The “Dedicated” C.B.C.T. in Dentistry
Abstract
:1. Introduction
- Geometric alterations, which cause disparallelisms, and consequently, image distortions;
- Anatomical overlays that lead to the failure to identify the actual number of root canals and their morphological configuration;
- Attenuation of the beam induced by the anatomical thickness of the tissues crossed.
- Diagnosis of periapical disease in the presence of inconsistent clinical signs or symptoms;
- Need for diagnostic confirmation in non-odontogenic pathologies;
- Presence of extremely complex root canal anatomy prior to orthograde treatment;
- Evaluation of endodontic failures before retrograde treatment;
- Diagnosis of external and internal resorption;
- Evaluation of oromaxillofacial traumas and their treatment
2. Settings and Parameters of C.B.C.T.
- Potential difference (kV) at the pipe outlet. This parameter quantifies the tissue penetration capacity and intervenes on the contrast. High kV values give rise to a more penetrating X-ray beam, with low contrast images and more details (long scale), while low values produce high contrast images (short scale).
- Voxel (µm). This is the constituent element of the three-dimensional physical image. Characteristic of C.B.C.T. technology is the isotropicity of the voxel. The size of the voxel can vary depending on the type of imaging exam, but typically ranges from 0.05 to 0.4 mm in size. The smaller the voxel size, the higher the resolution of the resulting 3D image, allowing for a more detailed representation of the patient’s anatomy. The size affects the spatial resolution of the image, meaning that the smaller the image, the higher the resolution. However, a decrease in the size also leads to an increase in image noise [2,27]
- 4.
- Field of View (F.O.V. cm). This is a term used in radiology to describe the portion of the patient’s anatomy that is captured in an imaging exam. The field of view (F.O.V.) is adjustable to capture a particular region of interest (ROI) within the volume acquisition area. The optimal F.O.V. size depends on the specific imaging exam and the clinical question being addressed [1,2,28]. The examination area should be as central as possible to the F.O.V. The width of the F.O.V. influences the effective dose emitted to the patient and should be limited to the operative diagnostic region of interest [28].
- (A)
- The angle and rotation speed of the sensor assembly generator and exposure mode. Some equipment allows for partial or full rotations to be selected for specific acquisitions, allowing the modulation of both the patient dose and image quality. Full rotations result in a higher dose and a greater image definition, while semi-rotations reduce the dose but also the diagnostic quality. The scan speed can also affect the exposure time; higher speeds tend to reduce the dose. Additionally, most commercially available C.B.C.T.s emit pulsed exposure rather than continuous exposure, which allows for optimization by reducing the radiation [2,15,27].
- (B)
- (Filters); additional filtration at the tube outlet eliminates low-energy radiation that is not useful for diagnostic purposes, helping to further reduce the dose to the patient [2].
- (C)
- (Flat panel); the detector is the heart of the C.B.C.T. Today, all equipment has digital detectors, with either indirect or direct conversion; various types are available on the market with varying characteristics and costs. The choice of the detector influences the image quality, and therefore, all parameters related to it [2].
