The Impact of Age and Body Composition on Bone Density among Office Worker Women in Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Sociodemographic Questions
2.2.2. Body Composition
2.2.3. Bone Density and Bone Quality
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Győri, F.; Berki, T.; Katona, Z.; Vári, B.; Katona, Z.; Petrovszki, Z. Physical Activity in the Southern Great Plain Region of Hungary: The Role of Sociodemographics and Body Mass Index. Int. J. Environ. Res. Public Health 2021, 18, 12414. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, E.G.; Edwardson, C.L.; Achana, F.A.; Davies, M.J.; Gorely, T.; Gray, L.J.; Khunti, K.; Yates, T.; Biddle, S.J.H. Sedentary Time in Adults and the Association with Diabetes, Cardiovascular Disease and Death: Systematic Review and Meta-Analysis. Diabetologia 2012, 55, 2895–2905. [Google Scholar] [CrossRef] [PubMed]
- Bauman, A.E.; Chau, J.Y.; Ding, D.; Bennie, J. Too Much Sitting and Cardio-Metabolic Risk: An Update of Epidemiological Evidence. Curr. Cardiovasc. Risk Rep. 2013, 7, 293–298. [Google Scholar] [CrossRef]
- Bácsné Bába, É.; Ráthonyi, G.; Müller, A.; Ráthonyi-Odor, K.; Balogh, P.; Ádány, R.; Bács, Z. Physical Activity of the Population of the Most Obese Country in Europe, Hungary. Front. Public Health 2020, 8, 203. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, Y.; Xu, Y.; Zhou, X.; Xu, Y.; Ma, Z.; Sun, Y. Impact of Age, Gender, and Body Composition on Bone Quality in an Adult Population From the Middle Areas of China. J. Clin. Densitom. 2018, 21, 83–90. [Google Scholar] [CrossRef]
- Srivastava, M.; Deal, C. Osteoporosis in Elderly: Prevention and Treatment. Clin. Geriatr. Med. 2002, 18, 529–555. [Google Scholar] [CrossRef]
- Brunner, C.; Pons-Kühnemann, J.; Neuhäuser-Berthold, M. Impact of Age, Anthropometric Data and Body Composition on Calcaneal Bone Characteristics, as Measured by Quantitative Ultrasound (QUS) in an Older German Population. Ultrasound Med. Biol. 2011, 37, 1984–1992. [Google Scholar] [CrossRef]
- Wang, C.; Chen, P.; Zhuang, J. Validity and Reliability of International Physical Activity Questionnaire–Short Form in Chinese Youth. Res. Q. Exerc. Sport 2013, 84, S80–S86. [Google Scholar] [CrossRef]
- Sozen, T.; Ozisik, L.; Calik Basaran, N. An Overview and Management of Osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef]
- Jamal, S.A.; Ridout, R.; Chase, C.; Fielding, L.; Rubin, L.A.; Hawker, G.A. Bone Mineral Density Testing and Osteoporosis Education Improve Lifestyle Behaviors in Premenopausal Women: A Prospective Study. J. Bone Miner. Res. 1999, 14, 2143–2149. [Google Scholar] [CrossRef]
- Bijelic, R.; Milicevic, S.; Balaban, J. Risk Factors for Osteoporosis in Postmenopausal Women. Med. Arch. 2017, 71, 25. [Google Scholar] [CrossRef]
