Burning Mouth Syndrome and Hypertension: Prevalence, Gender Differences and Association with Pain and Psycho-Social Characteristics—A Case Control Study
Abstract
:1. Introduction
- -
- to investigate the prevalence of HTN in a large sample of BMS patients, compared with that in a control group of control subjects matched for age and gender;
- -
- to analyze the differences in HTN prevalence between males and females, exploring this prevalence at different ages;
- -
- to identify the potential predictors of HTN in BMS patients, taking into account the sociodemographic profile (age, employment and marital status), the body mass index (BMI), risk factors (smoking and alcohol use), other systemic comorbidities, drug consumption, pain evaluation and psychological factors.
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Inclusion and Exclusion Criteria
2.4. Procedures
2.5. Pain, Psychological Assessment and Sleep Assessment
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, K.T.; Stefanescu, A.; He, J. The Global Epidemiology of Hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, L.A.; Sullivan, J.C. Sex Differences in Hypertension: Where We Have Been and Where We Are Going. Am. J. Hypertens. 2018, 31, 1247–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, K.A.; Power, M.C.; Gottesman, R.F. Defining the Relationship Between Hypertension, Cognitive Decline, and Dementia: A Review. Curr. Hypertens. Rep. 2017, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Manolio, T.A.; Olson, J.; Longstreth, W.T. Hypertension and Cognitive Function: Pathophysiologic Effects of Hypertension on the Brain. Curr. Hypertens. Rep. 2003, 5, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Robbins, C.L.; Dietz, P.M.; Bombard, J.; Tregear, M.; Schmidt, S.M.; Tregear, S.J. Lifestyle Interventions for Hypertension and Dyslipidemia among Women of Reproductive Age. Prev. Chronic Dis. 2011, 8, A123. [Google Scholar]
- Kunes, J.; Zicha, J. The Interaction of Genetic and Environmental Factors in the Etiology of Hypertension. Physiol. Res. 2009, 58 (Suppl. 2), S33–S42. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, W.; Yan, J.; Noma, N.; Young, A.; Yan, Z. Worldwide Prevalence Estimates of Burning Mouth Syndrome: A Systematic Review and Meta-Analysis. Oral Dis. 2021, 28, 1431–1440. [Google Scholar] [CrossRef]
- Pedro, M.; López-Pintor, R.M.; Casañas, E.; Hernández, G. General Health Status of a Sample of Patients with Burning Mouth Syndrome: A Case-Control Study. Oral Dis. 2020, 26, 1020–1031. [Google Scholar] [CrossRef]
- International Classification of Orofacial Pain, 1st Edition (ICOP). Cephalalgia 2020, 40, 129–221. [CrossRef] [Green Version]
- Teruel, A.; Patel, S. Burning Mouth Syndrome: A Review of Etiology, Diagnosis, and Management. Gen. Dent. 2019, 67, 24–29. [Google Scholar]
- Alsabbagh, R.; Ouanounou, A. Burning Mouth Syndrome: Etiology, Clinical Presentations, and Treatment Alternatives. Dent. Rev. 2022, 2, 100036. [Google Scholar] [CrossRef]
- Adamo, D.; Celentano, A.; Ruoppo, E.; Cucciniello, C.; Pecoraro, G.; Aria, M.; Mignogna, M.D. The Relationship Between Sociodemographic Characteristics and Clinical Features in Burning Mouth Syndrome. Pain Med. 2015, 16, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Adamo, D.; Sardella, A.; Varoni, E.; Lajolo, C.; Biasotto, M.; Ottaviani, G.; Vescovi, P.; Simonazzi, T.; Pentenero, M.; Ardore, M.; et al. The Association between Burning Mouth Syndrome and Sleep Disturbance: A Case-Control Multicentre Study. Oral Dis. 2018, 24, 638–649. [Google Scholar] [CrossRef] [PubMed]
- Abetz, L.M.; Savage, N.W. Burning Mouth Syndrome and Psychological Disorders. Aust. Dent. J. 2009, 54, 84–93; quiz 173. [Google Scholar] [CrossRef] [PubMed]
- Forssell, H.; Teerijoki-Oksa, T.; Puukka, P.; Estlander, A.-M. Symptom Severity in Burning Mouth Syndrome Associates with Psychological Factors. J. Oral Rehabil. 2020, 47, 713–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamey, P.-J.; Freeman, R.; Eddie, S.-A.; Pankhurst, C.; Rees, T. Vulnerability and Presenting Symptoms in Burning Mouth Syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2005, 99, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, A.; Ayis, S.; Panesar, S.S.; Langford, R.M.; Donaldson, L.J. Assessing the Relationship between Chronic Pain and Cardiovascular Disease: A Systematic Review and Meta-Analysis. Scand. J. Pain. 2016, 13, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Altin, M.; Duenas, H.; Alev, L. The Role of Descending Inhibitory Pathways on Chronic Pain Modulation and Clinical Implications. Pain Pract. 2014, 14, 656–667. [Google Scholar] [CrossRef]
