The Use of the Static Posturography to Assess Balance Performance in a Parkinson’s Disease Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Evaluation
2.3. Measurement Instruments of Balance for PD
- Tinetti scale “TS” (total score): It is a rating scale of 16 items (range 0–28 points) that assesses gait and balance performance, as well as fall risks [25,26]. It is composed of two subscales: Tinetti Gait Section “GS” (7 items, range 0–12 points) and Tinetti Balance Section “BS” (9 items, range 0–16 points). For this study, we analyzed TS and BS due to the aim of the research. Higher scores indicate better performance.
- Activities-specific balance confidence scale (ABC scale): The ABC scale is a 16-item subjective questionnaire (range 0–100%) that rates the balance confidence of patients in activities of daily living [29]. The final score is obtained by adding the scores of individual items and then dividing by the total number. Higher scores mean good self-confidence.
- Timed up and go test (TUG): it is a validated and widely used tool for assessing functional mobility, dynamic balance, and as a predictor of falls in people with PD [30,31]. Participants were asked to rise from a chair, walk 3 m, turn, walk back and sit down, as quickly as they could safely without running. Higher time indicates worst performance.
- Functional reach test (FRT): The FRT was designed to assess dynamic balance performance. Participants were asked to reach the maximum distance with their arms outstretched in the forward direction while maintaining a fixed base of support [32,33]. The score of the test is the difference between the initial (arms at 90° shoulder flexion) and final position (maximum distance). A tape measure was located on the wall to measure the difference in centimeters. Higher distance indicates better performance.
- The H&Y scale is commonly used to assess disease progression and classify patients according to disease severity. The scale ranged from stage 0 (absence of disease symptoms) to stage 5 (wheelchair mobility). Stage 1 is related with unilateral affectation, Stage 2 mild bilateral affectation, stage 3 mild to moderate bilateral affectation and stage 4 severe disability. The main difference between stage 2 and 3 is the presence of postural instability. Higher scores mean increased disease severity.
- The MDS-UPDRS is a reviewed version of the UPDRS scale, considered the gold standard in the clinical judgment of PD symptoms. In this case, we included only the motor section (part III) that ranged from 0 to 132. Higher scores mean increased motor affectation.
2.4. Static Posturography
3. Statistical Analysis
4. Results
4.1. Clinical Balance Instruments
4.2. Posturographic Variables
4.3. Relationship between Clinical Balance Tests and Posturographic Variables
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloem, B.R.; Valkenburg, V.V.; Slabbekoorn, M.; Van Dijk, J.G. The Multiple Tasks Test. Strategies in Parkinson’s Disease. Exp. Brain Res. 2001, 137, 478–486. [Google Scholar] [CrossRef]
- Fahn, S.; Jankovic, J.; Hallett, M. Gait Disorders: Pathophysiology and Clinical Syndromes. In Principles and Practice of Movement Disorders; Elsevier Saunders: Philadelphia, PA, USA, 2011; pp. 1–35. [Google Scholar]
- Palakurthi, B.; Burugupally, S.P. Postural Instability in Parkinson’s Disease: A Review. Brain Sci. 2019, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Gandolfi, M.; Geroin, C.; Picelli, A.; Smania, N.; Bartolo, M. Assessment of Balance Disorders. Biosyst. Biorobotics 2018, 19, 47–67. [Google Scholar] [CrossRef]