3. Regulatory and Legal Aspects Related to the Use of C.B.C.T. in Dentistry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeung, A.W.K.; Jacobs, R.; Bornstein, M.M. Novel low-dose protocols using cone beam computed tomography in dental medicine: A review focusing on indications, limitations, and future possibilities. Clin. Oral Investig. 2019, 23, 2573–2581. [Google Scholar] [CrossRef] [PubMed]
- da Silva Moura, W.; Chiqueto, K.; Pithon, G.M.; Neves, L.S.; Castro, R.; Henriques, J.F.C. Factors influencing the effective dose associated with C.B.C.T.: A systematic review. Clin. Oral Investig. 2019, 23, 1319–1330. [Google Scholar] [CrossRef]
- Charuakkra, A.; Mahasantipiya, P.; Lehtinen, A.; Koivisto, J.; Järnstedt, J. Comparison of subjective image analysis and effective dose between low-dose cone-beam computed tomography machines. Dentomaxillofac. Radiol. 2023, 52, 20220176. [Google Scholar] [CrossRef] [PubMed]
- Venskutonis, T.; Daugela, P.; Strazdas, M.; Juodzbalys, G. Accuracy of Digital Radiography and Cone Beam Computed Tomography on Periapical Radiolucency Detection in Endodontically Treated Teeth. J. Oral Maxillofac. Res. 2014, 5, e1. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, R.; Salmon, B.; Codari, M.; Hassan, B.; Bornstein, M.M. Cone beam computed tomography in implant dentistry: Recommendations for clinical use. BMC Oral Health 2018, 18, 88. [Google Scholar] [CrossRef]
- Van Bunningen, R.H.; Dijkstra, P.U.; Dieters, A.; van der Meer, W.J.; Kuijpers-Jagtman, A.M.; Ren, Y. Precision of orthodontic cephalometric measurements on ultra low dose-low dose CBCT reconstructed cephalograms. Clin. Oral Investig. 2022, 26, 1543–1550. [Google Scholar] [CrossRef]
- Friot-Giroux, L.; Peyrin, F.; Maxim, V. Iterative tomographic reconstruction with TV prior for low-dose C.B.C.T. dental imaging. Phys. Med. Biol. 2022, 67, 205010. [Google Scholar] [CrossRef]
- Ruetters, M.; Gehrig, H.; Kim, T.S.; Bartha, V.; Bruckner, T.; Schwindling, F.S.; Felten, A.; Lux, C.; Sen, S. Imaging furcation defects with low-dose cone beam computed tomography. Sci. Rep. 2022, 12, 6824. [Google Scholar] [CrossRef]
- Iskanderani, D.; Nilsson, M.; Alstergren, P.; Shi, X.Q.; Hellen-Halme, K. Evaluation of a low-dose protocol for cone beam computed tomography of the temporomandibular joint. Dentomaxillofacial Radiol. 2020, 49, 20190495. [Google Scholar] [CrossRef]
- Ruetters, M.; Gehrig, H.; Kronsteiner, D.; Doll, S.; Kim, T.S.; Lux, C.J.; Sen, S. Low-dose C.B.C.T. imaging of alveolar buccal bone adjacent to mandibular anterior teeth—A pilot study. Clin. Oral Investig. 2022, 26, 4173–4182. [Google Scholar] [CrossRef]
- Lo Giudice, R.; Nicita, F.; Puleio, F.; Alibrandi, A.; Cervino, G.; Lizio, A.S.; Pantaleo, G. Accuracy of periapical radiography and C.B.C.T. in endodontic evaluation. Int. J. Dent. 2018, 2018, 2514243. [Google Scholar]
- European Society of Endodontology; Patel, S.; Durack, C.; Abella, F.; Roig, M.; Shemesh, H.; Lambrechts, P.; Lemberg, K. European Society of Endodontology position statement: The use of C.B.C.T. Endodontics. Int. Endod. J. 2014, 47, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Aminoshariae, A.; Kulild, J.C.; Syed, A. Cone-beam Computed Tomography Compared with Intraoral Radiographic Lesions in Endodontic Outcome Studies: A Systematic Review. J. Endod. 2018, 44, 1626–1631. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Brown, J.; Pimentel, T.; Kelly, R.D.; Abella, F.; Durack, C. Cone beam computed tomography in Endodontics—A review of the literature. Int. Endod. J. 2019, 52, 1138–1152. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.F.; Chen, M.H.; Huang, K.H.; Chang, H.H.; Yeh, C.L.; Lin, C.P. Comparing image qualities of dental cone-beam computed tomography with different scanning parameters for detecting root canals. J. Formos. Med. Assoc. 2021, 120, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Millot, S.; Lesclous, P.; Colombier, M.-L.; Radoi, L.; Messeca, C.; Ballanger, M.; Charrier, J.-L.; Tramba, P.; Simon, S.; Berrebi, A.; et al. Position paper for the evaluation and management of oral status in patients with valvular disease: Groupe de Travail Valvulopathies de la Société Française de Cardiologie, Société Française de Chirurgie Orale, Société Française de Parodontologie et d’Implantologie Orale, Société Française d’Endodontie et Société de Pathologie Infectieuse de Langue Française. Arch. Cardiovasc. Dis. 2017, 110, 482–494. [Google Scholar]
