Assessment of the Maximum Amount of Orthodontic Force for Dental Pulp and Apical Neuro-Vascular Bundle in Intact and Reduced Periodontium on Bicuspids (Part II)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- A continuous orthodontic force of 0.6 N, 1.2 N, and 2.4 N has negligible effect on NVB and even lesser on dental pulp with up to 8 mm of periodontal breakdown, with rotation and tipping seeming to be the most invasive. However, 4.8 N of force was safely applied for apical NVB only in the intact periodontium.
- Localized areas of higher stress (color-coded in yellow, orange, and red) are displayed by the apical NVB in each of the five movements, suggesting small areas of ischemia and external–internal apical orthodontic root-resorption.
- The dental pulp seems to be more sensitive to the rotation and translation movements. Translation and rotation movements seem to display a particular risk of localized ischemia, necrosis, and potential internal orthodontic-resorption for both coronal- (0–8 mm of loss) and radicular-pulp (4–8 mm of loss), despite the amount of stress being lower than MHP.
- The Tresca failure criteria seem more suited to the study of apical NVB and dental pulp. To have a clear image of the biomechanical behavior of tissues working together under orthodontic forces, associations and relationships with PDL must be examined.
6. Practitioner Points
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Moga, R.-A.; Cosgarea, R.; Buru, S.M.; Chiorean, C.G. Finite element analysis of the dental pulp under orthodontic forces. Am. J. Orthod. Dentofac. Orthop. 2019, 155, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Moga, R.A.; Buru, S.M.; Olteanu, C.D. Assessment of the Best FEA Failure Criteria (Part I): Investigation of the Biomechanical Behavior of PDL in Intact and Reduced Periodontium. Int. J. Environ. Res. Public Health 2022, 19, 12424. [Google Scholar] [CrossRef] [PubMed]
- França, C.M.; Riggers, R.; Muschler, J.L.; Widbiller, M.; Lococo, P.M.; Diogenes, A.; Bertassoni, L.E. 3D-Imaging of Whole Neuronal and Vascular Networks of the Human Dental Pulp via CLARITY and Light Sheet Microscopy. Sci. Rep. 2019, 9, 10860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Liu, Y.; Wang, D.; Zhang, J.; Dong, X.; Jiang, X.; Xu, X. Investigation of effective intrusion and extrusion force for maxillary canine using finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 1294–1302. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Li, B.; Wang, D.; Dong, X.; Sun, Q.; Chen, G. Numerical simulation of optimal range of rotational moment for the mandibular lateral incisor, canine and first premolar based on biomechanical responses of periodontal ligaments: A case study. Clin. Oral Investig. 2020, 25, 1569–1577. [Google Scholar] [CrossRef]
