Analysis on the Influence of Industrial Structure on Energy Efficiency in China: Based on the Spatial Econometric Model
Abstract
:1. Introduction
2. Data Description and Model Setting
2.1. Research Regions
2.2. Data Sources and Description
2.3. Model Setting and Spatial Econometric Model
3. Empirical Analysis
3.1. Spatial Correlation Test
3.2. Spatial Econometric Analysis
3.2.1. A Study of Provincial Energy Efficiency in China under Full Sample Conditions
3.2.2. China Provincial Energy Efficiency Study by Different Time Period
3.2.3. China Provincial Energy Efficiency Study by Different Regions
4. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.Y. Analysis on China’s energy efficiency. Coal Inf. Res. 2012, 8, 39–49. [Google Scholar]
- Zou, Y.F.; Lu, Y.H. Analysis of regional characteristics of energy use efficiency in China based on spatial autoregressive model. Statist. Res. 2005, 6, 67–71. [Google Scholar]
- Shen, N. Study on the Spatial Distribution of Energy Input, Pollution Emission and Energy Economic Efficiency. Financ. Trade Econ. 2010, 1, 107–113. [Google Scholar]
- Wang, T.; Yan, L.; He, J.H. An empirical study on the impact of environmental regulation on total factor energy efficiency: Based on decomposition verification of Porter Hypothesis. China Environ. Sci. 2017, 34, 1571–1578. [Google Scholar]
- Yu, C.; Lu, Y.M.; Pan, D.; Zhang, W.J. Environmental regulation on the factors of energy efficiency of spatial spillover effect research. J. Stat. Dec. 2021, 5, 58–61. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, H.; Deng, X.Y. Population scale, industrial structure and energy efficiency-based on spatial panel measurement. Macroecon. Res. 2022, 8, 117–130. [Google Scholar] [CrossRef]
- Zhang, H.P.; Li, Y.H. Study on Sustainable Development of Provincial Energy Systems in China-Based on Resilience and Efficiency Synergistic Development Perspective. Environ. Sci. Manag. 2022, 47, 178–183. [Google Scholar]
- Gu, X.M.; Fan, D.C.; Du, M.Y. The Key Factors Affecting Regional Energy Efficiency in China--Empirical Study Based on Global Malmquist-Luenberger and Bayesian Model Averaging Method. Soft Sci. 2022, 36, 81–88. [Google Scholar] [CrossRef]
- Zhang, Y. Research on Influencing Factors of Chinese Energy Efficiency based on Spatial Econometrics; Beijing Jiaotong University: Beijing, China, 2017. [Google Scholar]
- Tang, H.B. Spatial Econometric Study on the Correlation of Regional Energy Economic Efficiency and Its Influencing Factors; Chongqing Normal University: Chongqing, China, 2017. [Google Scholar]
- Sun, Y.H.; Li, Q.; Chen, T. Analysis of Regional Differences and Influencing factors of energy consumption intensity in China: A spatial econometric model based on provincial data. J. Dongbei Univer. Financ. Econ. 2015, 12, 71–77. [Google Scholar]