- Lv, Q.; Wu, F.; Gan, X.; Yang, X.; Zhou, L.; Chen, J.; He, Y.; Zhang, R.; Zhu, B.; Liu, L. The Involvement of Descending Pain Inhibitory System in Electroacupuncture-Induced Analgesia. Front. Integr. Neurosci. 2019, 13, 38. [Google Scholar] [CrossRef]
- Saccò, M.; Meschi, M.; Regolisti, G.; Detrenis, S.; Bianchi, L.; Bertorelli, M.; Pioli, S.; Magnano, A.; Spagnoli, F.; Giuri, P.G.; et al. The Relationship Between Blood Pressure and Pain. J. Clin. Hypertens. 2013, 15, 600–605. [Google Scholar] [CrossRef]
- Bragdon, E.E.; Light, K.C.; Girdler, S.S.; Maixner, W. Blood Pressure, Gender, and Parental Hypertension Are Factors in Baseline and Poststress Pain Sensitivity in Normotensive Adults. Int. J. Behav. Med. 1997, 4, 17–38. [Google Scholar] [CrossRef]
- Brody, S.; Angrilli, A.; Weiss, U.; Birbaumer, N.; Mini, A.; Veit, R.; Rau, H. Somatotosensory Evoked Potentials during Baroreceptor Stimulation in Chronic Low Back Pain Patients and Normal Controls. Int. J. Psychophysiol. 1997, 25, 201–210. [Google Scholar] [CrossRef] [PubMed]
- de la Coba, P.; Bruehl, S.; Garber, J.; Smith, C.A.; Walker, L.S. Is Resolution of Chronic Pain Associated with Changes in Blood Pressure-Related Hypoalgesia? Ann. Behav. Med. 2018, 52, 552–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruehl, S.; Chung, O.Y.; Jirjis, J.N.; Biridepalli, S. Prevalence of Clinical Hypertension in Patients with Chronic Pain Compared to Nonpain General Medical Patients. Clin. J. Pain 2005, 21, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.B.; Bruehl, S.; Nielsen, C.S.; Rosseland, L.A.; Eggen, A.E.; Stubhaug, A. Hypertension Prevalence and Diminished Blood Pressure-Related Hypoalgesia in Individuals Reporting Chronic Pain in a General Population: The Tromsø Study. Pain 2013, 154, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-Q.; Cui, H.-M.; Han, Y.; Su, S.; Liu, H.-W. Multifactor Analysis of Patients with Oral Sensory Complaints in a Case-Control Study. Chin. Med. J. 2020, 133, 2822–2828. [Google Scholar] [CrossRef]
- Adamo, D.; Canfora, F.; Calabria, E.; Coppola, N.; Leuci, S.; Pecoraro, G.; Cuocolo, R.; Ugga, L.; D’Aniello, L.; Aria, M.; et al. White Matter Hyperintensities in Burning Mouth Syndrome Assessed According to the Age-Related White Matter Changes Scale. Front. Aging Neurosci. 2022, 14, 923720. [Google Scholar] [CrossRef]
- Connelly, P.J.; Casey, H.; Montezano, A.C.; Touyz, R.M.; Delles, C. Sex Steroids Receptors, Hypertension, and Vascular Ageing. J. Hum. Hypertens. 2022, 36, 120–125. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Hino, S.; Yamada, M.; Iijima, Y.; Fujita, Y.; Sano, M.; Kaneko, T.; Horie, N. Cancer Chemotherapy-Induced Oral Adverse Events: Oral Dysesthesia and Toothache—A Retrospective Study. Ann. Maxillofac. Surg. 2021, 11, 86–90. [Google Scholar] [CrossRef]
- Makeeva, I.M.; Budina, T.V.; Turkina, A.Y.; Poluektov, M.G.; Kondratiev, S.A.; Arakelyan, M.G.; Signore, A.; Amaroli, A. Xerostomia and Hyposalivation in Patients with Obstructive Sleep Apnoea. Clin. Otolaryngol. 2021, 46, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, A.; Miyachi, H.; Tanaka, K.; Chikazu, D.; Miyaoka, H. Relationship between Xerostomia and Psychotropic Drugs in Patients with Schizophrenia: Evaluation Using an Oral Moisture Meter. J. Clin. Pharm. Ther. 2016, 41, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Muntner, P.; Shimbo, D.; Carey, R.M.; Charleston, J.B.; Gaillard, T.; Misra, S.; Myers, M.G.; Ogedegbe, G.; Schwartz, J.E.; Townsend, R.R.; et al. Measurement of Blood Pressure in Humans: A Scientific Statement from the American Heart Association. Hypertension 2019, 73, e35–e66. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Chung, H.-F.; Pandeya, N.; Dobson, A.J.; Kuh, D.; Crawford, S.L.; Gold, E.B.; Avis, N.E.; Giles, G.G.; Bruinsma, F.; et al. Body Mass Index and Age at Natural Menopause: An International Pooled Analysis of 11 Prospective Studies. Eur. J. Epidemiol. 2018, 33, 699–710. [Google Scholar] [CrossRef]
- Obesity: Preventing and Managing the Global Epidemic; Report of a WHO Consultation; World Health Organ Tech Rep Ser; World Health Organization: Geneva, Switzerland, 2000; Volume 894, pp. i–xii, 1–253.