- Hohmann, A.; Wolfram, U.; Geiger, M.; Boryor, A.; Kober, C.; Sander, C.; Sander, F.G. Correspondences of hydrostatic pressure in periodontal ligament with regions of root resorption: A clinical and a finite element study of the same human teeth. Comput. Methods Programs Biomed. 2008, 93, 155–161. [Google Scholar] [CrossRef]
- Hohmann, A.; Wolfram, U.; Geiger, M.; Boryor, A.; Sander, C.; Faltin, R.; Faltin, K.; Sander, F.G. Periodontal ligament hy-drostatic pressure with areas of root resorption after application of a continuous torque moment. Angle Orthod. 2007, 77, 653–659. [Google Scholar] [CrossRef]
- Moga, R.A.; Buru, S.M.; Chiorean, C.G. Overall stress in periodontal ligament under orthodontic movement during a perio-dontal breakdown. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2022, 161, e127–e135. [Google Scholar]
- Moga, R.A.; Buru, S.M.; Chiorean, C.G.; Cosgarea, R. Compressive stress in periodontal ligament under orthodontic movements during periodontal breakdown. Am. J. Orthod. Dentofac. Orthop. 2021, 159, e291–e299. [Google Scholar] [CrossRef]
- Weissheimer, T.; Silva, E.J.N.L.; Pinto, K.P.; Só, G.B.; Rosa, R.A.; Só, M.V.R. Do orthodontic tooth movements induce pulp necrosis? A systematic review. Int. Endod. J. 2021, 54, 1246–1262. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Fukasawa, S. Is Inflammation a Friend or Foe for Orthodontic Treatment?: Inflammation in Orthodontically Induced Inflammatory Root Resorption and Accelerating Tooth Movement. Int. J. Mol. Sci. 2021, 22, 2388. [Google Scholar] [CrossRef] [PubMed]
- Ricucci, D.; Siqueira, J.F., Jr.; Rôças, I.N. Pulp Response to Periodontal Disease: Novel Observations Help Clarify the Processes of Tissue Breakdown and Infection. J. Endod. 2021, 47, 740–754. [Google Scholar] [CrossRef] [PubMed]
- Minch, L.E.; Sarul, M.; Nowak, R.; Kawala, B.; Antoszewska-Smith, J. Orthodontic intrusion of periodontally-compromised maxillary incisors: 3-dimensional finite element method analysis. Adv. Clin. Exp. Med. 2017, 26, 829–833. [Google Scholar] [CrossRef] [Green Version]
- Vitali, F.C.; Cardoso, I.V.; Mello, F.W.; Flores-Mir, C.; Andrada, A.C.; Dutra-Horstmann, K.L.; Duque, T.M. Effect of ortho-dontic force on dental pulp histomorphology and tissue factor expression. Angle Orthod. 2021, 91, 830–842. [Google Scholar] [CrossRef]
- Vermiglio, G.; Centofanti, A.; Matarese, G.; Militi, A.; Matarese, M.; Arco, A.; Nicita, F.; Cutroneo, G. Human Dental Pulp Tissue during Orthodontic Tooth Movement: An Immunofluorescence Study. J. Funct. Morphol. Kinesiol. 2020, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. Contemporary Orthodontics, 5th ed.; Elsevier: St. Louis, MO, USA, 2012. [Google Scholar]
