The Relationship between Spatial Characteristics of Urban-Rural Settlements and Carbon Emissions in Guangdong Province
Abstract
:1. Introduction
2. Literature Review
2.1. Urban-Rural Settlements and Regional Carbon Emissions
2.2. Spatial Forms and Carbon Emissions
3. Materials and Methods
3.1. Study Area and Research Design
- utilizing land uses data to access carbon emissions (Section 3.3);
- extracting spatial characteristics in terms of different urban-rural types and morphological forms of all built-up settlements (Section 3.4);
- quantifying the relationship by a fixed-effect model (Section 3.5).
3.2. Data Collection and Processing
3.3. Estimation of Carbon Emissions
3.4. Indicators of Spatial Characteristics of Urban-Rural Settlements
3.5. Fixed Effects Model Based on STIRPAT Model
4. Results
4.1. Evolution of Carbon Emissions in Guangdong Province
4.2. Transition of Urban-Rural Types of Settlements in Guangdong Province
4.3. Carbon Emission and Spatial Characteristics of Urban-Rural Settlements
4.3.1. Urban-Rural Types and GHG Emissions
4.3.2. Spatial Morphological Forms and GHG Emissions
5. Discussions and Policy Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Energy | 2005 | 2010 | 2013 | 2015 | 2018 | 2020 |
---|---|---|---|---|---|---|
Raw coal (10,000 tons) | 2.256 | 2.136 | 2.016 | 2.045 | 2.233 | 2.239 |
Washed coal (10,000 tons) | 2.589 | 2.589 | 2.589 | 2.589 | 2.589 | 2.589 |
Other coal washing (10,000 tons) | 1.511 | 1.511 | 1.511 | 1.524 | 1.553 | 1.553 |
Briquette (10,000 tons) | 1.747 | 1.747 | 1.747 | 1.747 | 1.747 | 1.747 |
Coal gangue (10,000 tons) | 0.000 | 0.575 | 0.633 | 0.633 | 0.633 | 0.575 |
Coke (10,000 tons) | 2.946 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 |
Coke oven gas (100 million cubic meters) | 8.954 | 8.328 | 8.328 | 8.328 | 8.328 | 8.328 |
Blast furnace gas (100 million cubic meters) | 0.000 | 2.012 | 2.012 | 2.012 | 2.012 | 2.012 |
Converter gas (100 million cubic meters) | 0.000 | 4.538 | 4.538 | 4.538 | 4.538 | 4.538 |
Other gas (100 million cubic meters) | 5.117 | 3.178 | 3.178 | 3.178 | 3.178 | 3.178 |
Other coking products (10,000 tons) | 3.644 | 3.644 | 3.644 | 3.644 | 3.644 | 3.644 |
Total oil products (10,000 tons) | 3.107 | 3.082 | 3.100 | 3.118 | 3.117 | 3.100 |
Crude oil (10,000 tons) | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 |
Gasoline (10,000 tons) | 3.158 | 3.158 | 3.158 | 3.158 | 3.158 | 3.158 |
Kerosene (10,000 tons) | 3.158 | 3.158 | 3.158 | 3.158 | 3.158 | 3.158 |
Diesel (10,000 tons) | 3.128 | 3.128 | 3.128 | 3.128 | 3.128 | 3.128 |
Fuel oil (10,000 tons) | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 | 3.067 |
Naphtha (10,000 tons) | 0.000 | 3.220 | 3.220 | 3.220 | 3.220 | 3.220 |
Lubricating oil (10,000 tons) | 0.000 | 3.036 | 3.036 | 3.036 | 3.036 | 3.036 |
Paraffin (10,000 tons) | 0.000 | 2.930 | 2.930 | 2.930 | 2.930 | 2.930 |
Solvent oil (10,000 tons) | 0.000 | 3.149 | 3.149 | 3.149 | 3.149 | 3.149 |
Petroleum asphalt (10,000 tons) | 0.000 | 2.812 | 2.812 | 2.812 | 2.812 | 2.812 |
Petroleum coke (10,000 tons) | 0.000 | 2.254 | 2.254 | 2.254 | 2.254 | 2.254 |
Liquefied Petroleum Gas (10,000 tons) | 3.680 | 3.680 | 3.680 | 3.680 | 3.680 | 3.680 |
Refinery dry gas (10,000 tons) | 3.373 | 3.373 | 3.373 | 3.373 | 3.373 | 3.373 |
Other petroleum products (10,000 tons) | 2.814 | 2.855 | 2.855 | 2.855 | 2.855 | 2.855 |
Natural gas (100 million cubic meters) | 21.840 | 21.840 | 21.347 | 21.347 | 21.038 | 20.955 |
Liquefied natural gas (10,000 tons) LNG | 2.874 | 2.886 | 2.886 | 2.886 | 2.903 | 2.892 |