- Horak, F.B. Postural Orientation and Equilibrium: What Do We Need to Know about Neural Control of Balance to Prevent Falls? Age Ageing 2006, 35, 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Kang, Y.; Horak, F.B. What Is Wrong with Balance in Parkinson’ s Disease? J. Mov. Disord. 2015, 8, 109–114. [Google Scholar] [CrossRef]
- Bloem, B.R.; Grimbergen, Y.A.; Cramer, M.; Willemsen, M.; Zwinderman, A.H. Prospective Assessment of Falls in Parkinson’s Disease. J. Neurol. 2001, 248, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Michalowska, M.; Fiszer, U.; Krygowska-Wajs, A.; Owczarek, K. Falls in Parkinson’s Disease: Causes and Impact on Patients’ Quality of Life. Funct. Neurol. 2005, 20, 163–168. [Google Scholar] [PubMed]
- Fasano, A.; Canning, C.G.; Hausdorff, J.M.; Lord, S.; Rochester, L. Falls in Parkinson’s Disease: A Complex and Evolving Picture. Mov. Disord. 2017, 32, 1524–1536. [Google Scholar] [CrossRef]
- Winser, S.J.; Kannan, P.; Bello, U.M.; Whitney, S.L. Measures of Balance and Falls Risk Prediction in People with Parkinson’s Disease: A Systematic Review of Psychometric Properties. Clin. Rehabil. 2019, 33, 1949–1962. [Google Scholar] [CrossRef]
- Visser, J.E.; Carpenter, M.G.; van der Kooij, H.; Bloem, B.R. The Clinical Utility of Posturography. Clin. Neurophysiol. 2008, 119, 2424–2436. [Google Scholar] [CrossRef] [PubMed]
- Kamieniarz, A.; Michalska, J.; Brachman, A.; Pawłowski, M.; Słomka, K.J.; Juras, G. A Posturographic Procedure Assessing Balance Disorders in Parkinson’s Disease: A Systematic Review. Clin. Interv. Aging 2018, 13, 2301–2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, C.D.O.; Voos, M.C.; Barbosa, A.F.; Chen, J.; Francato, D.C.V.; Milosevic, M.; Popovic, M.; Barbosa, E.R. Relationship Between Posturography, Clinical Balance and Executive Function in Parkinson´s Disease. J. Mot. Behav. 2018, 51, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; James, I.; Rodrigues, J.; Stell, R.; Thickbroom, G.; Mastaglia, F. Clinical and Posturographic Correlates of Falling in Parkinson’s Disease. Mov. Disord. 2013, 28, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzoli, D.; Fasano, A.; Maestri, R.; Bera, R.; Palamara, G.; Ghilardi, M.F.; Pezzoli, G.; Frazzitta, G. Balance Dysfunction in Parkinson’s Disease: The Role of Posturography in Developing a Rehabilitation Program. Park. Dis. 2015, 2015, 520128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, A.F.; Souza, C.D.O.; Chen, J.; Francato, D.V.; Caromano, A.; Chien, H.F.; Barbosa, E.R.; Maria, J.; Greve, D.A.; Voos, M.C. The Competition with a Concurrent Cognitive Task Affects Posturographic Measures in Patients with Parkinson Disease. Arq. De Neuro-Psiquiatr. 2015, 73, 906–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchese, R.; Bove, M.; Abbruzzese, G. Effect of Cognitive and Motor Tasks on Postural Stability in Parkinson’s Disease: A Posturographic Study. Mov. Disord. 2003, 18, 652–658. [Google Scholar] [CrossRef]
- Jehu, D.; Nantel, J. Fallers with Parkinson’s Disease Exhibit Restrictive Trunk Control during Walking. Gait Posture 2018, 65, 246–250. [Google Scholar] [CrossRef]
- Błaszczyk, J.W.; Orawiec, R. Assessment of Postural Control in Patients with Parkinson’s Disease: Sway Ratio Analysis. Hum. Mov. Sci. 2011, 30, 396–404. [Google Scholar] [CrossRef]