- Javed, F.; Al-Kheraif, A.A.; Romanos, E.B.; Romanos, G.E. Influence of orthodontic forces on human dental pulp: A systematic review. Arch. Oral Biol. 2015, 60, 347–356. [Google Scholar] [CrossRef]
- Bauss, O.; Röhling, J.; Sadat-Khonsari, R.; Kiliaridis, S. Influence of orthodontic intrusion on pulpal vitality of previously traumatized maxillary permanent incisors. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 12–17. [Google Scholar] [CrossRef]
- Bauss, O.; Schäfer, W.; Sadat-Khonsari, R.; Knösel, M. Influence of Orthodontic Extrusion on Pulpal Vitality of Traumatized Maxillary Incisors. J. Endod. 2009, 36, 203–207. [Google Scholar] [CrossRef]
- Bauss, O.; Röhling, J.; Meyer, K.; Kiliaridis, S. Pulp Vitality in Teeth Suffering Trauma during Orthodontic Therapy. Angle Orthod. 2009, 79, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Bauss, O.; Röhling, J.; Rahman, A.; Kiliaridis, S. The Effect of Pulp Obliteration on Pulpal Vitality of Orthodontically Intruded Traumatized Teeth. J. Endod. 2008, 34, 417–420. [Google Scholar] [CrossRef]
- Chang, Y.; Tambe, A.A.; Maeda, Y.; Wada, M.; Gonda, T. Finite element analysis of dental implants with validation: To what extent can we expect the model to predict biological phenomena? A literature review and proposal for classification of a val-idation process. Int. J. Implant Dent. 2018, 4, 7. [Google Scholar]
- Hemanth, M.; Deoli, S.; Raghuveer, H.P.; Rani, M.S.; Hegde, C.; Vedavathi, B. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis. J. Int. Oral Health 2015, 7, 129–133. [Google Scholar] [PubMed]
- Hemanth, M.; Deoli, S.; Raghuveer, H.P.; Rani, M.S.; Hegde, C.; Vedavathi, B. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear Versus Non-Linear Fem Study. J. Int. Oral Health 2015, 7, 114–118. [Google Scholar]
- Shaw, A.M.; Sameshima, G.T.; Vu, H.V. Mechanical stress generated by orthodontic forces on apical root cementum: A finite element model. Orthod. Craniofacial Res. 2004, 7, 98–107. [Google Scholar] [CrossRef]
- Toms, S.R.; Eberhardt, A.W. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Geramy, A.; Faghihi, S. Secondary trauma from occlusion: Three-dimensional analysis using the finite element method. Quintessence Int. 2004, 35, 835–843. [Google Scholar]
- Geramy, A. Initial stress produced in the periodontal membrane by orthodontic loads in the presence of varying loss of alveolar bone: A three-dimensional finite element analysis. Eur. J. Orthod. 2002, 24, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Pérez-González, A.; Iserte-Vilar, J.L.; González-Lluch, C. Interpreting finite element results for brittle materials in endodontic restorations. Biomed. Eng. Online 2011, 10, 44. [Google Scholar] [CrossRef] [Green Version]