- Li, Z.; Li, G.P. Analysis on the trend characteristics and influencing factors of urban energy change in China. Ind. Econ. Res. 2010, 2, 25–30. [Google Scholar]
- Wie, T.A. General Equilibrium View of Global Rebound Effects. Energy Econ. 2010, 32, 661–672. (In Chinese) [Google Scholar]
- Liu, D.D.; Zhao, E.Y.; Guo, Y. Energy efficiency and its influencing factors in western China from the perspective of total factors. China Environ. Sci. 2015, 35, 1911–1920. [Google Scholar]
- Lin, B.Q.; Du, K.T. The impact of factor market distortion on energy efficiency. Econ. Res. J. 2013, 48, 125–136. [Google Scholar]
- Yu, B.B. How to Improve Regional Energy Efficiency through Industrial Restructuring: An Empirical Study Based on the Dual Dimensions of magnitude and Quality. J. Financ. Econ. 2017, 43, 86–97. [Google Scholar]
- Wei, C.; Shen, M.H. Energy efficiency and its influencing factors: Empirical analysis based on DEA. Manag. World 2007, 8, 66–76. [Google Scholar]
- Chen, Q.Q.; Lian, X.Y.; Ma, X.J.; Mi, J. Total factor energy efficiency measurement and drivers in China. China Environ. Sci. 2022, 42, 2453–2463. [Google Scholar] [CrossRef]
- Liu, J.M.; Mao, J. Based on spatial measurement of China’s provincial and influencing factors of energy efficiency distribution analysis. J. Hunan Coll. Financ. Econ. 2014, 30, 133–140. [Google Scholar] [CrossRef]
- Cheng, J.H.; Li, S.X. The impact of structural change, technological progress and price on energy efficiency. China Popul. Resour. Environ. 2010, 4, 35–42. [Google Scholar]
- Deng, J. Analysis of influencing factors of energy efficiency based on spatial metrology: Empirical evidence from Chinese cities and above. J. Guangzhou Univer. 2017, 16, 51–57. [Google Scholar]
- Guo, Y.M.; Lin, X.Q.; Wang, D. Spatial evolution characteristics and influencing factors of urban energy efficiency in China: Based on two-stage Super SBM analysis. Areal Res. Develop. 2020, 39, 8–13. [Google Scholar]
- Zhang, H.; Fan, W.L.; Shen, X.M. Analysis of heterogeneous effects of energy efficiency and the influencing factors in Chinese cities: An empirical study based on quantile regression. Urban Probl. 2022, 8, 12–23. [Google Scholar] [CrossRef]
- Wei, G.; Shuting, X. Spatial energy efficiency patterns and the coupling relationship with industrial structure: A study on Liaoning Province, China. J. Geogr. Sci. 2015, 25, 355–368. [Google Scholar] [CrossRef]
- Yu, B. Industrial structure, technological innovation, and total-factor energy efficiency in China. Environ. Sci. Poll. Res. 2020, 27, 8371–8385. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J. Spatial Correlation, Convergence and Influencing Factors of Environment-Energy Efficiency in China; Xiamen University: Xiamen, China, 2014. [Google Scholar]
