Comparison of Metabolic Characteristics of Physically Active Individuals with Different Training Habits during Incremental Treadmill Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection and Description of Participants
2.2. Experimental Procedure
2.3. Statistical Analysis
3. Results
Demographic Data
4. Discussion
4.1. Metabolism
4.2. VO2max
4.3. MET
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FatmaxHR | Heart rate at Fatmax |
Fatmax% | Percentage of maximum heart rate at Fatmax |
HRmax (Bpm) | Maximum heart rate |
IC | Indirect Calorimetry |
IPAQ-HL | International Physical Activity Questionnaire |
IR | Insuline resistance |
Load (Watt) | Maximum load |
MFO (g/day) | Maximal fat oxidation during exercise |
MET | Metabolic Equivalent of Task |
MF | Metabolic flexibility |
MFO | Maximal fat oxidation |
MS | Metabolic Syndrome |
PA | Physical activity |
PCr | Creatine phosphate |
RER | Respiratory Exchange Ratio |
RER1 (Bpm) | Heart rate at 1RER |
VO2max (mL/kg/min) | Aerobic capacity |
VO2max% | The percentage of VO2max at MFO |
References
- Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 19 November 2022).
- Simpson, R.J.; Boßlau, T.K. Exercise and adrenergic regulation of immunity. Brain Behav. Immun. 2021, 97, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Ács, P.; Betlehem, J. Measurement of public health benefits of physical activity: Validity and reliability study of the international physical activity questionnaire in Hungary. BMC Public Health 2020, 20 (Suppl. S1), 1198. [Google Scholar] [CrossRef] [PubMed]
- Ács, P.; Stocker, M. Economic and public health benefits: The result of increased regular physical activity. Eur. J. Integr. Med. 2016, 8, 8–12. [Google Scholar] [CrossRef]
- Ács, P.; Veress, R. Criterion validity and reliability of the International Physical Activity Questionnaire—Hungarian short form against the RM42 accelerometer. BMC Public Health 2021, 21 (Suppl. S1), 381. [Google Scholar] [CrossRef]
- Ács, P.; Betlehem, J. Cross-cultural adaptation and validation of the Global Physical Activity Questionnaire among healthy Hungarian adults. BMC Public Health 2020, 20 (Suppl. S1), 1056. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Honce, R.; Schultz-Cherry, S. Metabolic Syndrome and Viral Pathogenesis: Lessons from Influenza and Coronaviruses. J. Virol. 2020, 94, e00665-20. [Google Scholar] [CrossRef]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Church, T. Exercise in Obesity, Metabolic Syndrome, and Diabetes. Prog. Cardiovasc. Dis. 2011, 53, 412–418. [Google Scholar] [CrossRef]
- Myers, J.; Kokkinos, P. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients 2019, 11, 1652. [Google Scholar] [CrossRef]
- Desroches, S.; Lamarche, B. The evolving definitions and increasing prevalence of the metabolic syndrome. Appl. Physiol. Nutr. Metab. 2007, 32, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Phielix, E.; Meex, R. High Oxidative Capacity Due to Chronic Exercise Training Attenuates Lipid-Induced Insulin Resistance. Diabetes 2012, 61, 2472–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San-Millán, I.; Brooks, G.A. Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals. Sports Med. 2018, 48, 467–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rynders, C.A.; Blanc, S. Sedentary behaviour is a key determinant of metabolic inflexibility: Sedentary behaviour and metabolic flexibility. J. Physiol. 2018, 596, 1319–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muoio, D.M. Metabolic Inflexibility: When Mitochondrial Indecision Leads to Metabolic Gridlock. Cell 2014, 159, 1253–1262. [Google Scholar] [CrossRef] [Green Version]