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of Adult Pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011, 63 (Suppl. S11), S240–S252. [Google Scholar] [CrossRef]
- Melzack, R. The Short-Form McGill Pain Questionnaire. Pain 1987, 30, 191–197. [Google Scholar] [CrossRef]
- Boonstra, A.M.; Stewart, R.E.; Köke, A.J.A.; Oosterwijk, R.F.A.; Swaan, J.L.; Schreurs, K.M.G.; Schiphorst Preuper, H.R. Cut-Off Points for Mild, Moderate, and Severe Pain on the Numeric Rating Scale for Pain in Patients with Chronic Musculoskeletal Pain: Variability and Influence of Sex and Catastrophizing. Front. Psychol. 2016, 7, 1466. [Google Scholar] [CrossRef] [Green Version]
- Jumbo, S.U.; MacDermid, J.C.; Kalu, M.E.; Packham, T.L.; Athwal, G.S.; Faber, K.J. Measurement Properties of the Brief Pain Inventory-Short Form (BPI-SF) and Revised Short McGill Pain Questionnaire Version-2 (SF-MPQ-2) in Pain-Related Musculoskeletal Conditions: A Systematic Review. Clin. J. Pain 2021, 37, 454–474. [Google Scholar] [CrossRef]
- Hamilton, M. A Rating Scale for Depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, M. The Assessment of Anxiety States by Rating. Br. J. Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef]
- Morriss, R.; Leese, M.; Chatwin, J.; Baldwin, D.; THREAD Study Group. Inter-Rater Reliability of the Hamilton Depression Rating Scale as a Diagnostic and Outcome Measure of Depression in Primary Care. J. Affect. Disord. 2008, 111, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curcio, G.; Tempesta, D.; Scarlata, S.; Marzano, C.; Moroni, F.; Rossini, P.M.; Ferrara, M.; De Gennaro, L. Validity of the Italian Version of the Pittsburgh Sleep Quality Index (PSQI). Neurol. Sci. 2013, 34, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bland, J.M.; Altman, D.G. Statistics Notes. The Odds Ratio. BMJ 2000, 320, 1468. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-Y.; Kim, Y.S.; Ko, I.; Kim, D.-K. Association Between Burning Mouth Syndrome and the Development of Depression, Anxiety, Dementia, and Parkinson Disease. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 561–569. [Google Scholar] [CrossRef]
- Schiavone, V.; Adamo, D.; Ventrella, G.; Morlino, M.; De Notaris, E.B.; Ravel, M.G.; Kusmann, F.; Piantadosi, M.; Pollio, A.; Fortuna, G.; et al. Anxiety, Depression, and Pain in Burning Mouth Syndrome: First Chicken or Egg? Headache 2012, 52, 1019–1025. [Google Scholar] [CrossRef]
- Canfora, F.; Calabria, E.; Cuocolo, R.; Ugga, L.; Buono, G.; Marenzi, G.; Gasparro, R.; Pecoraro, G.; Aria, M.; D’Aniello, L.; et al. Burning Fog: Cognitive Impairment in Burning Mouth Syndrome. Front. Aging Neurosci. 2021, 13, 727417. [Google Scholar] [CrossRef]
- Giummarra, M.J.; Tardif, H.; Blanchard, M.; Tonkin, A.; Arnold, C.A. Hypertension Prevalence in Patients Attending Tertiary Pain Management Services, a Registry-Based Australian Cohort Study. PLoS ONE 2020, 15, e0228173. [Google Scholar] [CrossRef]
- Mills, E.P.; Keay, K.A.; Henderson, L.A. Brainstem Pain-Modulation Circuitry and Its Plasticity in Neuropathic Pain: Insights from Human Brain Imaging Investigations. Front. Pain Res. 2021, 2, 705345. [Google Scholar] [CrossRef] [PubMed]
- Daubert, D.L.; McCowan, M.; Erdos, B.; Scheuer, D.A. Nucleus of the Solitary Tract Catecholaminergic Neurons Modulate the Cardiovascular Response to Psychological Stress in Rats. J. Physiol. 2012, 590, 4881–4895. [Google Scholar] [CrossRef] [PubMed]