- Bai, D.; Dong, Q.; Khan SA RChen, Y.; Wang, D.; Yang, L. Spatial analysis of logistics ecological efficiency and its influencing factors in China: Based on super-SBM-undesirable and spatial Dubin models. Environ. Sci. Poll. Res. 2022, 29, 10138–10156. [Google Scholar] [CrossRef]
- Wang, S. Analysis of regional total factor energy efficiency in China. Energy Policy 2000, 34, 3206–3217. [Google Scholar]
- Ran, Q.Y.; Zhou, H. Agricultural Total factor Energy efficiency under Environmental constraints: Based on the SBM-TOBIT Model. Econ. Issues 2017, 1, 103–109. [Google Scholar] [CrossRef]
Year | Moran’ I | Z | p-Value |
---|---|---|---|
2004 | 0.132 | 4.720 | 0.000 |
2005 | 0.131 | 4.731 | 0.000 |
2006 | 0.125 | 4.563 | 0.000 |
2007 | 0.117 | 4.357 | 0.000 |
2008 | 0.115 | 4.302 | 0.000 |
2009 | 0.117 | 4.359 | 0.000 |
2010 | 0.114 | 4.269 | 0.000 |
2011 | 0.109 | 4.133 | 0.000 |
2012 | 0.104 | 3.998 | 0.000 |
2013 | 0.088 | 3.578 | 0.000 |
2014 | 0.089 | 3.618 | 0.000 |
2015 | 0.081 | 3.358 | 0.000 |
2016 | 0.079 | 3.316 | 0.000 |
2017 | 0.084 | 3.438 | 0.000 |
2018 | 0.088 | 3.560 | 0.000 |
2019 | 0.082 | 3.407 | 0.000 |
Test Value | |
---|---|
LM-err | 129.643 *** |
R LM-err | 82.264 *** |
LM-lag | 48.452 *** |
R LM-lag | 1.072 |
Hausmann test | 22.63 ** |
LR (SAR) | 66.20 *** |
LR (SEM) | 60.96 *** |
LR (ind) | 59.70 *** |
LR (time) | 417.81 *** |
Variable | SDM | ||
---|---|---|---|
sFE | tFE | stFE | |
Insr | 0.356 *** (6.14) | 0.454 *** (8.72) | 0.297 *** (4.62) |
Gove | −0.564 *** (−2.94) | −1.675 *** (−9.83) | −0.433 ** (−2.15) |
Seva | 6.531 *** (3.60) | 9.881 *** (5.09) | 5.619 *** (3.16) |
Mark | 0.236 (0.62) | 0.781 *** (2.66) | 0.483 (1.24) |
Wage | 0.349 (1.62) | 0.226 ** (1.98) | 0.117 (0.53) |
W × Insr | −0.551 *** (−2.90) | −0.552 * (−1.81) | −1.386 *** (−3.86) |
W × Gove | 0.352 (1.33) | 2.644 ** (−9.83) | 2.059 ** (2.04) |
W × Seva | −11.487 *** (−2.77) | 9.881 *** (5.09) | 24.081 ** (2.51) |
W × Mark | 0.108 (0.07) | 8.869 *** (4.23) | 12.001 *** (3.54) |
W × Wage | −0.021 (−0.07) | −2.465 *** (−3.74) | −0.552 (−0.37) |
0.6664 | 0.1207 | 0.1347 | |
Rho | 0.613 *** (8.48) | 0.541 *** (5.48) | 0.370 *** (3.03) |
sigma2_e | 0.049 *** (14.27) | 0.105 *** (15.23) | 0.044 *** (15.36) |
Log-likelihood | 35.7509 | −143.3035 | 65.6019 |
Test Value | ||
---|---|---|
2004–2011 | 2012–2019 | |
LM-err | 85.442 *** | 26.052 *** |
R LM-err | 51.862 *** | 28.049 *** |
LM-lag | 33.728 *** | 5.142 ** |
R LM-lag | 0.149 | 6.938 *** |
Hausmann test | 25.23 ** | 17.93 * |
LR (SAR) | 47.58 *** | 54.05 *** |
LR (SEM) | 47.57 *** | 54.63 *** |
LR (ind) | 45.01 *** | 22.74 *** |
LR (time) | 615.21 *** | 544.69 *** |
2004–2011 | 2012–2019 | |||||
---|---|---|---|---|---|---|
variable | stFE | sFE | tFE | stFE | sFE | tFE |