- Reid, I.R.; Legge, M.; Stapleton, J.P.; Evans, M.C.; Grey, A.B. Regular Exercise Dissociates Fat Mass and Bone Density in Premenopausal Women. J. Clin. Endocrinol. Metab. 1995, 80, 1764–1768. [Google Scholar] [CrossRef]
- Office of the Surgeon General (US). Bone Health and Osteoporosis: A Report of the Surgeon General; Reports of the Surgeon General; Office of the Surgeon General (US): Rockville, Australian, 2004. [Google Scholar]
- Wang, Y.; Wang, S.; Chen, Z.; Ran, Z. The Relationship between Body Composition and Bone Mineral Density of Female Workers in A Unit of Tai’an. Comput. Math. Methods Med. 2022, 2022, 1011768. [Google Scholar] [CrossRef]
- Buttros, D.d.A.B.; Nahas-Neto, J.; Nahas, E.A.P.; Cangussu, L.M.; Barral, A.B.C.R.; Kawakami, M.S. Fatores de Risco Para Osteoporose Em Mulheres Na Pós-Menopausa Do Sudeste Brasileiro. Rev. Bras. Ginecol. Obstet. 2011, 33, 295–302. [Google Scholar] [CrossRef]
- Bliuc, D. Mortality Risk Associated With Low-Trauma Osteoporotic Fracture and Subsequent Fracture in Men and Women. JAMA 2009, 301, 513. [Google Scholar] [CrossRef]
- Lane, N.E. Epidemiology, Etiology, and Diagnosis of Osteoporosis. Am. J. Obstet. Gynecol. 2006, 194, S3–S11. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J.A. An Estimate of the Worldwide Prevalence and Disability Associated with Osteoporotic Fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef]
- HCS Health Report 2019. Available online: https://www.ksh.hu/docs/hun/xftp/idoszaki/pdf/egeszsegugyi_helyzetkep_2019.pdf (accessed on 31 January 2023).
- Li, C.; Sun, J.; Yu, L. Diagnostic Value of Calcaneal Quantitative Ultrasound in the Evaluation of Osteoporosis in Middle-Aged and Elderly Patients. Medicine 2022, 101, e28325. [Google Scholar] [CrossRef]
- Antal, M.; Regöly-Mérei, A.; Biró, L.; Nagy, K.; Fülöp, J.; Beretvás, E.; Gyömörei, E.; Kis, O.; Vámos, A. Nutrition, Life-Style Practice, Serum Vitamin D Concentration and Bone Density in Hungarian Adolescents. Acta Aliment. 2006, 35, 53–61. [Google Scholar] [CrossRef]
- Rurik, I.; Apor, P.; Barna, M.; Barna, I.; Bedros, J.R.; Kempler, P.; Martos, É.; Mohos, E.; Pavlik, G.; Pados, G.; et al. Az Elhízás Kezelése És Megelőzése: Táplálkozás, Testmozgás, Orvosi Lehetőségek: Hazai Szakmaközi Ajánlás. Orv. Hetil. 2021, 162, 323–335. [Google Scholar] [CrossRef]
- Erdei, G.; Kovács, V.A.; Bakacs, M.; Martos, É. Országos Táplálkozás és Tápláltsági Állapot Vizsgálat 2014. I. A Magy. Felnőtt Lakosság Tápláltsági Állapota Orv. Hetil. 2017, 158, 533–540. [Google Scholar] [CrossRef]
- Scope 21 Epidemiology, Burden, and Treatment of Osteoporosis in Hungary. Available online: https://www.osteoporosis.foundation/sites/iofbonehealth/files/scope-2021/Hungary%20report.pdf (accessed on 27 May 2023).