- Palmer, B.F.; Clegg, D.J. Metabolic Flexibility and Its Impact on Health Outcomes. Mayo Clin. Proc. 2022, 97, 761–776. [Google Scholar] [CrossRef]
- Randle, P.J. Metabolic fuel selection: General integration at the whole-body level. Proc. Nutr. Soc. 1995, 54, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Kelley, D.E.; Goodpaster, B. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. Endocrinol. Metab. 1999, 277, E1130–E11411999. [Google Scholar] [CrossRef]
- Picard, M.; Hepple, R.T.; Burelle, Y. Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: Tailoring the organelle for optimal function. Am. J. Physiol. Cell Physiol. 2012, 302, C629–C6412012. [Google Scholar] [CrossRef]
- Koopman, R.; Manders, R.J.F. Intramyocellular lipid and glycogen content are reduced following resistance exercise in untrained healthy males. Eur. J. Appl. Physiol. 2006, 96, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Venables, M.C.; Achten, J. Determinants of fat oxidation during exercise in healthy men and women: A cross-sectional study. J. Appl. Physiol. 2005, 98, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siirala, W.; Noponen, T. Validation of indirect calorimetry for measurement of energy expenditure in healthy volunteers undergoing pressure controlled non-invasive ventilation support. J. Clin. Monit. Comput. 2012, 26, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Lam, Y.Y.; Ravussin, E. Indirect calorimetry: An indispensable tool to understand and predict obesity. Eur. J. Clin. Nutr. 2017, 71, 318–322. [Google Scholar] [CrossRef]
- Randell, R.K.; Rollo, I. Maximal Fat Oxidation Rates in an Athletic Population. Med. Sci. Sports Exerc. 2017, 49, 133–140. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; Sanchez-Delgado, G. Assessment of maximal fat oxidation during exercise: A systematic review. Scand. J. Med. Sci. Sports 2019, 29, 910–921. [Google Scholar] [CrossRef]
- Makai, A.; Füge, K. The effect of a community-based e-health program to promote the role of physical activity among healthy adults in Hungary. BMC Public Health 2020, 20 (Suppl. S1), 1059. [Google Scholar] [CrossRef]
- Gősi, Z. Futunk a járvány elől: Sportolási szokások a tavaszi korlátozások alatt. Támogatók 2020, 21, 18–21. [Google Scholar]
- Kaur, H.; Singh, T. Physical Fitness and Exercise During the COVID-19 Pandemic: A Qualitative Enquiry. Front. Psychol. 2020, 11, 2943. [Google Scholar] [CrossRef]
- Chen, P.; Mao, L. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J. Sport Health Sci. 2020, 9, 103–104. [Google Scholar] [CrossRef]
- Ács, P.; Betlehem, J. Változások a Magyar Lakosság Élet- és Munkakörülményeiben Kiemelten a Fizikai Aktivitás és a Sportfogyasztási Szokások Vonatkozásában Keresztmetszeti Reprezentatív Kutatás a COVID-19 Világjárvány Magyarországi Harmadik Hulláma Során; Pécsi Tudományegyetem Egészségtudományi Kar (PTE ETK): Pécs, Hungary, 2021; p. 76. ISBN 9789634298298. [Google Scholar]
- Achten, J.; Jeukendrup, A.E. Optimizing fat oxidation through exercise and diet. Nutrition 2004, 20, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, M.; Spriet, L.L. Author Correction: Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 990. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.L.; Rennie, C. Substrate utilization during endurance exercise in men and women after endurance training. Am. J. Physiol. Endocrinol. Metabol. 2001, 280, E898–E907. [Google Scholar] [CrossRef] [Green Version]
- Purdom, T.; Kravitz, L. Understanding the factors that effect maximal fat oxidation. J. Int. Soc. Sports Nutr. 2018, 15, 3. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Brown, A.; Frontera, W.R. Principles of Exercise Physiology: Responses to Acute Exercise and Long-term Adaptations to Training. PM&R 2012, 4, 797–804. [Google Scholar] [CrossRef]