Insr | 0.098 *** (−0.04) | 0.183 *** (−0.03) | 0.473 *** (−0.05) | 0.123 (−0.08) | 0.165 ** (−0.07) | 0.438 *** (−0.10) |
Gove | −0.276 *** (−0.07) | −0.365 *** (−0.07) | −1.119 *** (−0.15) | 0.738 *** (−0.21) | 0.853 *** (−0.20) | −2.107 *** (−0.28) |
Mark | −0.06 (−0.24) | 0.332 (−0.24) | 1.160 *** (−0.27) | 0.582 (−0.43) | 0.456 (−0.42) | 0.765 (−0.54) |
Seva | 4.2408 *** (−0.69) | 4.7701 *** (−0.73) | 5.4225 *** (−2.00) | −6.700 *** (−2.30) | −7.421 *** (−2.28) | 12.270 *** (−2.94) |
Wage | −0.0573 (−0.09) | −0.0133 (−0.09) | 0.1267 (−0.09) | 1.8909 *** (−0.34) | 1.5946 *** (−0.34) | 0.4726 ** (−0.23) |
W × Insr | −1.0351 *** (−0.20) | −0.393 *** (−0.10) | 0.6320 ** (−0.32) | −1.6202 *** (−0.52) | −1.5531 *** (−0.26) | −0.705 (−0.60) |
W × Gove | −0.3642 (−0.36) | 0.7092 *** (−0.13) | 2.8808 *** (−0.90) | 6.3839 *** (−1.15) | 2.4737 *** (−0.67) | 1.8923 (−1.75) |
W × Mark | 1.0895 (−1.95) | 2.6546 ** (−1.16) | 10.7522 *** (−1.72) | 1.5025 (−3.88) | 0.4698 (−1.65) | 7.8990 * (−4.41) |
W × Seva | 18.3029 *** (−4.02) | −2.6186 * (−1.52) | 3.1856 (−11.58) | −28.327 * (−15.12) | −27.151 *** (−10.01) | 19.8748 (−19.79) |
W × Wage | 0.3538 (−0.68) | −0.0767 (−0.15) | −1.0398 ** (−0.52) | 4.2888 * (−2.50) | 2.4790 *** (−0.71) | −4.7874 *** (−1.60) |
60rho | −0.3044 (−0.24) | 0.4185 *** (−0.12) | 0.4178 ** (−0.18) | −0.4756 * (−0.27) | −0.1068 (−0.23) | 0.5477 *** (−0.14) |
sigma2_e | 0.0027 *** (−0.0002) | 0.0032 *** (−0.0003) | 0.0346 *** (−0.0032) | 0.0156 *** (−0.0014) | 0.0175 *** (−0.0016) | 0.1516 *** (−0.0141) |
Eastern | Central | Western | |
---|---|---|---|
LM-err | 15.236 *** | 119.569 *** | 163.524 *** |
R LM-err | 15.726 *** | 51.402 *** | 12.148 *** |
LM-lag | 2.471 * | 73.735 *** | 187.237 *** |
R LM-lag | 2.961 * | 5.568 ** | 35.861 *** |
Hausmann test | 73.09 *** | 20.31 *** | 65.7 *** |
LR (SAR) | 32.09 *** | 38.72 *** | 58.17 *** |
LR (SEM) | 43.93 *** | 11.64 ** | 63.40 *** |
LR (ind) | 55.28 *** | 94.91 *** | 46.08 *** |
LR (time) | 184.28 *** | 209.47 *** | 224.11 *** |
Variable | Eastern | Central | Western | ||||||
---|---|---|---|---|---|---|---|---|---|
stFe | sFe | tFe | stFe | sFe | tFe | stFe | sFe | tFe | |
Insr | 0.327 *** (−0.08) | 0.566 *** (−0.09) | 0.093 (−0.11) | −0.52 *** (−0.09) | −0.386 *** (−0.09) | 0.094 (−0.12) | −0.490 *** (−0.17) | −0.330 *** (−0.13) | −0.500 ** (−0.25) |
Gove | −0.530 (−0.38) | −0.194 (−0.43) | −2.556 *** (−0.58) | 1.119 * (−0.62) | 0.282 (−0.74) | 2.264 *** (−0.77) | −0.242 (−0.21) | −0.343 * (−0.20) | −2.509 *** (−0.28) |
Mark | −0.455 (−0.57) | −0.230 (−0.65) | −1.474 ** (−0.66) | 1.694 *** (−0.46) | 1.544 *** (−0.54) | 6.080 *** (−0.67) | −2.084 ** (−0.84) | −3.028 *** (−0.63) | −2.275 ** (−1.09) |
Seva | 4.325 * (−2.39) | −0.786 (−2.52) | 19.207 *** (−3.06) | −2.398 (−1.74) | −1.954 (−2.53) | 13.865 *** (−3.18) | 0.094 (−4.22) | 0.559 (−3.87) | 24.280 *** (−7.08) |