- Correa-Rodríguez, M.; Rio-Valle, J.S.; González-Jiménez, E.; Rueda-Medina, B. The Effects of Body Composition, Dietary Intake, and Physical Activity on Calcaneus Quantitative Ultrasound in Spanish Young Adults. Biol. Res. Nurs. 2016, 18, 439–444. [Google Scholar] [CrossRef]
- Jafri, L.; Majid, H.; Ahmed, S.; Naureen, G.; Khan, A.H. Calcaneal Ultrasound and Its Relation to Dietary and Lifestyle Factors, Anthropometry, and Vitamin D Deficiency in Young Medical Students. Front. Endocrinol. 2021, 11, 601562. [Google Scholar] [CrossRef]
- Hsu, Y.-H.; Venners, S.A.; Terwedow, H.A.; Feng, Y.; Niu, T.; Li, Z.; Laird, N.; Brain, J.D.; Cummings, S.R.; Bouxsein, M.L.; et al. Relation of Body Composition, Fat Mass, and Serum Lipids to Osteoporotic Fractures and Bone Mineral Density in Chinese Men and Women. Am. J. Clin. Nutr. 2006, 83, 146–154. [Google Scholar] [CrossRef]
- Reid, I.R.; Plank, L.D.; Evans, M.C. Fat Mass Is an Important Determinant of Whole Body Bone Density in Premenopausal Women but Not in Men. J. Clin. Endocrinol. Metab. 1992, 75, 779–782. [Google Scholar] [CrossRef]
- Andreoli, A.; Bazzocchi, A.; Celi, M.; Lauro, D.; Sorge, R.; Tarantino, U.; Guglielmi, G. Relationship between Body Composition, Body Mass Index and Bone Mineral Density in a Large Population of Normal, Osteopenic and Osteoporotic Women. Radiol. Med. 2011, 116, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Pluijm, S.M.F.; Visser, M.; Smit, J.H.; Popp-Snijders, C.; Roos, J.C.; Lips, P. Determinants of Bone Mineral Density in Older Men and Women: Body Composition as Mediator. J. Bone Miner. Res. 2001, 16, 2142–2151. [Google Scholar] [CrossRef]
- Manitoba Bone Density Program; Morin, S.; Leslie, W.D. High Bone Mineral Density Is Associated with High Body Mass Index. Osteoporos. Int. 2009, 20, 1267–1271. [Google Scholar] [CrossRef]
- Al-Gorani, A.; Al-Jubbori, M.A. The Assessment of the Bone Quality with Low Back Pain. J. Educ. Sci. 2022, 31, 1–16. [Google Scholar] [CrossRef]
- Gjesdal, C.G.; Halse, J.I.; Eide, G.E.; Brun, J.G.; Tell, G.S. Impact of Lean Mass and Fat Mass on Bone Mineral Density: The Hordaland Health Study. Maturitas 2008, 59, 191–200. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Jin, M.; Gu, Z.; Pei, Y.; Meng, P. Aged-Related Changes in Body Composition and Association between Body Composition with Bone Mass Density by Body Mass Index in Chinese Han Men over 50-Year-Old. PLoS ONE 2015, 10, e0130400. [Google Scholar] [CrossRef] [PubMed]
- Breitenbach, Z.; Raposa, B.; Szabó, Z.; Polyák, É.; Szűcs, Z.; Kubányi, J.; Figler, M. Examination of Hungarian College Students’ Eating Habits, Physical Activity and Body Composition. Eur. J. Integr. Med. 2016, 8, 13–17. [Google Scholar] [CrossRef]
- Photiou, A.; Anning, J.H.; Mészáros, J.; Vajda, I.; Mészáros, Z.; Sziva, Á.; Prókai, A.; Ng, N. Lifestyle, Body Composition, and Physical Fitness Changes in Hungarian School Boys (1975–2005). Res. Q. Exerc. Sport 2008, 79, 166–173. [Google Scholar] [CrossRef]
- Can, S.; Gündüz, N.; Arslan, E.; Biernat, E.; Ersöz, G.; Kilit, B. Multi-Instrument Assessment of Physical Activity in Female Office Workers. Int. J. Occup. Med. Environ. Health 2016, 29, 937–945. [Google Scholar] [CrossRef]
- Cho, S.-J.; Chung, Y.K.; Kim, J.-M.; Chu, M.K. Migraine and Restless Legs Syndrome Are Associated in Adults under Age Fifty but Not in Adults over Fifty: A Population-Based Study. J. Headache Pain 2015, 16, 75. [Google Scholar] [CrossRef]
- Coin, A.; Giannini, S.; Minicuci, N.; Rinaldi, G.; Pedrazzoni, M.; Minisola, S.; Rossini, M.; Del Puente, A.; Inelmen, E.M.; Manzato, E.; et al. Limb Fat-Free Mass and Fat Mass Reference Values by Dual-Energy X-Ray Absorptiometry (DEXA) in a 20–80 Year-Old Italian Population. Clin. Nutr. 2012, 31, 506–511. [Google Scholar] [CrossRef]
- Yusuf, S.; Hawken, S.; Ôunpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of Potentially Modifiable Risk Factors Associated with Myocardial Infarction in 52 Countries (the INTERHEART Study): Case-Control Study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Klein, S.; Romijn, J.A. Obesity. In Williams Textbook of Endocrinology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1633–1659. ISBN 978-0-323-29738-7. [Google Scholar]
- Ojha, S.; Budge, H.; Symonds, M.E. Adipocytes in Normal Tissue Biology. In Pathobiology of Human Disease; Elsevier: Amsterdam, The Netherlands, 2014; pp. 2003–2013. ISBN 978-0-12-386457-4. [Google Scholar]
- Inbody. Inbody 230 User Manual. Available online: https://inbodyusa.zendesk.com/hc/en-us/article_attachments/360017988251/InBody230_User_sManual.pdf (accessed on 31 January 2023).
