The Time-Lag Effect of Climate Factors on the Forest Enhanced Vegetation Index for Subtropical Humid Areas in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Source
2.2.1. Meteorological Data
2.2.2. Enhanced Vegetation Index (EVI) Data
2.2.3. Data Set Partition
2.3. Data Processing and Analysis
2.3.1. Data Pre-Processing
2.3.2. Bayesian TVP-VAR Model
TVP-VAR Model Setting
Time-Varying Impulse Response Function
2.3.3. Prediction Model and Accuracy Estimation of the Model
3. Results
3.1. The Time-Lag Effect of Climate Factors on EVI
3.2. Sensitivity of Growing Season EVI to Changes in Climate Factor
3.3. Model Performance for EVI Prediction among Different Field Stations
3.4. Comparison of Model Accuracy under the Influence of Extreme Weather
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senf, C.; Seidl, R. Mapping the Forest Disturbance Regimes of Europe. Nat. Sustain. 2021, 4, 63–70. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Bian, Z.; Mu, S.; Yuan, J.; Chen, F. Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China. Int. J. Environ. Res. Public Health 2020, 17, 4865. [Google Scholar] [CrossRef] [PubMed]
- Zuo, B.; Sun, Y. Forest Vegetation Dynamics and Responses to Climate Change in a Southern Subtropical Monsoon Region in Jangle County. J. Geo-Inf. Sci. 2019, 21, 958–968. [Google Scholar] [CrossRef]
- Huang, C.; Xu, Y.; Zang, R. Variation Patterns of Functional Trait Moments Along Geographical Gradients and Their Environmental Determinants in the Subtropical Evergreen Broadleaved Forests. Front. Plant Sci. 2021, 12, 686965. [Google Scholar] [CrossRef]
- Kijowska-Oberc, J.; Staszak, A.M.; Kamiński, J.; Ratajczak, E. Adaptation of Forest Trees to Rapidly Changing Climate. Forests 2020, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Shi, M. Research progress on the impact of global climate change on Forests in China. Chin. J. Popul. Resour. Environ. 2011, 21, 68–72. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, G.; Liu, J. Different Growth and Physiological Responses of Six Subtropical Tree Species to Warming. Front. Plant Sci. 2017, 8, 1511. [Google Scholar] [CrossRef] [Green Version]
- Fair, K.R.; Anand, M.; Bauch, C.T. Spatial Structure in Protected Forest-grassland Mosaics: Exploring Futures under Climate Change. Glob. Chang. Biol. 2020, 26, 6097–6115. [Google Scholar] [CrossRef]
- Bai, H.; Li, L.; Wu, Y.; Feng, G.; Gong, Z.; Sun, G. Identifying Critical Meteorological Elements for Vegetation Coverage Change in China. Front. Phys. 2022, 10, 3. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, H.; Zhou, H.; Li, S.; Gao, B.; Chen, P.; Ma, L.; Xu, Z.; Zhang, Z.; Xu, C.; et al. Winter Coexistence in Herbivorous Waterbirds: Niche Differentiation in a Floodplain, Poyang Lake, China. Ecol. Evol. 2021, 11, 16835–16848. [Google Scholar] [CrossRef] [PubMed]
- Caparros-Santiago, J.A.; Quesada-Ruiz, L.C.; Perez-Garcia, M.A.; Rodriguez-Galiano, V. Vegetation Phenology Dynamics across Ecoregions of Iberian Peninsula from MODIS NDVI Time Series: 2001–2017. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XXII, Online, 20 September 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11528, pp. 118–124. [Google Scholar]
- Zou, L. Spatial Patterns of Plant Diversity in Chinese Forest Ecosystems. Guangxi For. Sci. 2015, 44, 36–43. [Google Scholar] [CrossRef]