- Gurvits, G.E.; Tan, A. Burning Mouth Syndrome. World J. Gastroenterol. 2013, 19, 665–672. [Google Scholar] [CrossRef] [PubMed]
- González-Roldán, A.M.; Terrasa, J.L.; Sitges, C.; van der Meulen, M.; Anton, F.; Montoya, P. Age-Related Changes in Pain Perception Are Associated with Altered Functional Connectivity During Resting State. Front. Aging Neurosci. 2020, 12, 116. [Google Scholar] [CrossRef]
- Edwards, R.R.; Fillingim, R.B.; Ness, T.J. Age-Related Differences in Endogenous Pain Modulation: A Comparison of Diffuse Noxious Inhibitory Controls in Healthy Older and Younger Adults. Pain 2003, 101, 155–165. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide Trends in Hypertension Prevalence and Progress in Treatment and Control from 1990 to 2019: A Pooled Analysis of 1201 Population-Representative Studies with 104 Million Participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef]
- Diatchenko, L.; Nackley, A.G.; Slade, G.D.; Bhalang, K.; Belfer, I.; Max, M.B.; Goldman, D.; Maixner, W. Catechol-O-Methyltransferase Gene Polymorphisms Are Associated with Multiple Pain-Evoking Stimuli. Pain 2006, 125, 216–224. [Google Scholar] [CrossRef]
- Xu, J.; Boström, A.E.; Saeed, M.; Dubey, R.K.; Waeber, G.; Vollenweider, P.; Marques-Vidal, P.; Mwinyi, J.; Schiöth, H.B. A Genetic Variant in the Catechol-O-Methyl Transferase (COMT) Gene Is Related to Age-Dependent Differences in the Therapeutic Effect of Calcium-Channel Blockers. Medicine 2017, 96, e7029. [Google Scholar] [CrossRef]
- Meloto, C.B.; Segall, S.K.; Smith, S.; Parisien, M.; Shabalina, S.A.; Rizzatti-Barbosa, C.M.; Gauthier, J.; Tsao, D.; Convertino, M.; Piltonen, M.H.; et al. COMT Gene Locus: New Functional Variants. Pain 2015, 156, 2072–2083. [Google Scholar] [CrossRef]
- Kamal, S.; Lappin, S.L. Biochemistry, Catecholamine Degradation; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Wada, A.; Shizukuishi, T.; Kikuta, J.; Yamada, H.; Watanabe, Y.; Imamura, Y.; Shinozaki, T.; Dezawa, K.; Haradome, H.; Abe, O. Altered Structural Connectivity of Pain-Related Brain Network in Burning Mouth Syndrome-Investigation by Graph Analysis of Probabilistic Tractography. Neuroradiology 2017, 59, 525–532. [Google Scholar] [CrossRef]
- Gurven, M.; Blackwell, A.D.; Rodríguez, D.E.; Stieglitz, J.; Kaplan, H. Does Blood Pressure Inevitably Rise with Age?: Longitudinal Evidence among Forager-Horticulturalists. Hypertension 2012, 60, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Almeida, Y.; Fillingim, R.B.; Riley, J.L.; Woods, A.J.; Porges, E.; Cohen, R.; Cole, J. Chronic Pain Is Associated with a Brain Aging Biomarker in Community-Dwelling Older Adults. Pain 2019, 160, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Celle, S.; Roche, F.; Bartha, R.; Montero-Odasso, M.; Allali, G.; Annweiler, C. Blood Pressure Levels and Brain Volume Reduction: A Systematic Review and Meta-Analysis. J. Hypertens. 2013, 31, 1502–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, J.R.; Zanstra, Y. Is the Brain the Essential in Hypertension? Neuroimage 2009, 47, 914–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alateeq, K.; Walsh, E.I.; Cherbuin, N. Higher Blood Pressure Is Associated with Greater White Matter Lesions and Brain Atrophy: A Systematic Review with Meta-Analysis. J. Clin. Med. 2021, 10, 637. [Google Scholar] [CrossRef]