- Barbieri, F.A.; Polastri, P.F.; Baptista, A.M.; Lirani-Silva, E.; Simieli, L.; Orcioli-Silva, D.; Beretta, V.S.; Gobbi, L.T.B. Effects of Disease Severity and Medication State on Postural Control Asymmetry during Challenging Postural Tasks in Individuals with Parkinson’s Disease. Hum. Mov. Sci. 2016, 46, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Kamieniarz, A.; Michalska, J.; Marszałek, W.; Stania, M.; Słomka, K.J.; Gorzkowska, A.; Juras, G.; Okun, M.S.; Christou, E.A. Detection of Postural Control in Early Parkinson’s Disease: Clinical Testing vs. Modulation of Center of Pressure. PLoS ONE 2021, 16, e0245353. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”: A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Marinus, J.; Almeida, Q.; Dibble, L.; Nieuwboer, A.; Post, B.; Ruzicka, E.; Goetz, C.; Stebbins, G.; Martinez-Martin, P.; et al. Measurement Instruments to Assess Posture, Gait, and Balance in Parkinson’s Disease: Critique and Recommendations. Mov. Disord. 2016, 31, 1342–1355. [Google Scholar] [CrossRef] [PubMed]
- Krzysztoń, K.; Stolarski, J.; Kochanowski, J. Evaluation of Balance Disorders in Parkinson’s Disease Using Simple Diagnostic Tests-Not So Simple to Choose. Front. Neurol. 2018, 9, 932. [Google Scholar] [CrossRef]
- Kegelmeyer, D.A.; Kloos, A.D.; Thomas, K.M.; Kostyk, S.K. Reliability and Validity of the Tinetti Mobility Test for Individuals with Parkinson Disease. Phys. Ther. 2007, 87, 1369–1378. [Google Scholar] [CrossRef] [Green Version]
- Tinetti, M.E. Performance-oriented Assessment of Mobility Problems in Elderly Patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring Balance in the Elderly: Validation of an Instrument. Can. J. Public Health 1992, 83, 7–11. [Google Scholar]
- Qutubuddin, A.A.; Pegg, P.O.; Cifu, D.X.; Brown, R.; McNamee, S.; Carne, W. Validating the Berg Balance Scale for Patients with Parkinson’s Disease: A Key to Rehabilitation Evaluation. Arch. Phys. Med. Rehabil. 2005, 86, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.E.; Myers, A.M. The Activities-Specific Balance Confidence (ABC) Scale. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1995, 50, 28–34. [Google Scholar] [CrossRef]
- Bouça-Machado, R.; Duarte, G.S.; Patriarca, M.; Castro Caldas, A.; Alarcão, J.; Fernandes, R.M.; Mestre, T.; Matias, R.; Ferreira, J.J. Measurement Instruments to Assess Functional Mobility in Parkinson’s Disease: A Systematic Review. Mov. Disord. Clin. Pract. 2020, 7, 129–139. [Google Scholar] [CrossRef]
- Morris, S.; Morris, M.E.; Iansek, R. Reliability of Measurements Obtained With the Timed “Up & Go” Test in People ith Parkinson Disease. Phys. Ther. 2001, 81, 810–818. [Google Scholar] [CrossRef]
- Duncan, P.W.; Weiner, D.K.; Chandler, J.; Studenski, S. Functional Reach: A New Clinical Measure of Balance. J. Gerontol. 1990, 45, 192–197. [Google Scholar] [CrossRef]
- Steffen, T.; Seney, M. Test-Retest Reliability and Minimal Detectable Change on Balance and Ambulation Tests, the 36-Item Short-Form Health Survey, and the Unified Parkinson Disease Rating Scale in People with Parkinsonism. Phys. Ther. 2008, 88, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport. Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebersbach, G.; Gunkel, M. Posturography Reflects Clinical Imbalance in Parkinson’s Disease. Mov. Disord. 2011, 26, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, Progression and Mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Błaszczyk, J.W.; Orawiec, R.; Duda-Kłodowska, D.; Opala, G. Assessment of Postural Instability in Patients with Parkinson’s Disease. Exp. Brain Res. 2007, 183, 107–114. [Google Scholar] [CrossRef]
- Gimenez, F.V.; Ripka, W.L.; Maldaner, M.; Stadnik, A.M.W. Stabilometric Analysis of Parkinson’s Disease Patients. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2021, Virtual, 1–5 November 2021; pp. 1341–1344. [Google Scholar] [CrossRef]