- Scheffler, C.; Gniosdorz, B.; Staub, K.; Rühli, F. Skeletal Robustness and Bone Strength as Measured by Anthropometry and Ultrasonography as a Function of Physical Activity in Young Adults: Skeletal Robustness and Bone Strength in Young Adults. Am. J. Hum. Biol. 2014, 26, 215–220. [Google Scholar] [CrossRef]
- Han, C.-S.; Kim, H.-K.; Kim, S. Effects of Adolescents’ Lifestyle Habits and Body Composition on Bone Mineral Density. Int. J. Environ. Res. Public Health 2021, 18, 6170. [Google Scholar] [CrossRef]
- OsteoSys SONOST 3000 User Manual. Available online: https://www.gimaitaly.com/DocumentiGIMA/Manuali/EN/M33996EN.pdf (accessed on 31 January 2023).
- Hashmi, F.R.; Elfandi, K.O. Heel Ultrasound Scan in Detecting Osteoporosis in Low Trauma Fracture Patients. Orthop. Rev. 2016, 8. [Google Scholar] [CrossRef]
- WHO. Assessment of Osteoporosis at the Primary Health Care Level. Available online: https://frax.shef.ac.uk/FRAX/pdfs/WHO_Technical_Report.pdf (accessed on 31 January 2023).
- Jura, M.; Kozak, L.P. Obesity and Related Consequences to Ageing. AGE 2016, 38, 23. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Piasecki, M.; Atherton, P.J. The Age-Related Loss of Skeletal Muscle Mass and Function: Measurement and Physiology of Muscle Fibre Atrophy and Muscle Fibre Loss in Humans. Ageing Res. Rev. 2018, 47, 123–132. [Google Scholar] [CrossRef]
- Stathopoulos, K.; Zoubos, A.; Papaioannou, D.; Mastrokalos, D.; Galanos, A.; Papagelopoulos, P.; Skarantavos, G. Differences of Bone Mineral Mass, Volumetric Bone Mineral Density, Geometrical and Structural Parameters and Derived Strength of the Tibia between Premenopausal and Postmenopausal Women of Different Age Groups: A Peripheral Quantitative Computed Tomography (PQCT) Study. J. Musculoskelet Neuronal Interact 2016, 16, 113–121. [Google Scholar]
- Lazzer, S.; Bedogni, G.; Lafortuna, C.L.; Marazzi, N.; Busti, C.; Galli, R.; de Col, A.; Agosti, F.; Sartorio, A. Relationship Between Basal Metabolic Rate, Gender, Age, and Body Composition in 8780 White Obese Subjects. Obesity 2010, 18, 71–78. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, Y.; Hyman, M.E.; Li, J.; Chen, Y. Osteoporosis in China. Osteoporos. Int. 2009, 20, 1651–1662. [Google Scholar] [CrossRef]
- Zhao, L.-J.; Liu, Y.-J.; Liu, P.-Y.; Hamilton, J.; Recker, R.R.; Deng, H.-W. Relationship of Obesity with Osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef]
- Zhao, L.-J.; Jiang, H.; Papasian, C.J.; Maulik, D.; Drees, B.; Hamilton, J.; Deng, H.-W. Correlation of Obesity and Osteoporosis: Effect of Fat Mass on the Determination of Osteoporosis. J. Bone Miner. Res. 2007, 23, 17–29. [Google Scholar] [CrossRef]