- Sinding, C.; Gransjøen, A.M.; Schlumberger, G.; Grushka, M.; Frasnelli, J.; Singh, P.B. Grey Matter Changes of the Pain Matrix in Patients with Burning Mouth Syndrome. Eur. J. Neurosci. 2016, 43, 997–1005. [Google Scholar] [CrossRef] [Green Version]
- Hay, M.; Barnes, C.; Huentelman, M.; Brinton, R.; Ryan, L. Hypertension and Age-Related Cognitive Impairment: Common Risk Factors and a Role for Precision Aging. Curr. Hypertens. Rep. 2020, 22, 80. [Google Scholar] [CrossRef]
- Noh, J.; Kim, H.C.; Shin, A.; Yeom, H.; Jang, S.-Y.; Lee, J.H.; Kim, C.; Suh, I. Prevalence of Comorbidity among People with Hypertension: The Korea National Health and Nutrition Examination Survey 2007–2013. Korean Circ. J. 2016, 46, 672–680. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, B.; Aguilar, D.; Deswal, A.; Dunbar, S.B.; Francis, G.S.; Horwich, T.; Jessup, M.; Kosiborod, M.; Pritchett, A.M.; Ramasubbu, K.; et al. Contributory Risk and Management of Comorbidities of Hypertension, Obesity, Diabetes Mellitus, Hyperlipidemia, and Metabolic Syndrome in Chronic Heart Failure: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e535–e578. [Google Scholar] [CrossRef]
- Welty, F.K. Cardiovascular Disease and Dyslipidemia in Women. Arch. Intern. Med. 2001, 161, 514. [Google Scholar] [CrossRef]
- Lim, L.-F.; Solmi, M.; Cortese, S. Association between Anxiety and Hypertension in Adults: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2021, 131, 96–119. [Google Scholar] [CrossRef] [PubMed]
- Kretchy, I.A.; Owusu-Daaku, F.T.; Danquah, S.A. Mental Health in Hypertension: Assessing Symptoms of Anxiety, Depression and Stress on Anti-Hypertensive Medication Adherence. Int. J. Ment. Health Syst. 2014, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Sapru, H.N. Role of the Hypothalamic Arcuate Nucleus in Cardiovascular Regulation. Auton. Neurosci. 2013, 175, 38–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, M.A.C.; Wand, G. Stress and the HPA Axis. Alcohol Res. 2012, 34, 468–483. [Google Scholar]
- Smith, S.M.; Vale, W.W. The Role of the Hypothalamic-Pituitary-Adrenal Axis in Neuroendocrine Responses to Stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar] [CrossRef]
- Burns, J.W.; Quartana, P.J.; Bruehl, S.; Janssen, I.; Dugan, S.A.; Appelhans, B.; Matthews, K.A.; Kravitz, H.M. Chronic Pain, Body Mass Index and Cardiovascular Disease Risk Factors: Tests of Moderation, Unique and Shared Relationships in the Study of Women’s Health Across the Nation (SWAN). J. Behav. Med. 2015, 38, 372–383. [Google Scholar] [CrossRef]
Demographic variables | BMS | CONTROLS | p-value |
Gender | Frequency (%) | Frequency (%) | 1.000 |
Male | 121 (50) | 121 (50) | |
Female | 121 (50) | 121 (50) | |
Age (in years) | Mean ± SD | Mean ± SD | 0.231 |
65.61 ± 12.7 | 64.34 ± 10.4 | ||
Education (in years) | Mean ± SD | Mean ± SD | <0.001 ** |
9.31 ± 4.49 | 11.6 ± 4.92 | ||
Family situation | Frequency (%) | Frequency (%) | 0.254 |
Single | 14 (5.8) | 22 (9.1) | |
Married | 182 (75.2) | 184 (76) | |
Divorced | 14 (5.8) | 14 (5.8) | |
Widowed | 32 (13.2) | 21 (8.7) | |
Employment | Frequency (%) | Frequency (%) | 0.002 ** |
Employed | 68 (28.1) | 101 (41.7) | |