- Azulay, J.P.; Mesure, S.; Amblard, B.; Pouget, J. Increase Visual Dependecy in PD. Percept. Mot. Ski. 2002, 95, 1106–1114. [Google Scholar] [CrossRef]
- Mancini, M.; Horak, F.B.; Zampieri, C.; Carlson-kuhta, P.; Nutt, J.G.; Chiari, L. Trunk Accelerometry Reveals Postural Instability in Untreated Parkinson’ s Disease. Park. Relat. Disord. 2011, 17, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Mirahmadi, M.; Karimi, M.T.; Esrafilian, A. An Evaluation of the Effect of Vision on Standing Stability in the Early Stage of Parkinson’s Disease. Eur. Neurol. 2018, 80, 261–267. [Google Scholar] [CrossRef]
- Bronstein, A.M.; Hood, J.D.; Gresty, M.A.; Panagi, C. Visual Control of Balance in Cerebellar and Parkinsonian Syndromes. Brain 1990, 113, 767–779. [Google Scholar] [CrossRef]
- Waterston, J.A.; Hawken, M.B.; Tanyeri, S.; Jantti, P.; Kennard, C. Influence of Sensory Manipulation on Postural Control in Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 1993, 56, 1276–1281. [Google Scholar] [CrossRef] [Green Version]
- Paolucci, T.; Iosa, M.; Morone, G.; Fratte, M.D.; Paolucci, S.; Saraceni, V.M.; Villani, C. Romberg Ratio Coefficient in Quiet Stance and Postural Control in Parkinson’s Disease. Neurol. Sci. 2018, 39, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.L.; Collin, J.J.; De Luca, C.J.; Burrows, A.; Lipsitz, L.A. Open-Loop and Closed-Loop Postural Control Mechanisms in Parkinson’s Disease: Increased Mediolateral Activity during Quiet Standing. Neurosci. Lett. 1995, 197, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Chastan, N.; Debono, B.; Maltête, D.; Weber, J. Discordance between Measured Postural Instability and Absence of Clinical Symptoms in Parkinson’s Disease Patients in the Early Stages of the Disease. Mov. Disord. 2008, 23, 366–372. [Google Scholar] [CrossRef]
- Rossi, M.; Soto, A.; Santos, S.; Sesar, A.; Labella, T. A Prospective Study of Alterations in Balance among Patients with Parkinson’s Disease. Eur. Neurol. 2009, 61, 171–176. [Google Scholar] [CrossRef] [PubMed]
Demographic Characteristics | Total Sample (n = 52) |
---|---|
Gender (men/women) | 52 (36/16) |
Age (years) | 68.50 ± 8.37 |
Disease duration (years) | 6.15 ± 4.14 |
BMI (kg/m2) | 27.17 ± 5.82 |
Education (years) | 10.54 ± 3.77 |
MMSE (score) | 26.83 ± 2.31 |
Balance Instruments | Total Sample (n = 52) |
---|---|
H&Y (1–5) | 1.96 ± 0.79 |
Stage 1 (n,%) | 17 (32.69%) |
Stage 2 (n,%) | 20 (38.46%) |
Stage 3 (n,%) | 15 (28.85%) |
MDS-UPDRS-III (0–132) | 31.73 ± 16.76 |
Tinetti (TS) (0–28) | 23.02 ± 4.34 |
Tinetti (BS) (0–16) | 13.69 ± 2.32 |
BBS (0–56) | 48.19 ± 5.97 |
ABC scale (0–100%) | 72.32 ± 16.19 |
TUG (s) | 11.28 ± 4.84 |
FRT (cm) | 20.57 ± 5.54 |
Posturographic Variables | Total Sample (n = 52) | H&Y Stage 1 (n = 17) | H&Y Stage 2 (n = 20) | H&Y Stage 3 (n = 15) | H&Y Stage 1 vs. H&Y Stage 3 (p-Value) |
---|---|---|---|---|---|
TE (mm) | |||||
EO | 458.56 ± 152.31 | 377.57 ± 105.25 | 467.23± 131.75 | 538.80 ± 179.18 | 0.006 ** |
EC | 507.12 ± 185.12 | 406.98 ± 120.49 | 494.95 ± 143.24 | 636.82 ± 223.58 | <0.001 ** |
p-value | <0.001 ** | 0.006 ** | 0.044 * | 0.006 ** | |
CEA (mm2) | |||||
EO | 94.23 ± 158.57 | 51.32 ± 45.41 | 67.63 ± 48.07 | 178.32 ± 107.86 | 0.047 * |
EC | 144.62 ± 229.41 | 65.22 ± 59.33 | 101.16 ± 68.58 | 292.54 ± 225.66 | 0.011 * |
p-value | 0.022 * | 0.144 | 0.047 * | 0.016 * | |
MV (mm/s) | |||||
EO | 15.61 ± 5.14 | 12.81 ± 3.60 | 15.82 ± 4.54 | 18.48 ± 5.93 | 0.004 ** |