Heat (millions of kilojoules) | 0.093 | 0.113 | 0.112 | 0.110 | 0.115 | 0.107 |
Electricity (100 million kWh) | 7.912 | 7.140 | 6.606 | 5.752 | 6.061 | 5.354 |
Other energy sources (10,000 tons of standard coal) | / | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Area (km2) | 2020 Type | |||||||
---|---|---|---|---|---|---|---|---|
2005 Type | SRL | LR | RA | SUA | SDUC | DUC | UC | Total 2005 |
SRL | 92,056 | 19,577 | 454 | 2101 | 261 | 6 | 250 | 114,705 |
LR | 146 | 11,000 | 1342 | 7405 | 929 | 44 | 286 | 21,152 |
RA | - | 189 | 1670 | 1173 | 589 | 15 | 2 | 3638 |
SUA | 29 | 322 | 25 | 15,338 | 394 | 1085 | 1715 | 18,908 |
SDUC | - | 64 | 80 | 884 | 1041 | 45 | - | 2114 |
DUC | - | - | 10 | 506 | 120 | 2440 | 500 | 3576 |
UC | 30 | 79 | - | 870 | - | 160 | 10,918 | 12,058 |
Total 2020 | 92,470 | 31,325 | 3583 | 28,296 | 3335 | 3795 | 13,685 | 177,667 |
References
- Farooq, M.U.; Shahzad, U.; Sarwar, S.; ZaiJun, L. The impact of carbon emission and forest activities on health outcomes: Empirical evidence from China. Environ. Sci. Pollut. Res. 2019, 26, 12894–12906. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z. Estimating smart energy inputs packages using hybrid optimisation technique to mitigate environmental emissions of commercial fish farms. Appl. Energy 2022, 326, 119602. [Google Scholar] [CrossRef]
- Pachauri, R.; Meyer, L. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Dhakal, S. GHG emissions from urbanization and opportunities for urban carbon mitigation. Curr. Opin. Environ. Sustain. 2010, 2, 277–283. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- Liu, Y.; Zhou, Y.; Wu, W. Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China. Appl. Energy 2015, 155, 904–917. [Google Scholar] [CrossRef]
- Majeed, M.T.; Tauqir, A. Effects of urbanization, industrialization, economic growth, energy consumption, financial development on carbon emissions: An extended STIRPAT model for heterogeneous income groups. Pak. J. Commer. Soc. Sci. (PJCSS) 2020, 14, 652–681. [Google Scholar]
- Sarwar, S.; Alsaggaf, M. Role of urbanization and urban income in carbon emissions: Regional analysis of China. Appl. Ecol. Environ. Res. 2019, 17, 10303–10311. [Google Scholar] [CrossRef]
- Fan, F.; Lei, Y. Decomposition analysis of energy-related carbon emissions from the transportation sector in Beijing. Transp. Res. Part D Transp. Environ. 2016, 42, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Shi, Y.; Ren, C.; Yoshida, T.; Yamagata, Y.; Ding, C.; Zhou, N. The need for urban form data in spatial modeling of urban carbon emissions in China: A critical review. J. Clean. Prod. 2021, 319, 128792. [Google Scholar] [CrossRef]
- Shi, K.; Xu, T.; Li, Y.; Chen, Z.; Gong, W.; Wu, J.; Yu, B. Effects of urban forms on CO2 emissions in China from a multi-perspective analysis. J. Environ. Manag. 2020, 262, 110300. [Google Scholar] [CrossRef]
- Schubert, J.; Wolbring, T.; Gill, B. Settlement structures and carbon emissions in Germany: The effects of social and physical concentration on carbon emissions in rural and urban residential areas. Environ. Policy Gov. 2013, 23, 13–29. [Google Scholar] [CrossRef]
- Fan, J.-L.; Liao, H.; Liang, Q.-M.; Tatano, H.; Liu, C.-F.; Wei, Y.-M. Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis. Appl. Energy 2013, 101, 323–332. [Google Scholar] [CrossRef]
- Mukherjee, I.; Sovacool, B.K. Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renew. Sustain. Energy Rev. 2014, 37, 1–12. [Google Scholar] [CrossRef]