Unemployed | 73 (30.2) | 46 (19) | |
Retired | 101 (41.7) | 95 (39.3) | |
Risk factors | Frequency (%) | Frequency (%) | p-value |
Smoking | 0.007 ** | ||
Never | 181 (74.8) | 176 (72.7) | |
<5 cigarettes | 8 (3.3) | 21 (8.7) | |
5–10 cigarettes | 8 (3.3) | 16 (6.6) | |
10–15 cigarettes | 17 (7) | 16 (6.6) | |
>15 cigarettes | 28 (11.6) | 13 (5.4) | |
Alcohol use | <0.001 ** | ||
Never | 191 (78.9) | 149 (61.6) | |
Yes (1 unit) | 36 (14.9) | 64 (26.4) | |
Yes (2 units) | 11 (4.5) | 23 (9.5) | |
Yes (>2) | 4 (1.7) | 6 (2.5) | |
Body Mass Index (kg/m2) | <0.001 ** | ||
BMI < 18.5 | 0 (0) | 6 (2.5) | |
BMI: 18.5–24.9 normal | 67 (27.7) | 122 (50.4) | |
BMI: 25.0–29.9 overweight | 139 (57.4) | 94 (38.8) | |
BMI: 30–34 class I obesity | 30 (12.4) | 18 (7.4) | |
BMI: 35–39.99 class II obesity | 4 (1.7) | 2 (0.8) | |
BMI > 40 class III obesity | 2 (0.8) | 0 (0) | |
BMI | MEAN ± SD 27.1 ± 3.48 | MEAN ± SD 24.8 ± 3.48 | |
Clinical parameters | BMS Median; IQR | CONTROLS Median; IQR | p-value |
NRS | 10 [10–10] | 0 [0–0] | <0.001 ** |
SF-MPQ | 11 [7–12] | 0 [0–0] | <0.001 ** |
HAM-D | 16 [14–20] | 5 [2–10] | <0.001 ** |
HAM-A | 17.5 [15–20] | 5 [2–9] | <0.001 ** |
PSQI | 8 [8–10] | 5 [3–8] | <0.001 ** |
ESS | 7 [5–9] | 5 [3–8] | <0.001 ** |
Systemic diseases | BMS Frequency (%) | CONTROLS Frequency (%) | p-value |
Hypertension | 133 (55) | 81 (33.5) | <0.001 ** |
Hypercholesterolemia | 83 (34.3) | 69 (28.5) | 0.203 |
Gastrointestinal diseases | 43 (17.8) | 32 (13.2) | 0.209 |
Hypothyroidism | 29 (12) | 22 (9.1) | 0.375 |
Prostatic hypertrophy | 23 (9.5) | 11 (4.5) | 0.049 |
Other cardiovascular diseases | 23 (9.5) | 18 (7.4) | 0.514 |
Myocardial infarction | 16 (6.6) | 8 (3.3) | 0.141 |
Neoplastic diseases | 13 (5.4) | 19 (7.9) | 0.361 |
Respiratory diseases | 10 (4.1) | 10 (4.1) | 1.000 |
HCV infection | 3 (1.2) | 7 (2.9) | 0.339 |
HBV infection | 2 (0.8) | 1 (0.4) | 1.000 |
Neurological disorders | 2 (0.8) | 6 (2.5) | 0.285 |
Hyperthyroidism | 1 (0.4) | 3 (1.2) | 0.623 |
Endocrine diseases | 1 (0.4) | 3 (1.2) | 0.623 |
Drug consumption | BMS Frequency (%) | CONTROLS Frequency (%) | p-value |
Antiplatelets | 66 (27.3) | 34 (14) | <0.001 ** |
Proton pump inhibitors | 53 (21.9) | 39 (16.1) | 0.132 |
Statins | 50 (20.7) | 51 (21.1) | 1.000 |
Beta blockers | 42 (17.4) | 36 (14.9) | 0.537 |
ACE-inhibitors | 38 (15.7) | 35 (14.5) | 0.800 |
Angiotensin II receptor antagonists (ARBs) | 37 (15.3) | 18 (7.4) | 0.009 |
Thiazide diuretics | 27 (11.2) | 27 (11.2) | 1.000 |
Calcium channel blockers | 24 (9.9) | 13 (5.4) | 0.086 |
Levothyroxin sodium | 24 (9.9) | 17 (7) | 0.327 |
Blood thinners | 16 (6.6) | 5 (2.1) | 0.023 |
Bisphosphonates | 5 (2.1) | 4 (1.7) | 1.000 |
Steroids | 3 (1.2) | 5 (2.1) | 0.724 |
Male Patients | Female Patients | |||
---|---|---|---|---|
BMS | CONTROLS | BMS | CONTROLS | |
Frequency (%) | Frequency (%) | Age | Frequency (%) | Frequency (%) |
65 (48.87) | 42 (51.85) | All subjects | 68 (51.13) | 39 (48.15) |
0 (0) | 2 (4.76) | <45 | 1 (1.47) | 0 (0) |
6 (9.23) | 2 (4.76) | 45–55 | 4 (5.88) | 3 (7.69) |
9 (13.85) | 9 (21.43) | 55–65 | 15 (22.06) | 13 (33.33) |
24 (36.92) | 21 (50) | 65–75 | 27 (39.71) | 16 (41.03) |
26 (40) | 8 (19.05) | >75 | 21 (30.88) | 7 (17.95) |
Oral symptoms | BMS Frequency (%) |
Burning | 242 (100) |
Xerostomia | 149 (61.6) |