- Wang, B.; Niu, X.; Wei, W. National Forest Ecosystem Inventory System of China: Methodology and Applications. Forests 2020, 11, 732. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Wang, S.; Fan, F. Analysis of the Response of Long-Term Vegetation Dynamics to Climate Variability Using the Pruned Exact Linear Time (PELT) Method and Disturbance Lag Model (DLM) Based on Remote Sensing Data: A Case Study in Guangdong Province (China). Remote Sens. 2021, 13, 1873. [Google Scholar] [CrossRef]
- Udelhoven, T.; Stellmes, M.; Röder, A. Assessing Rainfall-EVI Relationships in the Okavango Catchment Employing MODIS Time Series Data and Distributed Lag Models; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, Y.; Zhao, R.; Guo, Q. Spatial and temporal distribution characteristics of extreme heavy precipitation in Summer and recent 10 years in Xi’an city. In Proceedings of the 33rd Annual Meeting of the Chinese Meteorological Society S1 Disaster Weather Monitoring, Analysis and Forecast, Xi’an, China; 2016; pp. 630–639. [Google Scholar]
- Ding, Y.; Li, Z.; Peng, S. Global Analysis of Time-Lag and -Accumulation Effects of Climate on Vegetation Growth. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102179. [Google Scholar] [CrossRef]
- Lou, J.; Xu, G.; Wang, Z.; Yang, Z.; Ni, S. Multi-Year NDVI Values as Indicator of the Relationship between Spatiotemporal Vegetation Dynamics and Environmental Factors in the Qaidam Basin, China. Remote Sens. 2021, 13, 1240. [Google Scholar] [CrossRef]
- Reddy, D.S.; Prasad, P.R.C. Prediction of Vegetation Dynamics Using NDVI Time Series Data and LSTM. Model. Earth Syst. Environ. 2018, 4, 409–419. [Google Scholar] [CrossRef]
- Sims, C.A. Macroeconomics and Reality. Econometrica 1980, 48, 1. [Google Scholar] [CrossRef]
- Redlin, M.; Gries, T. Anthropogenic Climate Change: The Impact of the Global Carbon Budget. Theor. Appl. Climatol. 2021, 146, 713–721. [Google Scholar] [CrossRef]
- Bruns, S.B.; Csereklyei, Z.; Stern, D.I. A Multicointegration Model of Global Climate Change. J. Econom. 2020, 214, 175–197. [Google Scholar] [CrossRef]
- Akram, V. Spillover Effect of Greenhouse Gas Emissions across Five Major Continents. Environ. Sci. Pollut. Res. 2022, 29, 11634–11643. [Google Scholar] [CrossRef]
- Yang, H.; Cao, Y.; Shi, Y.; Wu, Y.; Guo, W.; Fu, H.; Li, Y. The Dynamic Impacts of Weather Changes on Vegetable Price Fluctuations in Shandong Province, China: An Analysis Based on VAR and TVP-VAR Models. Agronomy 2022, 12, 2680. [Google Scholar] [CrossRef]
- Nakajima, J. Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications. Monet. Econ. Stud. 2011, 29, 107–142. [Google Scholar]
- Wang, M.; An, Z.; Wang, S. The Time Lag Effect Improves Prediction of the Effects of Climate Change on Vegetation Growth in Southwest China. Remote Sens. 2022, 14, 5580. [Google Scholar] [CrossRef]
- Diao, C.; Liu, Y.; Zhao, L.; Zhuo, G.; Zhang, Y. Regional-Scale Vegetation-Climate Interactions on the Qinghai-Tibet Plateau. Ecol. Inform. 2021, 65, 101413. [Google Scholar] [CrossRef]
- Ministry of Science and Technology of China. Circular of the Ministry of Science and Technology on Printing and Distributing Administrative Measures for National Field Scientific Observation and Research Stations; Bulletin of the State Council of the People’s Republic of China: Beijing, China, 2018; pp. 66–69.