- Zhi, J.; Gao, J. Analysis of carbon emission caused by food consumption in city and rural inhabitants in China. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–6. [Google Scholar]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed]
- Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; Shahtahmassebi, A. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2019, 646, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Li, l.; Dong, J.; Xu, L.; Zhang, j. Spatial variation of land use carbon budget and carbon compensation zoning in functional areas:A case study of Wuhan Urban Agglomeration. J. Nat. Resour. 2019, 34, 1003–1015. [Google Scholar] [CrossRef]
- Baiocchi, G.; Creutzig, F.; Minx, J.; Pichler, P.-P. A spatial typology of human settlements and their CO2 emissions in England. Glob. Environ. Change 2015, 34, 13–21. [Google Scholar] [CrossRef]
- Yuan, Q.; Guo, R.; Leng, H.; Song, S. Research on the Impact of Urban Form of Small and Medium-Sized Cities on Carbon Emission Efficiency in the Yangtze River Delta. J. Hum. Settl. West China 2021, 36, 8–15. [Google Scholar] [CrossRef]
- Ding, Y.; Li, F. Examining the effects of urbanization and industrialization on carbon dioxide emission: Evidence from China’s provincial regions. Energy 2017, 125, 533–542. [Google Scholar] [CrossRef]
- Larsen, H.N.; Hertwich, E.G. Implementing Carbon-Footprint-Based Calculation Tools in Municipal Greenhouse Gas Inventories: The Case of Norway. J. Ind. Ecol. 2010, 14, 965–977. [Google Scholar] [CrossRef]
- Martínez-Zarzoso, I.; Maruotti, A. The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecol. Econ. 2011, 70, 1344–1353. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, W.; Zhang, Z. Impacts of urbanization on renewable energy consumption in China. J. Clean. Prod. 2016, 114, 443–451. [Google Scholar] [CrossRef]
- Liu, L.-C.; Wu, G.; Wang, J.-N.; Wei, Y.-M. China’s carbon emissions from urban and rural households during 1992–2007. J. Clean. Prod. 2011, 19, 1754–1762. [Google Scholar] [CrossRef]
- Fan, J.-L.; Yu, H.; Wei, Y.-M. Residential energy-related carbon emissions in urban and rural China during 1996–2012: From the perspective of five end-use activities. Energy Build. 2015, 96, 201–209. [Google Scholar] [CrossRef]
- Rehman, I.; Ahmed, T.; Praveen, P.; Kar, A.; Ramanathan, V. Black carbon emissions from biomass and fossil fuels in rural India. Atmos. Chem. Phys. 2011, 11, 7289–7299. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, T.; Gao, W.; Mei, D. Analysis on spatial pattern and driving factors of carbon emission in urban–rural fringe mixed-use communities: Cases study in East Asia. Sustainability 2020, 12, 3101. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Liu, X.; Shi, X.; Cai, C. Spatial Temporal Differences of Carbon Emissions and Carbon Compensation in China Based on Land Use Change. Sci. Geogr. Sin. 2019, 39, 1955–1961. [Google Scholar]
- YUAN, S.; TANG, Y. Spatial Differentiation of Land Use Carbon Emission in the Yangtze River Economic Belt Based on Low Carbon Perspective. Econ. Geogr. 2019, 39, 190–198. [Google Scholar]
- Mishra, A.; Humpenöder, F.; Churkina, G.; Reyer, C.P.; Beier, F.; Bodirsky, B.L.; Schellnhuber, H.J.; Lotze-Campen, H.; Popp, A. Land use change and carbon emissions of a transformation to timber cities. Nat. Commun. 2022, 13, 4889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wu, M. Analysis on the Mechanism and Transmission Path of the Impact of Land Use on Carbon Emissions:Empirical Test Based on Structural Equation Model. China Land Sci. 2022, 36, 96–103. [Google Scholar]