- Blum, M.; Harris, S.S.; Must, A.; Naumova, E.N.; Phillips, S.M.; Rand, W.M.; Dawson-Hughes, B. Leptin, Body Composition and Bone Mineral Density in Premenopausal Women. Calcif. Tissue Int. 2003, 73, 27–32. [Google Scholar] [CrossRef]
- Radak, T.L. Effect of Caloric Restriction on Bone Mineral Density and Bone Turnover in Over Weight and Obese Individuals with Differing Calcium Intake Levels. Ph.D. Thesis, Loma Linda University, Loma Linda, CA, USA, 2004. [Google Scholar]
- Griffith, J.F.; Engelke, K.; Genant, H.K. Looking beyond Bone Mineral Density: Imaging Assessment of Bone Quality. Ann. N. Y. Acad. Sci. 2010, 1192, 45–56. [Google Scholar] [CrossRef]
- Choi, J.W.; Pai, S.H. Bone Mineral Density Correlates Strongly with Basal Metabolic Rate in Postmenopausal Women. Clin. Chim. Acta 2003, 333, 79–84. [Google Scholar] [CrossRef]
- Tardi, P.; Ács, P.; Makai, A.; Hock, M.; Járomi, M. Egy Csontritkulás-Specifikus Kérdőív Magyar Nyelvű Adaptációja És Validálása. Orv. Hetil. 2023, 164, 29–37. [Google Scholar] [CrossRef] [PubMed]
Variable | Definition |
---|---|
Abdominal Obesity Degree (W/H) | The abdominal Obesity Degree is the ratio of waist and hip circumference. Abdominal obesity is diagnosed in cases of over 0.90 for males and 0.85 for females. |
Basal Metabolic Rate (Kcal) | The Basal Metabolic Rate is the minimum energy requirement that the body needed to sustain vital functions while at rest. |
Body Fat Mass (Kg) | Body fat mass refers to the amount of fat in the body. Body Fat Mass is the sum of subcutaneous fat, visceral fat, and fat surrounding muscles. |
Body Mass Index (Kg/m2) | Body mass index is a measure of body fat based on an individual’s weight and height. It is calculated by dividing a person’s weight in kilograms (kg) by their height in meters squared (m²). |
Bone Mineral Content (Kg) | Bone Mineral Content is the weight of minerals in bone. |
Fat Free Mass (Kg-BFM) | Fat Free Mass is the weight of everything except body fat. This includes muscle, water, bones, organs—everything that is not body fat. |
Mineral Mass (Kg) | Minerals refer to the total amount of inorganic minerals that are dissolved in bone and body fluids that represent osseous and non-osseous minerals, respectively. |
Obesity Degree (%) | Obesity Degree is the ratio of current weight to ideal weight. Obesity Degree = (current weight/standard weight by height) × 100. |
Percent Body Fat (%) | Percent body fat is a measure of the amount of fat in the body as a percentage of total body weight. It is calculated by dividing the weight of body fat by the total body weight and multiplying it by 100. |