- Yang, Q.; Zheng, D.; Wu, S. Ecoregional system research in China. Prog. Nat. Sci. 2002, 3, 65–69. [Google Scholar]
- Ni, Y.; Wang, T.; Cao, H.; Li, Y.; Bin, Y.; Zhang, R.; Wang, Y.; Lian, J.; Ye, W. An Old-Growth Subtropical Evergreen Broadleaved Forest Suffered More Damage from Typhoon Mangkhut than an Adjacent Secondary Forest. For. Ecol. Manag. 2021, 496, 119433. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Li, Y.; He, Z. Research on the Reconstructing of Time-series MODIS/NDVI Data of Chongqing. J. Chongqing Norm. Univ. (Nat. Sci.) 2015, 32, 32–37+177. [Google Scholar] [CrossRef]
- Sellers, P.; Los, S.; Tucker, C.; Justice, C.; Dazlich, D.; Collatz, J.; Randall, D. A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data. J. Clim. 1996, 9, 706–737. [Google Scholar] [CrossRef]
- He, Y.; Xie, D.; Zhong, R. Study on SG filtering algorithm based on hyperspectral images. J. Cap. Norm. Univ. (Nat. Sci. Ed.) 2018, 39, 70–75. [Google Scholar] [CrossRef]
- Jiang, H.; Yao, Y.; Hong, X.; Zhao, Y.; Li, Y. Research on harmonic analysis reconstruction algorithm of time series based on SG filter denoising. Jilin Norm. Univ. J. (Nat. Sci. Ed.) 2021, 42, 133–140. [Google Scholar] [CrossRef]
- Primiceri, G.E. Time Varying Structural Vector Autoregressions and Monetary Policy. Rev. Econ. Stud. 2005, 72, 821–852. [Google Scholar] [CrossRef]
- Koop, G.; Pesaran, M.H.; Potter, S.M. Impulse Response Analysis in Nonlinear Multivariate Models. J. Econom. 1996, 74, 119–147. [Google Scholar] [CrossRef]
- Guo, Y. Heshan Hill Comprehensive Experimental Station of Chinese Academy of Sciences. Bull. Chin. Acad. Sci. 1998, 5, 396. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, D.; Li, Y.; Liu, S.; Chu, G.; Meng, Z. Construction of Intelligent Field Observation Station: A Case Study from Dinghushan Forest Ecosystem Research Station. Ecol. Sci. 2015, 34, 139–145. [Google Scholar] [CrossRef]
- Bei, X.; Yao, Y.; Zhang, L.; Xu, T.; Jia, K.; Zhang, X.; Shang, K.; Xu, J.; Chen, X. Long-Term Spatiotemporal Dynamics of Terrestrial Biophysical Variables in the Three-River Headwaters Region of China from Satellite and Meteorological Datasets. Remote Sens. 2019, 11, 1633. [Google Scholar] [CrossRef] [Green Version]
- Lian, X.; Piao, S.; Chen, A.; Huntingford, C.; Fu, B.; Li, L.Z.X.; Huang, J.; Sheffield, J.; Berg, A.M.; Keenan, T.F.; et al. Multifaceted Characteristics of Dryland Aridity Changes in a Warming World. Nat. Rev. Earth. Environ. 2021, 2, 232–250. [Google Scholar] [CrossRef]
- Zheng, D. Dynamics of Water, Carbon, and Nitrogen in Forest and Alpine Tundra Ecosystems in the Pacific Northwest and the Rocky Mountains of the U.S. under Future Climate Change. Ph.D. Thesis, Syracuse University, Syracuse, NY, USA, 2019. [Google Scholar]
- Wang, H.; Yan, S.; Liang, Z.; Jiao, K.; Li, D.; Wei, F.; Li, S. Strength of Association between Vegetation Greenness and Its Drivers across China between 1982 and 2015: Regional Differences and Temporal Variations. Ecol. Indic. 2021, 128, 107831. [Google Scholar] [CrossRef]
- Zhu, G. Dictionary of Ecological Civilization Construction; Jiangxi Science And Technology Press: Nanchang, China, 2016; Volume 1. [Google Scholar]