- Roscoe, M.G.; Cattaneo, P.M.; Dalstra, M.; Ugarte, O.M.; Meira, J.B. Orthodontically induced root resorption: A critical analysis of finite element studies’ input and output. Am. J. Orthod. Dentofac. Orthop. 2021, 159, 779–789. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, J.; Weinkamer, R.; Darendeliler, M.A.; Swain, M.V.; Sue, A.; Zheng, K.; Li, Q. In vivo effects of different orthodontic loading on root resorption and correlation with mechanobiological stimulus in periodontal ligament. J. R. Soc. Interface 2019, 16, 20190108. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.L.; Liu, Y.; Peng, W.; Dong, H.Y.; Zhang, J.X. A biomechanical case study on the optimal orthodontic force on the max-illary canine tooth based on finite element analysis. J. Zhejiang Univ. Sci. B 2018, 7, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Merdji, A.; Mootanah, R.; Bachir Bouiadjra, B.A.; Benaissa, A.; Aminallah, L.; Ould Chikh el, B.; Mukdadi, S. Stress analysis in single molar tooth. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.; Darendeliler, M.A. Physical properties of root cementum: Part 5. Volumetric analysis of root resorption craters after application of light and heavy orthodontic forces. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 186–195. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; Deng, X. External cervical resorption—A review of pathogenesis and potential predisposing factors. Int. J. Oral Sci. 2021, 13, 19. [Google Scholar] [CrossRef]
- Ersahan, S.; Sabuncuoglu, F.A. Effects of magnitude of intrusive force on pulpal blood flow in maxillary molars. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 83–89. [Google Scholar] [CrossRef]
- Sabuncuoglu, F.A.; Ersahan, S. Changes in maxillary incisor dental pulp blood flow during intrusion by mini-implants. Acta Odontol. Scand. 2014, 72, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Hu, M.; Zhang, Y.; Jiang, H. Pulp vitality and histologic changes in human dental pulp after the application of moderate and severe intrusive orthodontic forces. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 518–522. [Google Scholar] [CrossRef]
- Gupta, M.; Madhok, K.; Kulshrestha, R.; Chain, S.; Kaur, H.; Yadav, A. Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements—A 3D FEM study. J. Oral Biol. Craniofacial Res. 2020, 10, 758–763. [Google Scholar] [CrossRef]
Material | Young’s Modulus, E (GPa) | Poisson Ratio, ʋ | Refs. |
---|---|---|---|
Enamel | 80 | 0.33 | [1,2,8,9] |
Dentin/Cementum | 18.6 | 0.31 | [1,2,8,9] |