Skeletal Lean Mass (Kg) | Skeletal lean mass refers to the lean muscle and bone tissue found in the skeleton. It is the total amount of muscle, bone, and connective tissue in the body that is not composed of fat. |
Skeletal Muscle Mass (Kg) | Skeletal muscle mass, which generally indicates the lean body mass of each arm and leg. |
Visceral Fat Area (cm²) | Visceral Fat Area is the estimated area of fat surrounding internal organs in the abdomen. A Visceral Fat Area under 100cm² is the healthy range. |
18–29 (M, SD) n = 50 | 30–39 (M, SD) n = 88 | 40–49 (M, SD) n = 104 | 50+ (M, SD) n = 74 | F | η2 | p Value | |
---|---|---|---|---|---|---|---|
Abdominal Obesity Degree (W/H) | 0.88 (0.06) | 0.90 (0.07) | 0.92 (0.06) | 0.93 (0.06) | 5.96 | 0.05 | 0.001 |
Basal Metabolic Rate (Kcal) | 1342.56 (151.75) | 1359.86 (126.12) | 1375.85 (137.63) | 1363.41 (138.18) | 0.62 | 0.01 | 0.634 |
Body Fat Mass (Kg) | 20.93 (9.26) | 23.46 (10.88) | 25.72 (10.82) | 29.42 (12.13) | 7.13 | 0.07 | 0.001 |
Body Mass Index (Kg/m2) | 23.82 (4.69) | 25.05 (5.23) | 26.70 (5.52) | 28.31 (6.21) | 8.44 | 0.08 | 0.001 |
Bone Mineral Content (Kg) | 2.69 (0.43) | 2.70 (0.34) | 2.72 (0.37) | 2.66 (0.35) | 0.46 | 0.00 | 0.725 |
Bone Quality Index | 87.76 (17.48) | 83.56 (15.08) | 81.04 (15.83) | 76.95 (15.25) | 4.86 | 0.04 | 0.016 |
Fat Free Mass (Kg-BFM) | 45.02 (7.03) | 45.83 (5.83) | 46.57 (6.37) | 45.99 (6.41) | 0.62 | 0.01 | 0.634 |
Mineral Mass (Kg) | 3.23 (0.52) | 3.25 (0.41) | 3.28 (0.45) | 3.21 (0.42) | 0.41 | 0.00 | 0.771 |
Obesity Degree (%) | 110.78 (21.82) | 116.54 (24.32) | 124.14 (25.68) | 131.72 (28.89) | 8.43 | 0.08 | 0.001 |
Percent Body Fat (%) | 30.64 (7.26)) | 32.42 (8.29) | 34.40 (7.67) | 37.65 (7.96) | 9.84 | 0.09 | 0.001 |
Skeletal Lean Mass (Kg) | 42.33 (6.61) | 43.12 (5.50) | 43.85 (6.02) | 43.33 (6.09) | 0.67 | 0.01 | 0.597 |
Skeletal Muscle Mass (Kg) | 24.63 (4.21) | 25.11 (3.50) | 25.56 (3.82) | 25.16 (3.82) | 0.63 | 0.01 | 0.633 |
t-score | −0.93 (0.94) | −1.15 (0.81) | −1.24 (0.79) | −1.51 (0.82) | 148.71 | 0.04 | 0.019 |
Visceral Fat Area (cm²) | 87.46 (35.80) | 97.97 (41.83) | 110.12 (39.04) | 126.32 (41.11) | 11.86 | 0.10 | 0.001 |
Age | Bone Quality Index | t-Score | |
---|---|---|---|
Abdominal Obesity Degree (W/H) | 0.22 (p = 0.001) | 0.03 (p = 0.506) | 0.04 (p = 0.452) |
Basal Metabolic Rate (Kcal) | 0.06 (p = 0.259) | 0.18 (p = 0.002) | 0.20 (p = 0.001) |
Body Fat Mass (Kg) | 0.30 (p = 0.001) | 0.14 (p = 0.016) | 0.14 (p = 0.014) |
Body Mass Index (Kg/m2) | 0.31 (p = 0.001) | 0.15 (p = 0.007) | 0.16 (p = 0.004) |
Bone Mineral Content (Kg) | −0.02 (p = 0.725) | 0.17 (p = 0.004) | 0.19 (p = 0.001) |
Fat Free Mass (Kg-BFM) | 0.06 (p = 0.260) | 0.18 (p = 0.002) | 0.20 (p = 0.001) |