- Fei, T.; Yanjun, W.; Mengjie, W.; Shaochun, L.; Yunhao, L.; Hengfan, C. Spatiotemporal coupling relationship between urban spatial morphology and carbon budget in Yangtze River Delta urban agglomeration. Acta Ecol. Sin. 2022, 23, 9636–9650. [Google Scholar]
- Kennedy, C.; Steinberger, J.; Gasson, B.; Hansen, Y.; Hillman, T.; Havranek, M.; Pataki, D.; Phdungsilp, A.; Ramaswami, A.; Mendez, G.V. Greenhouse gas emissions from global cities. Environ. Sci. Technol. 2009, 43, 7297–7302. [Google Scholar] [CrossRef] [PubMed]
- Crawford, T.W. Urban Form as a Technological Driver of Carbon Dioxide Emission: A Structural Human Ecology Analysis of Onroad and Residential Sectors in the Conterminous US. Sustainability 2020, 12, 7801. [Google Scholar] [CrossRef]
- Shu, X.; Xia, C.; Li, Y.; Tong, J.; Shi, Z. Relationships between carbon emission, urban growth, and urban forms of urban agglomeration in the Yangtze River Delta. Acta Ecol. Sin. 2018, 38, 6302–6313. [Google Scholar]
- Ou, J.; Liu, X.; Li, X.; Chen, Y. Quantifying the relationship between urban forms and carbon emissions using panel data analysis. Landsc. Ecol. 2013, 28, 1889–1907. [Google Scholar] [CrossRef]
- Xu, C.; Haase, D.; Su, M.; Yang, Z. The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness. Appl. Energy 2019, 254, 113671. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Qiang, W.; Wu, K.; Wang, X. Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions. Appl. Energy 2020, 261, 114409. [Google Scholar] [CrossRef]
- Zuo, S.; Dai, S.; Ren, Y. More fragmentized urban form more CO2 emissions? A comprehensive relationship from the combination analysis across different scales. J. Clean. Prod. 2020, 244, 118659. [Google Scholar] [CrossRef]
- Fang, C.; Wang, S.; Li, G. Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Appl. Energy 2015, 158, 519–531. [Google Scholar] [CrossRef]
- Wang, M.; Madden, M.; Liu, X. Exploring the relationship between urban forms and CO2 emissions in 104 Chinese cities. J. Urban Plan. Dev. 2017, 143, 04017014. [Google Scholar] [CrossRef]
- Liu, H.; Shao, M.; Ji, Y. The spatial pattern and distribution dynamic evolution of carbon emissions in China: Empirical study based on county carbon emission data. Sci. Geogr. Sin. 2021, 41, 1917–1924. [Google Scholar] [CrossRef]
- Agency, I.E. Data of Countries and Regions. Available online: https://www.iea.org/countries/China (accessed on 23 December 2022).
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Data Set (CNLUCC); Resource and Environment Data Cloud Platform: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Statistics Bureau of Guangdong Province. Guangdong Statistical Yearbook. Available online: http://stats.gd.gov.cn/gdtjnj/ (accessed on 17 January 2023).
- Schiavina, M.; Melchiorri, M.; Pesaresi, M.; Politis, P.; Freire, S.; Maffenini, L.; Florio, P.; Ehrlich, D.; Goch, K.; Tommasi, P. GHSL Data Package 2022; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Eggleston, H.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC National Greenhouse Gas Inventories Programme, Intergovernmental Panel on Climate Change IPCC, c/o Institute for Global Environmental Strategies IGES: Kanagawa, Japan, 2006. [Google Scholar]