EC | 17.50 ± 7.27 | 13.69 ± 4.01 | 17.76 ± 5.87 | 21.45 ± 7.46 | 0.006 ** |
p-value | 0.002 ** | 0.013 * | 0.037 * | 0.005 ** | |
X-Mean (mm) | |||||
EO | 7.14 ± 3.93 | 6.44 ± 3.83 | 7.02 ± 4.69 | 8.26 ± 4.76 | 0.035 * |
EC | 8.27 ± 4.22 | 6.91 ± 4.21 | 7.98 ± 4.64 | 9.62 ± 4.92 | 0.048 * |
p-value | 0.035 * | 0.142 | 0.048 * | 0.016 * | |
Y-Mean (mm) | |||||
EO | 9.00 ± 6.23 | 8.45 ± 4.48 | 8.68 ± 6.22 | 10.03± 8.03 | >0.05 |
EC | 9.28 ± 6.90 | 9.45 ± 4.66 | 8.39± 6.96 | 10.27± 8.97 | >0.05 |
p-value | 0.412 | 0.052 | 0.653 | 0.714 | |
X-RMS (mm) | |||||
EO | 0.23 ± 0.08 | 0.18 ± 0.07 | 0.23 ± 0.07 | 0.28 ± 0.07 | <0.001 ** |
EC | 0.29 ± 0.13 | 0.21 ± 0.07 | 0.28 ± 0.14 | 0.38 ± 0.12 | <0.001 ** |
p-value | <0.001 ** | 0.001 ** | 0.005 ** | 0.001 ** | |
Y-RMS (mm) | |||||
EO | 0.18 ± 0.05 | 0.16 ± 0.04 | 0.18 ± 0.04 | 0.21 ± 0.05 | 0.004 ** |
EC | 0.22 ± 0.09 | 0.18 ± 0.05 | 0.22 ± 0.10 | 0.27 ± 0.10 | 0.015 * |
p-value | <0.001 ** | 0.006 ** | 0.031 * | 0.006 ** |
H&Y | MDS-UPDRS III | Tinetti (TS) | Tinetti (BS) | BBS | ABC | TUG | FRT | |
---|---|---|---|---|---|---|---|---|
TE (mm) | ||||||||
EO | 0.45 ** | 0.34 * | −0.40 ** | −0.36 ** | −0.43 ** | −0.43 ** | 0.45 ** | −0.26 |
EC | 0.52 ** | 0.43 ** | −0.51 ** | −0.48 ** | −0.60 ** | −0.46 ** | 0.52 ** | −0.33 * |
CEA (mm2) | ||||||||
EO | 0.38 ** | 0.18 | −0.47 ** | −0.48 ** | −0.36 ** | −0.31 * | 0.36 ** | −0.32 * |
EC | 0.42 ** | 0.30 * | −0.53 ** | −0.60 ** | −0.51 ** | −0.29 * | 0.40 ** | −0.34 * |
MV (mm/s) | ||||||||
EO | 0.48 ** | 0.36 ** | −0.42 ** | −0.38 ** | −0.45 ** | −0.45 ** | 0.44 * | −0.25 |
EC | 0.52 ** | 0.42 ** | −0.50 ** | −0.49 ** | −0.60 ** | −0.48 ** | 0.52 ** | −0.32 |
X-Mean (mm) | ||||||||
EO | 0.37 ** | 0.16 | −0.46 ** | −0.48 ** | −0.33 * | −0.35 * | 0.41 ** | −0.31 * |
EC | 0.47 ** | 0.36 ** | −0.55 ** | −0.59 ** | −0.54 ** | −0.35 * | 0.46 ** | −0.26 |
Y-Mean (mm) | ||||||||
EO | 0.28 | 0.23 | −0.44 ** | −0.45 ** | −0.33 * | −0.24 | 0.28 | −0.22 |
EC | 0.25 | 0.29 * | −0.38 ** | −0.48 ** | −0.33 * | −0.12 | 0.20 | −0.28 |
X-RMS (mm) | ||||||||
EO | 0.56 ** | 0.43 ** | −0.52 ** | −0.45 ** | −0.49 ** | −0.47 ** | 0.48 ** | −0.24 |
EC | 0.62 ** | 0.53 ** | −0.62 ** | −0.60 ** | −0.62 ** | −0.50 ** | 0.51 ** | −0.30 |
Y-RMS (mm) | ||||||||
EO | 0.38 ** | 0.42 ** | −0.28 | −0.28 | −0.40 ** | −0.20 | 0.31 * | 0.09 |
EC | 0.44 ** | 0.46 ** | −0.34 * | −0.34 * | −0.46 ** | −0.11 | 0.29 * | −0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastia-Amat, S.; Tortosa-Martínez, J.; Pueo, B. The Use of the Static Posturography to Assess Balance Performance in a Parkinson’s Disease Population. Int. J. Environ. Res. Public Health 2023, 20, 981. https://doi.org/10.3390/ijerph20020981
Sebastia-Amat S, Tortosa-Martínez J, Pueo B. The Use of the Static Posturography to Assess Balance Performance in a Parkinson’s Disease Population. International Journal of Environmental Research and Public Health. 2023; 20(2):981. https://doi.org/10.3390/ijerph20020981
Chicago/Turabian StyleSebastia-Amat, Sergio, Juan Tortosa-Martínez, and Basilio Pueo. 2023. "The Use of the Static Posturography to Assess Balance Performance in a Parkinson’s Disease Population" International Journal of Environmental Research and Public Health 20, no. 2: 981. https://doi.org/10.3390/ijerph20020981
APA StyleSebastia-Amat, S., Tortosa-Martínez, J., & Pueo, B. (2023). The Use of the Static Posturography to Assess Balance Performance in a Parkinson’s Disease Population. International Journal of Environmental Research and Public Health, 20(2), 981. https://doi.org/10.3390/ijerph20020981