- Brown, J.; Jacobs, R.; Levring Jäghagen, E.; Lindh, C.; Baksi, G.; Schulze, D.; Schulze, R. Basic training requirements for the use of dental C.B.C.T. by dentists: A position paper prepared by the European Academy of Dento Maxillo Facial Radiology. Dentomaxillofac. Radiol. 2014, 43, 20130291. [Google Scholar]
- Tay, K.X.; Lim, L.Z.; Goh, B.K.C.; Yu, V.S.H. Influence of cone beam computed tomography on endodontic treatment planning: A systematic review. J. Dent. 2022, 127, 104353. [Google Scholar] [CrossRef]
- Rodríguez Mazón, M.; Garcia-Font, M.; Doria, G.; Durán-Sindreu, F.; Abella, F. Influence of Cone-beam Computed Tomography in Clinical Decision-making among Different Specialists in External Cervical Resorption Lesions: A Before-After Study. J. Endod. 2022, 48, 1121–1128. [Google Scholar] [CrossRef]
- Candemil, A.P.; Salmon, B.; Vasconcelos, K.F.; Oenning, A.C.; Jacobs, R.; Freitas, D.Q.; Haiter-Neto, F.; Mangione, F.; Oliveira, M.L. Cone beam CT optimisation for detection of vertical root fracture with metal in the field of view or the exomass. Sci. Rep. 2021, 11, 19155. [Google Scholar] [CrossRef]
- Tosco, V.; Vitiello, F.; Furlani, M.; Gatto, M.L.; Monterubbianesi, R.; Giuliani, A.; Orsini, G.; Putignano, A. Microleakage analysis of different bulk-filling techniques for class ii restorations: µ-ct, sem and eds evaluations. Mater 2021, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Kochhar, A.S.; Sidhu, M.S.; Prabhakar, M.; Bhasin, R.; Kochhar, G.K.; Dadlani, H.; Spagnuolo, G.; Mehta, V.V. Intra- and Interobserver Reliability of Bone Volume Estimation Using OsiriX Software in Patients with Cleft Lip and Palate Using Cone Beam Computed Tomography. Dent. J. 2021, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Caggiano, M.; Amato, A.; Acerra, A.; D’ambrosio, F.; Martina, S. Evaluation of Deviations between Computer-Planned Implant Position and In Vivo Placement through 3D-Printed Guide: A CBCT Scan Analysis on Implant Inserted in Esthetic Area. Appl. Sci. 2022, 12, 5461. [Google Scholar] [CrossRef]
- Kunzendorf, B.; Naujokat, H.; Wiltfang, J. Indications for 3-D diagnostics and navigation in dental implantology with the focus on radiation exposure: A systematic review. Int. J. Implant. Dent. 2021, 7, 52. [Google Scholar] [CrossRef]
- Connert, T.; Weiger, R.; Krastl, G. Present status and future directions—Guided endodontics. Int. Endod. J. 2022, 55 (Suppl. S4), 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, R.; Famà, F. Health care and health service digital revolution. Int. J. Environ. Res. Public Health 2020, 17, 4913. [Google Scholar] [CrossRef] [PubMed]
- Kaasalainen, T.; Ekholm, M.; Siiskonen, T.; Kortesniemi, M. Dental cone beam CT: An updated review. Phys. Med. 2021, 88, 193–217. [Google Scholar] [CrossRef]
- Oenning, A.C.; Salmon, B.; Vasconcelos, K.F.; Pinheiro Nicolielo, L.F.; Lambrichts, I.; Sanderink, G.; Pauwels, R.; DIMITRA Group; Jacobs, R. DIMITRA paediatric skull phantoms: Development of age-specific paediatric models for dentomaxillofacial radiology research. Dentomaxillofac. Radiol. 2018, 47, 20170285. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.; Cao, D.; Lin, Z. Diagnosis of cracked teeth using cone-beam computed tomography: Literature review and clinical experience. Dentomaxillofac. Radiol. 2021, 50, 20200407. [Google Scholar] [CrossRef]
- Pauwels, R.; Zhang, G.; Theodorakou, C.; Walker, A.; Bosmans, H.; Jacobs, R.; Bogaerts, R.; Horner, K.; SEDENTEXCT Project Consortium. Effective radiation dose and eye lens dose in dental cone beam CT: Effect of field of view and angle of rotation. Br. J. Radiol. 2014, 87, 20130654. [Google Scholar] [CrossRef]
- de Oliveira Pinto, M.G.; Melo, S.L.S.; Cavalcanti, Y.W.; de Lima, E.D.; Bento, P.M.; de Melo, D.P. Influence of tooth position within the field of view on the intensity of cone-beam computed tomographic imaging artifacts when assessing teeth restored with various intracanal materials. Imaging Sci. Dent. 2020, 50, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Marillo, A.; Pakbaznejad Esmaeili, M.; Pakbaznejad, E.; Waltimo-Sirén, J. Minimum size and positioning of imaging field for CBCT-scans of impacted lower third molars: A retrospective study. BMC Oral Health 2021, 21, 670. [Google Scholar] [CrossRef]
- Raccomandazioni per l’impiego Corretto Delle Apparecchiature TC Volumetriche «Cone Beam in G.U. Series General n. 124 of 29 May 2010. p. 2010. Available online: https://www.gazzettaufficiale.it/eli/id/2010/05/29/10A06042/sg (accessed on 27 January 2023).