- O’Neill, R.V.; Krummel, J.; Gardner, R.e.a.; Sugihara, G.; Jackson, B.; DeAngelis, D.; Milne, B.; Turner, M.G.; Zygmunt, B.; Christensen, S. Indices of landscape pattern. Landsc. Ecol. 1988, 1, 153–162. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. Bridging environmental science with environmental policy: Plasticity of population, affluence, and technology. Soc. Sci. Q. 2002, 83, 18–34. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Wu, R.; Wang, J.; Wang, S.; Feng, K. The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis. Renew. Sustain. Energy Rev. 2021, 149, 111328. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, L.-C.; Wu, G.; Wei, Y.-M. Analyzing impact factors of CO2 emissions using the STIRPAT model. Environ. Impact Assess. Rev. 2006, 26, 377–395. [Google Scholar] [CrossRef]
- Anser, M.K. Impact of energy consumption and human activities on carbon emissions in Pakistan: Application of STIRPAT model. Environ. Sci. Pollut. Res. 2019, 26, 13453–13463. [Google Scholar] [CrossRef]
- Cao, Q.; Jiao, J.L.; Jin, J.L. Analyses of Impacts of China’s CO2 Emissions Factors Based on STIRPAT Model. In Advanced Materials Research; Trans Tech Publications Ltd.: Zurich, Switzerland, 2012; pp. 3781–3785. [Google Scholar]
- Ji, X.; Chen, B. Assessing the energy-saving effect of urbanization in China based on stochastic impacts by regression on population, affluence and technology (STIRPAT) model. J. Clean. Prod. 2017, 163, S306–S314. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Zhu, M.; Zhuang, D.; Zhang, H.; Wen, J. Research on Spatial Differentiation and Influencing Factors of Rural Land Use Functions in the Counties of Guangdong Province. China Land Sci. 2021, 35, 79–87. [Google Scholar]
- Gong, L.; Yang, R.; Yang, F.; Shiyi, S. Rural Economic Spatial Reconstruction Process and Mechanism in Pearl River Delta Region Driven by Rural Land Capitalization. J. Hum. Settl. West China 2021, 41, 153–161. [Google Scholar]
- Churkina, G. Modeling the carbon cycle of urban systems. Ecol. Model. 2008, 216, 107–113. [Google Scholar] [CrossRef]
- Pei, J.; Niu, Z.; Wang, L.; Song, X.-P.; Huang, N.; Geng, J.; Wu, Y.-B.; Jiang, H.-H. Spatial-temporal dynamics of carbon emissions and carbon sinks in economically developed areas of China: A case study of Guangdong Province. Sci. Rep. 2018, 8, 13383. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Zhao, D.; Cao, Q. The response path of territorial spatial planning under the ‘dual carbon’ goals. Sci. Technol. Rev. 2022, 40, 20–29. [Google Scholar]
- Seto, K.C.; Dhakal, S.; Bigio, A.; Blanco, H.; Delgado, G.C.; Dewar, D.; Huang, L.; Inaba, A.; Kansal, A.; Lwasa, S. Human settlements, infrastructure and spatial planning. In Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Davoudi, S. Framing the Role of Spatial Planning in Climate Change; Global Urban Research Unit: Newcastle, UK, 2009. [Google Scholar]
Category of Urban-Rural Settlement | Classification Standard (Unit: 1 km2 Grid) | |||
---|---|---|---|---|
Population Density Constraint “>“ (Person/km2) | Block Total Population Constraint “>“ (Total Person) | Built-Up Area Constraint “>“ (km2) | Spatial Constraints | |
Large dense urban area (UC) | 1500 | 50,000 | 0.5 | 4-connectivity cluster |
Medium Dense Urban Area (DUC) | 1500 | 5000 | 0.5 | 4-connectivity cluster |
Low to Medium Dense Urban Area (SDUC) | 300 | 5000 | 0 | (1) 8-connectivity cluster; (2) Distance to UC or DUC > 3 km |
Suburban or peri-urbanized area (SUA) | 300 | 5000 | 0 | (1) 8-connectivity cluster; (2) Distance to UC or DUC < 3 km |
Dense Rural Area (RA) | 300 | 500 | 0 | 8-connectivity cluster |
Low Dense Rural Areas (LR) | 50 | 0 | 0 | None |
Very Low Dense Rural Regions (SLR) | 0 | 0 | 0 | land area > 50% |
Landscape Pattern Index | Meaning | Value Range |
---|---|---|
Number of built-up spatial patches (NP) | Describe the degree of fragmentation of built-up patches. The larger number of NP is, the higher the degree of fragmentation of built-up spatial forms. | Integral number |