Dental Pulp/Apical-NVB | 0.0021 | 0.45 | [1,2,8,9] |
PDL | 0.0667 | 0.49 | [1,2,8,9] |
Cortical bone | 14.5 | 0.323 | [1,2,8,9] |
Trabecular bone | 1.37 | 0.3 | [1,2,8,9] |
Bracket (Cr-Co) | 218 | 0.33 | [1,2,8,9] |
Resorption (mm) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|---|
Intrusion 0.6 N | NVB | 1.71 | 1.92 | 2.14 | 2.35 | 2.56 | 3.01 | 3.45 | 3.90 | 4.34 |
% NVB | 1.00 | 1.13 | 1.25 | 1.38 | 1.50 | 1.76 | 2.02 | 2.28 | 2.54 | |
a | 0.15 | 0.17 | 0.19 | 0.20 | 0.22 | 0.26 | 0.30 | 0.33 | 0.37 | |
% a | 1.00 | 1.12 | 1.24 | 1.36 | 1.48 | 1.73 | 1.98 | 2.23 | 2.47 | |
c | 0.15 | 0.17 | 0.19 | 0.20 | 0.22 | 0.26 | 0.30 | 0.33 | 0.37 | |
% c | 1.00 | 1.12 | 1.24 | 1.36 | 1.48 | 1.73 | 1.98 | 2.23 | 2.47 | |
Extrusion 0.6 N | NVB | 1.71 | 1.92 | 2.14 | 2.35 | 2.56 | 3.01 | 3.45 | 3.90 | 4.34 |
% NVB | 1.00 | 1.13 | 1.25 | 1.38 | 1.50 | 1.76 | 2.02 | 2.28 | 2.54 | |
a | 0.15 | 0.17 | 0.19 | 0.20 | 0.22 | 0.26 | 0.30 | 0.33 | 0.37 | |
% a | 1.00 | 1.12 | 1.24 | 1.36 | 1.48 | 1.73 | 1.98 | 2.23 | 2.47 | |
c | 0.15 | 0.17 | 0.19 | 0.20 | 0.22 | 0.26 | 0.30 | 0.33 | 0.37 | |
% c | 1.00 | 1.12 | 1.24 | 1.36 | 1.48 | 1.73 | 1.98 | 2.23 | 2.47 | |
Translation 0.6 N | NVB | 1.11 | 1.27 | 1.43 | 1.59 | 1.75 | 1.97 | 2.18 | 2.38 | 2.59 |
% NVB | 1.00 | 1.14 | 1.28 | 1.43 | 1.58 | 1.77 | 1.95 | 2.14 | 2.32 | |
a | 0.11 | 0.12 | 0.13 | 0.15 | 0.16 | 0.18 | 0.21 | 0.23 | 0.25 | |
% a | 1.00 | 1.13 | 1.25 | 1.36 | 1.49 | 1.69 | 1.90 | 2.11 | 2.31 | |
c | 0.28 | 0.32 | 0.37 | 0.41 | 0.45 | 0.51 | 0.56 | 0.62 | 0.67 | |
% c | 1.00 | 1.13 | 1.28 | 1.43 | 1.58 | 1.78 | 1.97 | 2.16 | 2.37 | |
Rotation 0.6 N | NVB | 1.72 | 2.33 | 2.93 | 3.54 | 4.14 | 4.64 | 5.14 | 5.64 | 6.14 |
% NVB | 1.00 | 1.35 | 1.70 | 2.05 | 2.40 | 2.69 | 2.98 | 3.27 | 3.56 | |
a | 0.15 | 0.21 | 0.27 | 0.33 | 0.38 | 0.43 | 0.48 | 0.52 | 0.57 | |
% a | 1.00 | 1.35 | 1.73 | 2.14 | 2.51 | 2.79 | 3.10 | 3.41 | 3.71 | |
c | 0.29 | 0.43 | 0.51 | 0.62 | 0.73 | 0.82 | 0.91 | 0.99 | 1.08 | |
% c | 1.00 | 1.48 | 1.76 | 2.15 | 2.50 | 2.82 | 3.12 | 3.42 | 3.71 | |
Tipping 0.6 N | NVB | 1.47 | 1.82 | 2.18 | 2.53 | 2.88 | 3.28 | 3.69 | 4.09 | 4.49 |
% NVB | 1.00 | 1.24 | 1.48 | 1.72 | 1.96 | 2.24 | 2.51 | 2.79 | 3.06 | |
a | 0.15 | 0.18 | 0.21 | 0.23 | 0.25 | 0.29 | 0.33 | 0.36 | 0.39 | |
% a | 1.00 | 1.16 | 1.37 | 1.49 | 1.69 | 1.89 | 2.16 | 2.36 | 2.58 | |
c | 0.15 | 0.18 | 0.21 | 0.23 | 0.25 | 0.29 | 0.33 | 0.36 | 0.39 | |
% c | 1.00 | 1.16 | 1.37 | 1.49 | 1.69 | 1.89 | 2.16 | 2.36 | 2.58 |
Resorption (mm) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|---|
Intrusion 1.2 N | NVB | 3.42 | 3.85 | 4.28 | 4.70 | 5.12 | 6.01 | 6.90 | 7.79 | 8.68 |
% NVB | 1.00 | 1.13 | 1.25 | 1.37 | 1.50 | 1.76 | 2.02 | 2.28 | 2.54 | |