- Hultman, E.; Greenhaff, P.L. Skeletal muscle energy metabolism and fatigue during intense exercise in man. Sci. Prog. 1991, 75, 361–370. [Google Scholar] [PubMed]
- Maunder, E.; Plews, D.J.; Kilding, A.E. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front. Physiol. 2018, 9, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Loon, L.J.C.; Thomason-Hughes, M. Inhibition of adipose tissue lipolysis increases intramuscular lipid and glycogen use in vivo in humans. Am. J. Physiol. Endocrinol. Metabol. 2005, 289, E482–E4932005. [Google Scholar] [CrossRef] [Green Version]
- Zurbuchen, A.; Lanzi, S. Fat Oxidation Kinetics Is Related to Muscle Deoxygenation Kinetics During Exercise. Front. Physiol. 2020, 11, 571. [Google Scholar] [CrossRef]
- Morris, C.; Grada, C.O.; Ryan, M. The relationship between aerobic fitness level and metabolic profiles in healthy adults. Mol. Nutr. Food Res. 2013, 57, 1246–1254. [Google Scholar] [CrossRef]
- Stisen, A.B.; Stougaard, O. Maximal fat oxidation rates in endurance trained and untrained women. Eur. J. Appl. Physiol. 2006, 98, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Rosenkilde, M.; Reichkendler, M.H.; Auerbach, P. Changes in peak fat oxidation in response to different doses of endurance training: Effect of training on peak fat oxidation. Scand. J. Med. Sci. Sports 2015, 25, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Nordby, P.; Saltin, B. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: A role for muscle oxidative capacity? Scand. J. Med. Sci. Sports 2006, 16, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Lima-Silva, A.E.; Bertuzzi, R.C.M. Relationship between training status and maximal fat oxidation rate. J. Sports Sci. Med. 2010, 9, 31–35. [Google Scholar] [PubMed]
- LeMura, L.M.; von Duvillard, S.P. Lipid and lipoprotein profiles, cardiovascular fitness, body composition, and diet during and after resistance, aerobic and combination training in young women. Eur. J. Appl. Physiol. 2000, 82, 451–458. [Google Scholar] [CrossRef]
- Jabbour, G.; Iancu, H.D. Acute and chronic exercises: Effect on lipid metabolisms in obese individuals. Sci. Sports 2017, 32, 321–326. [Google Scholar] [CrossRef]
- Scharhag-Rosenberger, F.; Meyer, T. Effects of One Year Aerobic Endurance Training on Resting Metabolic Rate and Exercise Fat Oxidation in Previously Untrained Men and Women. Int. J. Sports Med. 2010, 31, 498–504. [Google Scholar] [CrossRef]
- Edvardsen, E.; Hansen, B.H. Reference values for cardiorespiratory response and fitness on the treadmill in a 20- to 85-year-old population. Chest 2013, 144, 241–248. [Google Scholar] [CrossRef]
- Jette, M.; Sidney, K. Metabolic Equivalents (METS) in Exercise Testing, Exercise Prescription, and Evaluation of Functional. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef]
Group 1 (n = 18) | Group 2 (n = 14) | Group 3 (n = 13) | Total (n = 45) | Sig | ||
---|---|---|---|---|---|---|
Physical activity | Type | aerobic training (cycling, running) | aerobic training (cycling, running) | aerobic, resistance training | ||
Duration/training | 60–90 min | 35–55 min | 45–60 min | |||
Frequency/week | 4 | 3 | 2 | |||
Gender | Women | 9 | 5 | 10 | 24 | |
Men | 9 | 9 | 3 | 21 | ||
Age | Mean | 37.6 | 40.28 | 34.78 | 36.34 | 0.710 |
±SD | 9.42 | 8.31 | 10.9 | 9.7 | ||
Body mass (kg) | Mean | 68.8 | 71.57 | 73.58 | 71.52 | 0.802 |
±SD | 12.97 | 9.4 | 21.63 | 14.40 | ||
Height (cm) | Mean | 174.6 | 176.0 | 171.83 | 174.42 | 0.351 |
±SD | 7.89 | 6.42 | 9.04 | 7.68 | ||
BMI | Mean | 22.86 | 22.79 | 25.00 | 23.48 | 0.119 |
(kg/m2) | ±SD | 2.63 | 1.74 | 4.85 | 3.31 |
Group 1 (n = 13) | Group 2 (n = 14) | Group 3 (n = 18) | Total (n = 45) | Sig | ||
---|---|---|---|---|---|---|