Mineral Mass (Kg) | 0.01 (p = 0.918) | 0.17 (p = 0.03) | 0.19 (p = 0.001) |
Obesity Degree (%) | 0.32 (p = 0.001) | 0.15 (p = 0.007) | 0.16 (p = 0.004) |
Percent Body Fat (%) | 0.33 (p = 0.001) | 0.08 (p = 0.166) | 0.08 (p = 0.172) |
Skeletal Lean Mass (Kg) | 0.07 (p = 0.223) | 0.18 (p = 0.002) | 0.20 (p = 0.001) |
Skeletal Muscle Mass (Kg) | 0.06 (p = 0.294) | 0.18 (p = 0.001) | 0.20 (p = 0.001) |
Visceral Fat Area (cm²) | 0.22 (p = 0.001) | 0.09 (p = 0.098) | 0.10 (p = 0.087) |
Normal (M, SD) n = 190 | Osteopenia (M, SD) n = 126 | t-Value | Cohen’s d | p Value | |
---|---|---|---|---|---|
Abdominal Obesity Degree (W/H) | 0.92 (0.07) | 0.91 (0.07) | 1.14 | 0.12 | 0.315 |
Basal Metabolic Rate (Kcal) | 1378.34 (148.19) | 1344.60 (115.60) | 2.13 | 0.25 | 0.034 |
Body Fat Mass (Kg) | 25.96 (11.71) | 24.05 (10.45) | 1.48 | 0.18 | 0.131 |
Body Mass Index (Kg/m2) | 26.58 (5.86) | 25.53 (5.36) | 1.62 | 0.20 | 0.089 |
Bone Mineral Content (Kg) | 2.73 (0.40) | 2.65 (0.32) | 2.09 | 0.24 | 0.038 |
Fat Free Mass (Kg-BFM) | 46.55 (6.86) | 45.12 (5.36) | 2.13 | 0.25 | 0.034 |
Mineral Mass (Kg) | 3.29 (0.47) | 3.19 (0.38) | 2.12 | 0.25 | 0.035 |
Obesity Degree (%) | 123.63 (27.26) | 118.75 (24.93) | 1.61 | 0.20 | 0.091 |
Percent Body Fat (%) | 34.39 (8.15) | 33.44 (8.21) | 1.01 | 0.11 | 0.339 |
Skeletal Lean Mass (Kg) | 43.82 (6.49) | 42.47 (5.06) | 2.13 | 0.25 | 0.034 |
Skeletal Muscle Mass (Kg) | 25.54 (4.12) | 24.64 (3.19) | 2.18 | 0.25 | 0.030 |
Visceral Fat Area (cm²) | 109.19 (42.09) | 103.19 (41.23) | 1.96 | 0.15 | 0.210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vári, B.; Győri, F.; Katona, Z.; Berki, T. The Impact of Age and Body Composition on Bone Density among Office Worker Women in Hungary. Int. J. Environ. Res. Public Health 2023, 20, 5976. https://doi.org/10.3390/ijerph20115976
Vári B, Győri F, Katona Z, Berki T. The Impact of Age and Body Composition on Bone Density among Office Worker Women in Hungary. International Journal of Environmental Research and Public Health. 2023; 20(11):5976. https://doi.org/10.3390/ijerph20115976
Chicago/Turabian StyleVári, Beáta, Ferenc Győri, Zoltán Katona, and Tamás Berki. 2023. "The Impact of Age and Body Composition on Bone Density among Office Worker Women in Hungary" International Journal of Environmental Research and Public Health 20, no. 11: 5976. https://doi.org/10.3390/ijerph20115976
APA StyleVári, B., Győri, F., Katona, Z., & Berki, T. (2023). The Impact of Age and Body Composition on Bone Density among Office Worker Women in Hungary. International Journal of Environmental Research and Public Health, 20(11), 5976. https://doi.org/10.3390/ijerph20115976