a | 0.30 | 0.34 | 0.37 | 0.41 | 0.44 | 0.52 | 0.59 | 0.67 | 0.74 | |
% a | 1.00 | 1.13 | 1.23 | 1.37 | 1.47 | 1.73 | 1.97 | 2.23 | 2.47 | |
c | 0.30 | 0.34 | 0.37 | 0.41 | 0.44 | 0.52 | 0.59 | 0.67 | 0.74 | |
% c | 1.00 | 1.13 | 1.23 | 1.37 | 1.47 | 1.73 | 1.97 | 2.23 | 2.47 | |
Extrusion 1.2 N | NVB | 3.42 | 3.85 | 4.28 | 4.70 | 5.12 | 6.01 | 6.90 | 7.79 | 8.68 |
% NVB | 1.00 | 1.13 | 1.25 | 1.37 | 1.50 | 1.76 | 2.02 | 2.28 | 2.54 | |
a | 0.30 | 0.34 | 0.37 | 0.41 | 0.44 | 0.52 | 0.59 | 0.67 | 0.74 | |
% a | 1.00 | 1.13 | 1.23 | 1.37 | 1.47 | 1.73 | 1.97 | 2.23 | 2.47 | |
c | 0.30 | 0.34 | 0.37 | 0.41 | 0.44 | 0.52 | 0.59 | 0.67 | 0.74 | |
% c | 1.00 | 1.13 | 1.23 | 1.37 | 1.47 | 1.73 | 1.97 | 2.23 | 2.47 | |
Translation 1.2 N | NVB | 2.23 | 2.54 | 2.86 | 3.18 | 3.51 | 3.94 | 4.35 | 4.76 | 5.17 |
% NVB | 1.00 | 1.14 | 1.28 | 1.43 | 1.57 | 1.77 | 1.95 | 2.13 | 2.32 | |
a | 0.22 | 0.25 | 0.27 | 0.29 | 0.32 | 0.37 | 0.41 | 0.46 | 0.50 | |
% a | 1.00 | 1.14 | 1.23 | 1.32 | 1.45 | 1.68 | 1.86 | 2.09 | 2.27 | |
c | 0.57 | 0.65 | 0.73 | 0.82 | 0.90 | 1.01 | 1.12 | 1.23 | 1.35 | |
% c | 1.00 | 1.14 | 1.28 | 1.44 | 1.58 | 1.77 | 1.96 | 2.16 | 2.37 | |
Rotation 1.2 N | NVB | 3.45 | 4.65 | 5.86 | 7.07 | 8.29 | 9.29 | 10.29 | 11.28 | 12.29 |
% NVB | 1.00 | 1.35 | 1.70 | 2.05 | 2.40 | 2.69 | 2.98 | 3.27 | 3.56 | |
a | 0.31 | 0.42 | 0.53 | 0.66 | 0.77 | 0.86 | 0.95 | 1.05 | 1.14 | |
% a | 1.00 | 1.35 | 1.71 | 2.13 | 2.48 | 2.77 | 3.06 | 3.39 | 3.68 | |
c | 0.58 | 0.86 | 1.02 | 1.25 | 1.45 | 1.64 | 1.81 | 1.99 | 2.15 | |
% c | 1.00 | 1.48 | 1.76 | 2.16 | 2.50 | 2.83 | 3.12 | 3.43 | 3.71 | |
Tipping 1.2 N | NVB | 2.93 | 3.65 | 4.35 | 5.06 | 5.76 | 6.57 | 7.37 | 8.18 | 8.97 |
% NVB | 1.00 | 1.25 | 1.48 | 1.73 | 1.97 | 2.24 | 2.52 | 2.79 | 3.06 | |
a | 0.25 | 0.33 | 0.39 | 0.45 | 0.51 | 0.57 | 0.65 | 0.71 | 0.78 | |
% a | 1.00 | 1.32 | 1.56 | 1.80 | 2.04 | 2.28 | 2.60 | 2.84 | 3.12 | |
c | 0.30 | 0.35 | 0.41 | 0.45 | 0.51 | 0.57 | 0.65 | 0.71 | 0.78 | |
% c | 1.00 | 1.17 | 1.37 | 1.50 | 1.70 | 1.90 | 2.17 | 2.37 | 2.60 |
Resorption (mm) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|---|
Intrusion 2.4 N | NVB | 6.83 | 7.69 | 8.56 | 9.41 | 10.23 | 12.02 | 13.81 | 15.58 | 17.35 |
% NVB | 1.00 | 1.13 | 1.25 | 1.38 | 1.50 | 1.76 | 2.02 | 2.28 | 2.54 | |
a | 0.60 | 0.67 | 0.74 | 0.81 | 0.89 | 1.03 | 1.18 | 1.33 | 1.48 | |
% a | 1.00 | 1.12 | 1.23 | 1.35 | 1.48 | 1.72 | 1.97 | 2.22 | 2.47 | |
c | 0.60 | 0.67 | 0.74 | 0.81 | 0.89 | 1.03 | 1.18 | 1.33 | 1.48 | |
% c | 1.00 | 1.12 | 1.23 | 1.35 | 1.48 | 1.72 | 1.97 | 2.22 | 2.47 | |
Extrusion 2.4 N | NVB | 6.83 | 7.69 | 8.56 | 9.41 | 10.23 | 12.02 | 13.81 | 15.58 | 17.35 |