MaxHr (Bpm) | Mean | 183.46 | 184.33 | 191.33 | 185.91 | 0.233 |
±SD | 14.44 | 8.60 | 15.35 | 12.84 | ||
RER (VCO2/VO2) | Mean | 1.18 | 1.19 | 1.19 | 1.19 | 0.872 |
±SD | 0.07 | 0.09 | 0.10 | 0.09 | ||
RER1 (Bpm) | Mean | 169.00 | 162.27 | 168.50 | 166.17 | 0.423 |
±SD | 17.16 | 12.50 | 19.46 | 16.10 | ||
VO2max (mL/kg/min) | Mean | 50.19 | 45.97 | 41.39 | 46.15 | 0.045 * |
±SD | 10.85 | 5.04 | 10.35 | 9.26 | ||
Load (Watt) | Mean | 405.87 | 337.78 | 303.83 | 351.42 | 0.082 |
±SD | 171.35 | 66.03 | 99.25 | 123.26 | ||
MET | Mean | 14.24 | 13.12 | 11.44 | 13.04 | 0.046 * |
±SD | 3.42 | 1.47 | 3.44 | 2.95 | ||
MFO (g/day) | Mean | 881.87 | 817.50 | 920.08 | 866.31 | 0.715 |
±SD | 335.19 | 404.19 | 251.99 | 341.45 | ||
FatmaxHR (Bpm) | Mean | 153.13 | 137.44 | 142.17 | 143.93 | 0.004 * |
±SD | 13.52 | 8.79 | 16.05 | 14.12 | ||
Fatmax% (%) | Mean | 82.69 | 74.60 | 73.24 | 76.94 | 0.001 * |
±SD | 6.17 | 4.54 | 9.02 | 7.59 | ||
VO2max% (%) | Mean | 66.7 | 48.13 | 56.29 | 56.72 | 0.000 * |
±SD | 10.92 | 11.93 | 12.67 | 13.5 |
Dependent Variable | (I) | (J) | Mean Diff (I–J) | Std Error | Sig | 95% Confidence Intervall | |
---|---|---|---|---|---|---|---|
VO2max (mL/kg/min) | |||||||
Scheffe | Group 1 | Group 2 | 4.22 | 3.08 | 0.399 | −3.59 | 12.03 |
Group3 | 8.80 * | 3.41 | 0.046 * | 0.14 | 17.46 | ||
Bonferroni | |||||||
Group 1 | Group 2 | 4.22 | 3.08 | 0.534 | −3.46 | 11.90 | |
Group 3 | 8.80 * | 3.41 | 0.041 * | 0.29 | 17.31 | ||
MET | |||||||
Scheffe | Group 1 | Group 2 | 1.12 | 0.98 | 0.525 | −1.37 | 3.61 |
Group 3 | 2.80 * | 1.08 | 0.046 * | 0.03 | 5.56 | ||
Bonferroni | Group 1 | Group 2 | 1.12 | 0.98 | 0.778 | −1.32 | 3.57 |
Group 3 | 2.80 * | 1.08 | 0.041 * | 0.08 | 5.51 | ||
FatmaxHR (Bpm) | |||||||
Scheffe | Group 2 | Group 1 | −15.68 * | 4.41 | 0.004 * | −26.90 | −4.48 |
Bonferroni | Group 2 | Group 1 | −15.68 * | 4.41 | 0.003 * | −26.71 | −4.67 |
Fatmax% (%) | |||||||
Scheffe | Group 2 | Group 1 | 8.08 * | 2.27 | 0.004 * | −13.86 | −2.31 |
Group 3 | 9.44 * | 2,52 | 0.002 * | −15,84 | −3.04 | ||
Bonferroni | Group 2 | Group 1 | 8.08 * | 2.27 | 0.003 * | −13.76 | −2.41 |
Group 3 | 9.44 * | 2.52 | 0.002 * | −15.73 | −3.16 | ||
VO2max(%) (%) | |||||||
Scheffe | Group 1 | Group 2 | 18.57 | 2.43 | 0.000 * | −3.54 | 12.54 |
Bonferroni | Group 1 | Group 2 | 18.57 | 2.43 | 0.01 * | −3.54 | 12.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, D.; Trunic, N.; Prémusz, V.; Krutek, L.; Lipcsik, Z.; Ács, P. Comparison of Metabolic Characteristics of Physically Active Individuals with Different Training Habits during Incremental Treadmill Test. Int. J. Environ. Res. Public Health 2023, 20, 70. https://doi.org/10.3390/ijerph20010070
Nagy D, Trunic N, Prémusz V, Krutek L, Lipcsik Z, Ács P. Comparison of Metabolic Characteristics of Physically Active Individuals with Different Training Habits during Incremental Treadmill Test. International Journal of Environmental Research and Public Health. 2023; 20(1):70. https://doi.org/10.3390/ijerph20010070
Chicago/Turabian StyleNagy, Dóra, Nenad Trunic, Viktória Prémusz, László Krutek, Zoltán Lipcsik, and Pongrác Ács. 2023. "Comparison of Metabolic Characteristics of Physically Active Individuals with Different Training Habits during Incremental Treadmill Test" International Journal of Environmental Research and Public Health 20, no. 1: 70. https://doi.org/10.3390/ijerph20010070
APA StyleNagy, D., Trunic, N., Prémusz, V., Krutek, L., Lipcsik, Z., & Ács, P. (2023). Comparison of Metabolic Characteristics of Physically Active Individuals with Different Training Habits during Incremental Treadmill Test. International Journal of Environmental Research and Public Health, 20(1), 70. https://doi.org/10.3390/ijerph20010070