Dysgeusia | 110 (45.6) |
Globus pharingeus | 78 (32.2) |
Intraoral foreign body sensation | 53 (21.9) |
Sialorrhea | 47 (19.4) |
Subjective change in tongue and gum morphology | 42 (17.4) |
Itching | 27 (11.2) |
Tingling sensation | 25 (10.3) |
Oral dyskinesia | 18 (7.4) |
Occlusal dysesthesia | 16 (6.6) |
Halitophobia | 14 (5.8) |
Dysosmia | 5 (2.1) |
Sites involved | BMS Frequency (%) |
Generalized | 102 (42.1) |
Tongue | 211 (87.2) |
Anterior palate | 144 (59.5) |
Lips | 142 (58.7) |
Gums | 142 (58.7) |
Cheeks | 119 (49.4) |
Soft palate | 110 (45.5) |
Floor of the mouth | 107 (44.2) |
Qualitative variables | BMS/HTN Frequency (%) | p-value | Controls/HTN Frequency (%) | p-value | ||
Marital status Married not married | 98 (73.3) 35 (26.3) | 0.554 | 64 (79) 17 (21) | 0.524 | ||
Employment Employed Not employed | 25 (18.8) 108 (81.2) | <0.001 ** | 26 (32.1) 55 (67.9) | 0.038 | ||
Smoking Smoker Non-smoker | 15 (11.3) 118 (88.7) | 0.347 | 29 (35.8) 52 (64.2) | 0.185 | ||
Alcohol use Yes No | 29 (21.8) 104 (78.2) | 0.874 | 23 (28.4) 58 (71.6) | 0.384 | ||
Systemic diseases Yes No | 130 (97.7) 3 (2.3) | <0.001 ** | 77 (95.1) 4 (4.9) | <0.001 ** | ||
Drug consumption Yes No | 107 (80.5) 26 (19.5) | 0.002 ** | 68 (84) 13 (16) | <0.001 ** | ||
Quantitative variables | BMS/HTN Median; IQR | BMS/NO HTN Median; IQR | p-value | Control/HTN Median; IQR | Control/NO HTN Median; IQR | p-value |
NRS | 10 [10–10] | 10 [9–10] | 0.545 | 0 [0–0] | 0 [0–0] | 0.401 |
SF-MPQ | 11 [7–12] | 11 [7–12] | 0.792 | 0 [0–1] | 0 [0–0] | 0.408 |
HAM-D | 16 [14–20] | 16 [13–20] | 0.799 | 5 [3–11] | 4 [2–9] | 0.049 |
HAM-A | 18 [15–21] | 17 [15–20] | 0.383 | 6 [3–12] | 4 [2–9] | 0.034 |
PSQI | 8 [8–10] | 8 [8–10] | 0.416 | 6 [3–10] | 4 [3–7] | 0.017 |
ESS | 7 [6–9] | 7 [5–9] | 0.642 | 6 [4–9] | 5 [2–8] | 0.074 |
Education (in years) | 8 [5–13] | 9 [8–13] | <0.001 ** | 13 [8–16] | 13 [8–14] | 0.936 |
BMI (kg/m2) | 27.3 [25.6–28.8] | 26.1 [24.7–28.3] | 0.026 | 25.6 [23–27.6] | 23.9 [21.9–26.3] | 0.010 |
Predictors of HTN in BMS patients | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |||||
OR | p-value | OR | p-value | OR | p-value | OR | p-value | OR | p-value | |
Age | 1.08 | <0.001 ** | 1.08 | <0.001 ** | 1.07 | <0.001 ** | 1.08 | <0.001 ** | 1.07 | <0.001 ** |
Gender: Male | 0.90 | 0.740 | 0.86 | 0.653 | 0.84 | 0.606 | 1.04 | 0.899 | 0.88 | 0.721 |
Years of education | 0.95 | 0.165 | 0.95 | 0.193 | 0.95 | 0.135 | 0.96 | 0.290 | 0.95 | 0.168 |
Marital status: Married | 0.83 | 0.601 | 0.79 | 0.513 | 0.67 | 0.296 | 0.75 | 0.429 | 0.61 | 0.217 |
Job: Employed | 1.14 | 0.740 | 1.12 | 0.783 | 1.11 | 0.800 | 1.09 | 0.826 | 1.07 | 0.871 |
Smoker | 0.86 | 0.748 | 0.85 | 0.732 | 0.98 | 0.967 | 0.75 | 0.555 | 0.85 | 0.771 |
Alcohol use | 0.83 | 0.616 | 0.83 | 0.629 | 0.74 | 0.439 | 0.80 | 0.563 | 0.73 | 0.431 |
BMI | 1.06 | 0.147 | 1.06 | 0.177 | 1.07 | 0.151 | 1.06 | 0.176 | 1.06 | 0.228 |
NRS | 1.04 | 0.767 | 1.05 | 0.711 | ||||||
SF-MPQ | 0.99 | 0.837 | 0.99 | 0.780 | ||||||
HAM-D | 0.92 | 0.099 | 0.91 | 0.094 | ||||||
HAM-A | 1.10 | 0.050 * | 1.08 | 0.118 | ||||||
PSQI | 0.94 | 0.334 | 0.91 | 0.200 | ||||||
ESS | 1.04 | 0.497 | 1.07 | 0.260 | ||||||
Systemic diseases | 16.26 | <0.001 ** | 14.76 | <0.001 ** | ||||||
Drug Consumption | 2.51 | 0.007 ** | 1.89 | 0.101 | ||||||