% NVB | 1.00 | 1.13 | 1.25 | 1.38 | 1.50 | 1.76 | 2.02 | 2.28 | 2.54 | |
a | 0.60 | 0.67 | 0.74 | 0.81 | 0.89 | 1.03 | 1.18 | 1.33 | 1.48 | |
% a | 1.00 | 1.12 | 1.23 | 1.35 | 1.48 | 1.72 | 1.97 | 2.22 | 2.47 | |
c | 0.60 | 0.67 | 0.74 | 0.81 | 0.89 | 1.03 | 1.18 | 1.33 | 1.48 | |
% c | 1.00 | 1.12 | 1.23 | 1.35 | 1.48 | 1.72 | 1.97 | 2.22 | 2.47 | |
Translation 2.4 N | NVB | 4.46 | 5.08 | 5.72 | 6.36 | 7.02 | 7.87 | 8.70 | 9.53 | 10.34 |
% NVB | 1.00 | 1.14 | 1.28 | 1.43 | 1.57 | 1.76 | 1.95 | 2.14 | 2.32 | |
a | 0.43 | 0.49 | 0.54 | 0.59 | 0.64 | 0.73 | 0.82 | 0.91 | 1.00 | |
% a | 1.00 | 1.14 | 1.26 | 1.37 | 1.49 | 1.70 | 1.91 | 2.12 | 2.33 | |
c | 1.14 | 1.29 | 1.46 | 1.63 | 1.80 | 2.02 | 2.24 | 2.46 | 2.70 | |
% c | 1.00 | 1.13 | 1.28 | 1.43 | 1.58 | 1.77 | 1.96 | 2.16 | 2.37 | |
Rotation 2.4 N | NVB | 6.90 | 9.30 | 11.73 | 14.14 | 16.57 | 18.57 | 20.57 | 22.57 | 24.57 |
% NVB | 1.00 | 1.35 | 1.70 | 2.05 | 2.40 | 2.69 | 2.98 | 3.27 | 3.56 | |
a | 0.61 | 0.83 | 1.06 | 1.31 | 1.54 | 1.71 | 1.90 | 2.09 | 2.28 | |
% a | 1.00 | 1.36 | 1.74 | 2.15 | 2.52 | 2.80 | 3.11 | 3.43 | 3.74 | |
c | 1.16 | 1.72 | 2.05 | 2.49 | 2.91 | 3.27 | 3.62 | 3.97 | 4.31 | |
% c | 1.00 | 1.48 | 1.77 | 2.15 | 2.51 | 2.82 | 3.12 | 3.42 | 3.72 | |
Tipping 2.4 N | NVB | 5.87 | 7.29 | 8.70 | 10.11 | 11.52 | 13.13 | 14.74 | 16.35 | 17.94 |
% NVB | 1.00 | 1.24 | 1.48 | 1.72 | 1.96 | 2.24 | 2.51 | 2.79 | 3.06 | |
a | 0.51 | 0.67 | 0.77 | 0.91 | 1.02 | 1.14 | 1.30 | 1.42 | 1.56 | |
% a | 1.00 | 1.31 | 1.51 | 1.78 | 2.00 | 2.24 | 2.55 | 2.78 | 3.06 | |
c | 0.51 | 0.70 | 0.83 | 0.90 | 1.02 | 1.14 | 1.30 | 1.42 | 1.56 | |
% c | 1.00 | 1.37 | 1.63 | 1.76 | 2.00 | 2.24 | 2.55 | 2.78 | 3.06 |
Resorption (mm) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|---|
Intrusion 4.8 N | NVB | 13.66 | 15.38 | 17.11 | 18.81 | 20.47 | 24.05 | 27.62 | 31.16 | 34.17 |
% NVB | 1.00 | 1.13 | 1.25 | 1.38 | 1.50 | 1.76 | 2.02 | 2.28 | 2.50 | |
a | 1.19 | 1.34 | 1.48 | 1.62 | 1.77 | 2.06 | 2.36 | 2.66 | 2.95 | |
% a | 1.00 | 1.13 | 1.24 | 1.36 | 1.49 | 1.73 | 1.98 | 2.24 | 2.48 | |
c | 1.19 | 1.34 | 1.48 | 1.62 | 1.77 | 2.06 | 2.36 | 2.66 | 2.95 | |
% c | 1.00 | 1.13 | 1.24 | 1.36 | 1.49 | 1.73 | 1.98 | 2.24 | 2.48 | |
Extrusion 4.8 N | NVB | 13.66 | 15.38 | 17.11 | 18.81 | 20.47 | 24.05 | 27.62 | 31.16 | 34.17 |
% NVB | 1.00 | 1.13 | 1.25 | 1.38 | 1.50 | 1.76 | 2.02 | 2.28 | 2.50 | |
a | 1.19 | 1.34 | 1.48 | 1.62 | 1.77 | 2.06 | 2.36 | 2.66 | 2.95 | |
% a | 1.00 | 1.13 | 1.24 | 1.36 | 1.49 | 1.73 | 1.98 | 2.24 | 2.48 | |
c | 1.19 | 1.34 | 1.48 | 1.62 | 1.77 | 2.06 | 2.36 | 2.66 | 2.95 | |
% c | 1.00 | 1.13 | 1.24 | 1.36 | 1.49 | 1.73 | 1.98 | 2.24 | 2.48 | |
Translation 4.8 N | NVB | 8.91 | 10.17 | 11.44 | 12.73 | 14.04 | 15.74 | 17.40 | 19.02 | 20.68 |