Wage | −0.472 (−0.32) | −0.121 (−0.32) | 0.234 (−0.20) | 1.436 *** (−0.23) | 1.306 *** (−0.32) | 0.742 (−0.51) | 0.635 (−0.41) | 0.446 (−0.33) | −1.610 ** (−0.653) |
W × Insr | −1.161 *** (−0.24) | −0.820 *** (−0.21) | −1.393 *** (−0.30) | −0.416 * (−0.22) | 0.373 ** (−0.15) | 1.253 *** (−0.31) | −2.845 *** (−0.80) | −0.931 *** (−0.29) | −2.509 * (−1.36) |
W × Gove | −2.292 (−1.81) | −0.850 (−0.52) | 1.380 (−2.85) | 2.126 (−1.98) | −0.808 (−0.76) | 10.225 *** (−2.34) | −0.982 (−1.05) | −0.412 (−0.25) | −6.284 *** (−1.39) |
W × Mark | −4.447 (−2.73) | −5.331 *** (−1.69) | −5.210 *** (−1.92) | 5.267 *** (−1.60) | −0.747 (−1.13) | 14.065 *** (−2.42) | −5.518 (−4.43) | −10.274 *** (−2.63) | −10.456 * (−5.57) |
W × Seva | 20.023 ** (−9.40) | −7.303 ** (−3.71) | 64.393 *** (−13.38) | −0.297 (−5.63) | 1.672 (−5.60) | −45.677 *** (−11.54) | −33.021 (−30.79) | −26.950 *** (−8.86) | 53.180 (−53.89) |
W × Wage | 0.671 (−1.15) | 2.129 *** (−0.38) | −1.742 * (−0.94) | 3.614 *** (−1.08) | −0.909 *** (−0.34) | 7.426 *** (−1.81) | 7.949 *** (−2.21) | 1.087 ** (−0.46) | −3.102 (−2.94) |
Rho | −0.996 *** (−0.17) | −0.338 ** (−0.15) | −0.089 (−0.16) | −0.764 *** (−0.16) | 0.467 *** (−0.09) | −0.379 ** (−0.19) | 0.187 (−0.17) | 0.408 *** (−0.13) | 0.222 (−0.17) |
sigma2_e | 0.028 *** (−0.003) | 0.044 *** (−0.005) | 0.092 *** (−0.010) | 0.009 *** (−0.001) | 0.020 *** (−0.003) | 0.051 *** (−0.006) | 0.023 *** (−0.003) | 0.029 *** (−0.003) | 0.081 *** (−0.009) |
N | 176 | 176 | 176 | 128 | 128 | 128 | 176 | 176 | 176 |
R2 | 0.332 | 0.266 | 0.175 | 0.541 | 0.674 | 0.534 | 0.327 | 0.184 | 0.249 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Ye, Z.; Fang, Z. Analysis on the Influence of Industrial Structure on Energy Efficiency in China: Based on the Spatial Econometric Model. Int. J. Environ. Res. Public Health 2023, 20, 2134. https://doi.org/10.3390/ijerph20032134
Zheng X, Ye Z, Fang Z. Analysis on the Influence of Industrial Structure on Energy Efficiency in China: Based on the Spatial Econometric Model. International Journal of Environmental Research and Public Health. 2023; 20(3):2134. https://doi.org/10.3390/ijerph20032134
Chicago/Turabian StyleZheng, Xin, Zi Ye, and Zhong Fang. 2023. "Analysis on the Influence of Industrial Structure on Energy Efficiency in China: Based on the Spatial Econometric Model" International Journal of Environmental Research and Public Health 20, no. 3: 2134. https://doi.org/10.3390/ijerph20032134
APA StyleZheng, X., Ye, Z., & Fang, Z. (2023). Analysis on the Influence of Industrial Structure on Energy Efficiency in China: Based on the Spatial Econometric Model. International Journal of Environmental Research and Public Health, 20(3), 2134. https://doi.org/10.3390/ijerph20032134