- Powles, S.B. Photoinhibition of Photosynthesis Induced by Visible Light. Ann. Rev. Plant Physiol. 1984, 35, 15–44. [Google Scholar] [CrossRef]
- Chang, C.T.; Wang, H.C.; Huang, C.Y. Impacts of Vegetation Onset Time on Thenet Primary Productivity in a Mountainous Island in Pacific Asia. Environ. Res. Lett. 2013, 8, 045030. [Google Scholar] [CrossRef] [Green Version]
- Leeper, R.D.; Matthews, J.L.; Cesarini, M.S.; Bell, J.E. Evaluation of Air and Soil Temperatures for Determining the Onset of Growing Season. J. Geophys. Res. Biogeosciences 2021, 126, e2020JG006171. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, C.; Zhou, Z.; Zhou, T. Correction of the Relationship between Altitude and Latitude of Vegetation Distribution. Sci. Sin. Vitae 2020, 51, 334–345. [Google Scholar] [CrossRef]
- Chu, X.; Man, R.; Zhang, H.; Yuan, W.; Tao, J.; Dang, Q.-L. Does Climate Warming Favour Early Season Species? Front. Plant Sci. 2021, 12, 2617. [Google Scholar] [CrossRef] [PubMed]
- Chatziantoniou, I.; Floros, C.; Gabauer, D. Volatility Contagion between Crude Oil and G7 Stock Markets in the Light of Trade Wars and COVID-19: An Application Based on the TVP-VAR Extended Joint Connectedness Approach; Social Science Research Network: Rochester, NY, USA, 2021. [Google Scholar]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-Lag Effects of Global Vegetation Responses to Climate Change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
Ecoregion Type | Eco Station | Abbreviation | Longitude and Latitude | Type of Landform | Average Elevation (m) | Annual Rainfall (mm) |
---|---|---|---|---|---|---|
Northern subtropical humid region | Shennongjia | SNF | 110°36′ E, 31°68′ N | Mountain | 1700 | 1300~1722 |
Central subtropical humid region | Minya Konka | GGF | 101°59′ E, 29°34′ N | Valley Glacier | 3000 | 1750~2175 |
Huitong | HTF | 109°30′ E, 26°48′ N | Hilly | 700 | 1200~1400 | |
Southern subtropical humid region | Ailao Mountain | ALF | 101°01′ E, 24°32′ N | Mountain | 2450 | 1931 |
Dinghu Mountain | DHF | 112°31′ E, 23°09′ N | Hilly | 600 | 1564 | |
Heshan | HSF | 112°54′ E, 22°41′ N | Hilly | 80 | 1700 |
Eco Station Code | Time Span | Precipitation Range (mm) | Air Temperature Range (°C) | Air Humidity Range (%) | Photosynthetically Active Radiation Range (mol/m2) |
---|---|---|---|---|---|
SNF | 2009/01~2019/12 | 2.3~536.6 | −9.6~28.0 | 71.3~91.8 | 185.1~1431.3 |
GGF | 2007/01~2019/12 | 5.2~490.1 | −7.9~19.8 | 81.4~97.0 | 214.1~898.1 |
HTF | 2007/01~2019/12 | 0.0~418.7 | −1.8~33.3 | 69.8~95.3 | 138.6~1260.2 |
ALF | 2007/01~2019/12 | 0.0~540.9 | 3.8~16.6 | 63.3~96.5 | 354.0~1259.7 |
DHF | 2007/01~2019/12 | 0.0~547.8 | 9.2~35.3 | 62.9~90.0 | 261.1~1186.9 |
HSF | 2007/01~2019/12 | 0.0~563.5 | 9.6~36.6 | 56.7~98.1 | 87.1~1290.9 |
Station | The Lag-Period | The Lag-Accumulation | ||||||
---|---|---|---|---|---|---|---|---|
Value | 1 | 2 | 3 | 4 | 5 | 6 | ||
PAR | SNF | 0.04 | 0.01 | −0.03 | 0.01 | 0.00 | 0.00 | 0.02 |
GGF | −0.01 | 0.05 | 0.00 | 0.00 | 0.00 | −0.01 | 0.04 | |
HTF | 0.04 | −0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | |
ALF | 0.03 | −0.01 | 0.00 | 0.03 | 0.00 | 0.01 | 0.05 | |
DHF | −0.08 | 0.09 | 0.00 | 0.02 | 0.01 | 0.00 | 0.04 | |
HSF | −0.02 | 0.05 | 0.03 | 0.01 | 0.01 | 0.00 | 0.09 | |
PRE | SNF | 0.03 | −0.01 | −0.01 | 0.00 | 0.00 | 0.00 | 0.02 |
GGF | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | |
HTF | 0.07 | −0.02 | −0.01 | 0.00 | 0.00 | 0.00 | 0.05 | |
ALF | 0.04 | −0.10 | −0.04 | 0.02 | 0.01 | 0.00 | −0.07 | |
DHF | 0.03 | −0.08 | −0.01 | −0.02 | −0.01 | 0.00 | −0.09 | |
HSF | 0.03 | −0.03 | −0.03 | 0.00 | 0.00 | 0.00 | −0.03 | |
RHU | SNF | 0.36 | 0.11 | −0.04 | −0.16 | 0.04 | 0.01 | 0.32 |
GGF | 0.39 | 0.00 | −0.03 | −0.08 | 0.01 | 0.00 | 0.29 | |
HTF | 0.13 | 0.04 | −0.06 | 0.01 | 0.00 | 0.00 | 0.12 | |
ALF | −0.07 | −0.03 | 0.00 | 0.04 | 0.00 | 0.00 | −0.07 | |
DHF | −0.34 | 0.08 | −0.03 | 0.17 | 0.09 | 0.01 | −0.02 | |
HSF | 0.39 | −0.06 | −0.12 | 0.02 | 0.00 | 0.00 | 0.16 | |
TEM | SNF | 0.13 | 0.07 | −0.02 | −0.04 | −0.02 | 0.01 | 0.13 |
GGF | 0.06 | 0.13 | 0.06 | −0.21 | 0.01 | 0.00 | 0.05 | |
HTF | 0.17 | 0.00 | 0.03 | −0.03 | 0.00 | 0.00 | 0.16 | |
ALF | −0.20 | 0.05 | 0.05 | 0.02 | 0.01 | 0.00 | −0.07 | |
DHF | −0.02 | −0.01 | 0.07 | −0.09 | −0.04 | 0.00 | −0.10 | |
HSF | −0.12 | 0.14 | 0.07 | −0.05 | 0.00 | 0.00 | 0.03 |
Eco Station | RMSE of the Predicted Value | Improvement of Prediction Accuracy (%) | |
---|---|---|---|
VAR | TVP-VAR | ||
SNF | 0.05631 | 0.04556 | 19.09 |
GGF | 0.05219 | 0.04635 | 11.19 |
HTF | 0.05366 | 0.04813 | 10.31 |
ALF | 0.05903 | 0.05145 | 12.84 |
DHF | 0.06516 | 0.04926 | 24.40 |
HSF | 0.05055 | 0.04486 | 11.06 |
Average | 0.05615 | 0.04760 | 14.81 |
Year | RMSE of the Predicted Value | Improvement of Prediction Accuracy (%) | |
---|---|---|---|
VAR | TVP-VAR | ||
2017 | 0.05952 | 0.05033 | 15.44 |
2018 | 0.08223 | 0.07405 | 9.94 |
2019 | 0.06516 | 0.04926 | 24.40 |
Average | 0.06900 | 0.05788 | 16.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Ma, M.; Shi, J.; Ma, S.; Wu, B.; Su, X. The Time-Lag Effect of Climate Factors on the Forest Enhanced Vegetation Index for Subtropical Humid Areas in China. Int. J. Environ. Res. Public Health 2023, 20, 799. https://doi.org/10.3390/ijerph20010799
Qin J, Ma M, Shi J, Ma S, Wu B, Su X. The Time-Lag Effect of Climate Factors on the Forest Enhanced Vegetation Index for Subtropical Humid Areas in China. International Journal of Environmental Research and Public Health. 2023; 20(1):799. https://doi.org/10.3390/ijerph20010799
Chicago/Turabian StyleQin, Jushuang, Menglu Ma, Jiabin Shi, Shurui Ma, Baoguo Wu, and Xiaohui Su. 2023. "The Time-Lag Effect of Climate Factors on the Forest Enhanced Vegetation Index for Subtropical Humid Areas in China" International Journal of Environmental Research and Public Health 20, no. 1: 799. https://doi.org/10.3390/ijerph20010799
APA StyleQin, J., Ma, M., Shi, J., Ma, S., Wu, B., & Su, X. (2023). The Time-Lag Effect of Climate Factors on the Forest Enhanced Vegetation Index for Subtropical Humid Areas in China. International Journal of Environmental Research and Public Health, 20(1), 799. https://doi.org/10.3390/ijerph20010799