% NVB | 1.00 | 1.14 | 1.28 | 1.43 | 1.58 | 1.77 | 1.95 | 2.13 | 2.32 | |
a | 0.86 | 0.98 | 1.08 | 1.18 | 1.29 | 1.46 | 1.64 | 1.82 | 2.00 | |
% a | 1.00 | 1.14 | 1.26 | 1.37 | 1.50 | 1.70 | 1.91 | 2.12 | 2.33 | |
c | 2.27 | 2.58 | 2.92 | 3.26 | 3.60 | 4.05 | 4.48 | 4.92 | 5.39 | |
% c | 1.00 | 1.14 | 1.29 | 1.44 | 1.59 | 1.78 | 1.97 | 2.17 | 2.37 | |
Rotation 4.8 N | NVB | 13.79 | 18.60 | 23.45 | 28.28 | 33.14 | 37.14 | 41.14 | 45.13 | 49.14 |
% NVB | 1.00 | 1.35 | 1.70 | 2.05 | 2.40 | 2.69 | 2.98 | 3.27 | 3.56 | |
a | 1.23 | 1.66 | 2.12 | 2.62 | 3.08 | 3.42 | 3.81 | 4.18 | 4.55 | |
% a | 1.00 | 1.35 | 1.72 | 2.13 | 2.50 | 2.78 | 3.10 | 3.40 | 3.70 | |
c | 2.32 | 3.43 | 4.09 | 4.98 | 5.81 | 6.54 | 7.25 | 7.94 | 8.61 | |
% c | 1.00 | 1.48 | 1.76 | 2.15 | 2.50 | 2.82 | 3.13 | 3.42 | 3.71 | |
Tipping 4.8 N | NVB | 11.74 | 14.58 | 17.40 | 20.22 | 23.04 | 26.26 | 29.48 | 32.70 | 35.89 |
% NVB | 1.00 | 1.24 | 1.48 | 1.72 | 1.96 | 2.24 | 2.51 | 2.79 | 3.06 | |
a | 1.01 | 1.34 | 1.54 | 1.81 | 2.04 | 2.28 | 2.60 | 2.84 | 3.11 | |
% a | 1.00 | 1.33 | 1.52 | 1.79 | 2.02 | 2.26 | 2.57 | 2.81 | 3.08 | |
c | 1.21 | 1.40 | 1.65 | 1.80 | 2.04 | 2.28 | 2.60 | 2.84 | 3.11 | |
% c | 1.00 | 1.16 | 1.36 | 1.49 | 1.69 | 1.88 | 2.15 | 2.35 | 2.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moga, R.A.; Olteanu, C.D.; Botez, M.; Buru, S.M. Assessment of the Maximum Amount of Orthodontic Force for Dental Pulp and Apical Neuro-Vascular Bundle in Intact and Reduced Periodontium on Bicuspids (Part II). Int. J. Environ. Res. Public Health 2023, 20, 1179. https://doi.org/10.3390/ijerph20021179
Moga RA, Olteanu CD, Botez M, Buru SM. Assessment of the Maximum Amount of Orthodontic Force for Dental Pulp and Apical Neuro-Vascular Bundle in Intact and Reduced Periodontium on Bicuspids (Part II). International Journal of Environmental Research and Public Health. 2023; 20(2):1179. https://doi.org/10.3390/ijerph20021179
Chicago/Turabian StyleMoga, Radu Andrei, Cristian Doru Olteanu, Mircea Botez, and Stefan Marius Buru. 2023. "Assessment of the Maximum Amount of Orthodontic Force for Dental Pulp and Apical Neuro-Vascular Bundle in Intact and Reduced Periodontium on Bicuspids (Part II)" International Journal of Environmental Research and Public Health 20, no. 2: 1179. https://doi.org/10.3390/ijerph20021179
APA StyleMoga, R. A., Olteanu, C. D., Botez, M., & Buru, S. M. (2023). Assessment of the Maximum Amount of Orthodontic Force for Dental Pulp and Apical Neuro-Vascular Bundle in Intact and Reduced Periodontium on Bicuspids (Part II). International Journal of Environmental Research and Public Health, 20(2), 1179. https://doi.org/10.3390/ijerph20021179