R2 (%) | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | |||||
R2 change (%) | 0.524 | <0.001 ** | 0.006 ** | <0.001 ** | ||||||
Predictors HTN in control subjects | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |||||
OR | p-value | OR | p-value | OR | p-value | OR | p-value | OR | p-value | |
Age | 1.04 | 0.034 * | 1.04 | 0.040 * | 1.04 | 0.056 | 1.04 | 0.049 * | 1.04 | 0.066 |
Gender: Male | 1.22 | 0.516 | 1.34 | 0.360 | 1.39 | 0.346 | 1.48 | 0.250 | 1.63 | 0.183 |
Years of education | 1.03 | 0.315 | 1.03 | 0.336 | 1.09 | 0.024 * | 1.07 | 0.075 | 1.09 | 0.028 * |
Marital status: Married | 1.34 | 0.409 | 1.49 | 0.286 | 1.49 | 0.304 | 1.28 | 0.509 | 1.44 | 0.361 |
Job: Employed | 0.63 | 0.223 | 0.55 | 0.132 | 0.87 | 0.764 | 0.72 | 0.448 | 0.72 | 0.491 |
Smoker | 2.63 | 0.007 ** | 2.41 | 0.017 * | 2.38 | 0.029 * | 2.79 | 0.009 ** | 2.64 | 0.022 * |
Alcohol use | 0.52 | 0.071 | 0.62 | 0.203 | 0.51 | 0.106 | 0.49 | 0.070 | 0.58 | 0.216 |
BMI | 1.09 | 0.042 * | 1.09 | 0.069 | 1.11 | 0.029 * | 1.09 | 0.077 | 1.09 | 0.101 |
NRS | 0.99 | 0.960 | 0.94 | 0.653 | ||||||
SF-MPQ | 1.12 | 0.356 | 1.06 | 0.639 | ||||||
HAM-D | 0.98 | 0.656 | 0.98 | 0.636 | ||||||
HAM-A | 1.03 | 0.535 | 0.99 | 0.826 | ||||||
PSQI | 1.05 | 0.280 | 1.04 | 0.434 | ||||||
ESS | 1.06 | 0.183 | 1.08 | 0.113 | ||||||
Systemic diseases | 22.17 | <0.001 ** | 11.72 | <0.001 ** | ||||||
Drug Consumption | 7.56 | <0.001 ** | 2.97 | 0.014 * | ||||||
R2 (%) | 0.005 ** | 0.004 ** | <0.001 ** | <0.001 ** | <0.001 ** | |||||
R2 change (%) | 0.124 | <0.001 ** | <0.001 ** | <0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamo, D.; Canfora, F.; Calabria, E.; Coppola, N.; Sansone, M.; Spagnuolo, G.; Pecoraro, G.; Aria, M.; D’Aniello, L.; Mignogna, M.D.; et al. Burning Mouth Syndrome and Hypertension: Prevalence, Gender Differences and Association with Pain and Psycho-Social Characteristics—A Case Control Study. Int. J. Environ. Res. Public Health 2023, 20, 2040. https://doi.org/10.3390/ijerph20032040
Adamo D, Canfora F, Calabria E, Coppola N, Sansone M, Spagnuolo G, Pecoraro G, Aria M, D’Aniello L, Mignogna MD, et al. Burning Mouth Syndrome and Hypertension: Prevalence, Gender Differences and Association with Pain and Psycho-Social Characteristics—A Case Control Study. International Journal of Environmental Research and Public Health. 2023; 20(3):2040. https://doi.org/10.3390/ijerph20032040
Chicago/Turabian StyleAdamo, Daniela, Federica Canfora, Elena Calabria, Noemi Coppola, Mattia Sansone, Gianrico Spagnuolo, Giuseppe Pecoraro, Massimo Aria, Luca D’Aniello, Michele Davide Mignogna, and et al. 2023. "Burning Mouth Syndrome and Hypertension: Prevalence, Gender Differences and Association with Pain and Psycho-Social Characteristics—A Case Control Study" International Journal of Environmental Research and Public Health 20, no. 3: 2040. https://doi.org/10.3390/ijerph20032040
APA StyleAdamo, D., Canfora, F., Calabria, E., Coppola, N., Sansone, M., Spagnuolo, G., Pecoraro, G., Aria, M., D’Aniello, L., Mignogna, M. D., & Leuci, S. (2023). Burning Mouth Syndrome and Hypertension: Prevalence, Gender Differences and Association with Pain and Psycho-Social Characteristics—A Case Control Study. International Journal of Environmental Research and Public Health, 20(3), 2040. https://doi.org/10.3390/ijerph20032040