnRP | 0.0189 | 0.160 | −0.718 *** | −2.840 | −0.699 ** | −2.360 |
lnAM | −0.065 | −0.710 | −0.448 * | −1.890 | −0.513 * | −1.700 |
lnINC | 0.145 | 0.120 | −0.435 | −0.370 | 0.290 ** | −2.010 |
Str | 0.106 | 0.290 | −1.735 * | −1.880 | 1.629 | −1.420 |
Cps | 0.857 *** | 4.250 | 2.254 *** | 4.120 | 3.111 *** | 5.870 |
IA | 0.179 | 0.610 | 0.706 | 0.840 | 0.886 | 0.840 |
IA2 | 0.027 | 0.290 | 0.085 | 0.320 | 0.112 | 0.340 |
Edu | 0.146 *** | 3.290 | 0.063 | 0.570 | 0.209 | 1.500 |
Variable | Direct Effect | Indirect Effect | Total Effect | |||
---|---|---|---|---|---|---|
Coefficient | Z-Value | Coefficient | Z-Value | Coefficient | Z-Value | |
lnAGDP | 0.063 | 1.130 | 0.370 * | 1.680 | 0.433 * | 1.790 |
Urban | −0.029 | −0.210 | 0.014 | 0.080 | −0.015 | −0.080 |
lnRP | 0.581 ** | 2.150 | 0.364 | 0.800 | 0.944 * | 1.690 |
lnAM | −0.007 | −0.060 | 0.107 | 0.650 | 0.100 | 0.520 |
lnINC | −0.476 *** | −3.150 | 0.536 ** | 2.290 | 0.060 | 0.250 |
Str | 1.001 | 1.570 | −2.718 *** | −4.020 | −1.717 ** | −2.310 |
Cps | 0.660 *** | 10.600 | 0.080 | 0.710 | 0.739 *** | 4.830 |
IA | −0.043 | −0.100 | 0.258 | 0.380 | 0.216 | 0.240 |
IA2 | 0.076 | 0.300 | −0.085 | −0.190 | −0.010 | −0.020 |
Edu | −0.006 | −0.110 | 0.134 | 1.200 | 0.128 | 1.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, C.; Zheng, J.; Hu, B.; Lin, Q. Study on the Spatiotemporal Evolution and Influencing Factors of Agricultural Carbon Emissions in the Counties of Zhejiang Province. Int. J. Environ. Res. Public Health 2023, 20, 189. https://doi.org/10.3390/ijerph20010189
Wen C, Zheng J, Hu B, Lin Q. Study on the Spatiotemporal Evolution and Influencing Factors of Agricultural Carbon Emissions in the Counties of Zhejiang Province. International Journal of Environmental Research and Public Health. 2023; 20(1):189. https://doi.org/10.3390/ijerph20010189
Chicago/Turabian StyleWen, Changcun, Jiaru Zheng, Bao Hu, and Qingning Lin. 2023. "Study on the Spatiotemporal Evolution and Influencing Factors of Agricultural Carbon Emissions in the Counties of Zhejiang Province" International Journal of Environmental Research and Public Health 20, no. 1: 189. https://doi.org/10.3390/ijerph20010189
APA StyleWen, C., Zheng, J., Hu, B., & Lin, Q. (2023). Study on the Spatiotemporal Evolution and Influencing Factors of Agricultural Carbon Emissions in the Counties of Zhejiang Province. International Journal of Environmental Research and Public Health, 20(1), 189. https://doi.org/10.3390/ijerph20010189