- Portelli, M.; Militi, A.; Lo Giudice, A.; Lo Giudice, R.; Fastuca, R.; Ielo, I.; Mongelli, V.; Lo Giudice, G.; Martintoni, A.; Manuelli, M.; et al. Standard and low-dose cone beam computer tomography protocol for orthognatodontic diagnosis: A comparative evaluation. J. Biol. Regul. Homeost. Agents 2018, 32 (Suppl. S2), 59–66. [Google Scholar]
- Jaju, P.P.; Jaju, S.P. Cone-beam computed tomography: Time to move from ALARA to ALADA. Imaging Sci. Dent. 2015, 45, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Lurie, A.G. Doses, Benefits, Safety, and Risks in Oral and Maxillofacial Diagnostic Imaging. Health Phys. 2019, 116, 163–169. [Google Scholar] [CrossRef]
- European Commission. Council Directive 2013/59/Euratom of 5 December 2013 Laying down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off. J. 2014, 13, 1–73. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=celex%3A32013L0059 (accessed on 27 January 2023).
- Disposizioni in Materia di Sicurezza Delle Cure e Della Persona Assistita, Nonché in Materia di Responsabilità Professionale Degli Esercenti le Professioni Sanitarie. Available online: https://www.gazzettaufficiale.it/eli/id/2017/03/17/17G00041/sg (accessed on 27 January 2023).
- Di Spirito, F.; Toti, P.; Brevi, B.; Martuscelli, R.; Sbordone, L.; Sbordone, C. Computed Tomography Evaluation of Jaw At-rophies Before and After Surgical Bone Augmentation. Int. J. Clin. Dent. 2019, 12, 259–270. [Google Scholar]
- Momose, A. X-ray phase imaging reaching clinical uses. Phys. Med. 2020, 79, 93–102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Distefano, S.; Cannarozzo, M.G.; Spagnuolo, G.; Bucci, M.B.; Lo Giudice, R. The “Dedicated” C.B.C.T. in Dentistry. Int. J. Environ. Res. Public Health 2023, 20, 5954. https://doi.org/10.3390/ijerph20115954
Distefano S, Cannarozzo MG, Spagnuolo G, Bucci MB, Lo Giudice R. The “Dedicated” C.B.C.T. in Dentistry. International Journal of Environmental Research and Public Health. 2023; 20(11):5954. https://doi.org/10.3390/ijerph20115954
Chicago/Turabian StyleDistefano, Salvatore, Maria Grazia Cannarozzo, Gianrico Spagnuolo, Marco Brady Bucci, and Roberto Lo Giudice. 2023. "The “Dedicated” C.B.C.T. in Dentistry" International Journal of Environmental Research and Public Health 20, no. 11: 5954. https://doi.org/10.3390/ijerph20115954
APA StyleDistefano, S., Cannarozzo, M. G., Spagnuolo, G., Bucci, M. B., & Lo Giudice, R. (2023). The “Dedicated” C.B.C.T. in Dentistry. International Journal of Environmental Research and Public Health, 20(11), 5954. https://doi.org/10.3390/ijerph20115954