Largest Patch Index (LPI) | The proportion of the largest patch of a continuous built-up patch in the entire built-up area. | [0, 1] |
Landscape Shape Index (LSI) | Measure the irregularity index of built-up space. The larger LSI indicates the more complex form of built-up area. | ≥1 |
COHESION | Measure the aggregation degree of built-up patches. COHESION increases as the patch aggregates in its distribution. | (0, 100] |
Perimeter Area Fractal Dimension (PAFRAC) | Measure the complexity of spatial form. The larger the value, the more complex the spatial form. | [1, 2] |
Mean Shape Index (SHAPE_MN) | Measure the complexity of spatial form. The larger the value, the more complex the shape of this type of patch. | >0 |
Variables | Mean | Std. Dev. | Min | Max | Type | Data Source |
---|---|---|---|---|---|---|
A | Mean | Std. Dev. | Min | Max | Dependent variables | CNLUCC |
LnC | 7.805 | 0.795 | 6.202 | 9.337 | Census | |
LnPOP | 6.108 | 0.556 | 4.953 | 7.536 | Control variables | |
LnPerGDP | 1.158 | 0.898 | −0.956 | 2.753 | ||
LnEI | 0.348 | 0.462 | −1.011 | 1.377 | PT variables | GHSL |
PSD_SLR | 0.482 | 0.204 | 0.129 | 0.803 | ||
PSD_LR | 0.135 | 0.047 | 0.037 | 0.251 | ||
PSD_RA | 0.017 | 0.008 | 0.000 | 0.034 | ||
PSD_SUA | 0.149 | 0.079 | 0.041 | 0.430 | ||
PSD_SDUC | 0.011 | 0.008 | 0.000 | 0.039 | ||
PSD_DUC | 0.025 | 0.011 | 0.004 | 0.049 | ||
PSD_UC | 0.169 | 0.203 | 0.008 | 0.716 | LS variables | CNLUCC |
NP | 149.079 | 105.307 | 20.000 | 488.000 | ||
LPI | 29.440 | 24.256 | 4.745 | 94.474 | ||
LSI | 13.668 | 3.886 | 7.661 | 24.262 | ||
SHAPE_MN | 1.186 | 0.141 | 1.056 | 1.726 | ||
PAFRAC | 1.579 | 0.042 | 1.418 | 1.665 | ||
Time interval | 2005, 2010, 2013, 2015, 2018, 2020 |
Model Selection | Dependent Variable | Statistical Test | Test Result | |
---|---|---|---|---|
Mixed or variable coefficient panel Models | LnC | F test | Chi-sq | 10.76 |
p-value | 0 | |||
Fixed or random effects | LnC | Hausman test sigmamore | Chi-sq | 74.52 |
p-value | 0 |
Model_1 | Model_2 | Model_3 | ||||
---|---|---|---|---|---|---|
Independent Variables | Coef. | Sig. | Coef. | Sig. | Coef. | Sig. |
LnPOP | 0.484 | 0.000 | 0.702 | 0.000 | 0.632 | 0.000 |
LnperGDP | 0.524 | 0.000 | 0.480 | 0.000 | 0.474 | 0.000 |
LnIC | 0.653 | 0.000 | 0.771 | 0.000 | 0.806 | 0.000 |
>P_UC | 1.155 | 0.007 | 2.056 | 0.007 | ||
P_DUC | ||||||
P_SDUC | ||||||
P_SUA | 1.282 | 0.013 | ||||
P_LR | 3.778 | 0.000 | 3.439 | 0.000 | ||
P_RA | ||||||
NP | ||||||
LPI | ||||||
LSI | ||||||
PARFRAC | ||||||
COHESION | ||||||
Constant | 4.016 | 0.000 | 1.987 | 0.031 | 2.112 | 0.022 |
R-sq (within) | 0.780 | 0.806 | 0.811 | |||
F-statistic | 295.620 | 213.680 | 263.300 | |||
Prob (F-statistic) | 0.000 | 0.000 | 0.000 | 0.000 | ||
Model_4 | Model_5 | Model_6 | ||||
Independent Variables | Coef. | Sig. | Coef. | Sig. | Coef. | Sig. |
LnPOP | 0.744 | 0.000 | 0.698 | 0.000 | 0.593 | 0.000 |
LnperGDP | 0.467 | 0.000 | 0.473 | 0.000 | 0.476 | 0.000 |
LnIC | 0.771 | 0.000 | 0.766 | 0.000 | 0.816 | 0.000 |
P_UC | 1.330 | 0.001 | 1.236 | 0.008 | 2.223 | 0.005 |
P_DUC | 8.660 | 0.089 | ||||
P_SDUC | −5.648 | 0.236 | ||||
P_SUA | 1.688 | 0.028 | ||||
P_LR | 3.847 | 0.000 | 4.641 | 0.001 | 3.264 | 0.000 |
P_RA | 5.458 | 0.453 | ||||
NP | ||||||
LPI | ||||||
LSI | ||||||
PARFRAC | ||||||
COHESION | ||||||
Constant | 1.489 | 0.071 | 1.955 | 0.038 | 2.187 | 0.014 |
R-sq (within) | 0.812 | 0.809 | 0.812 | |||
F-statistic | 253.120 | 191.560 | 239.400 | |||
Prob (F-statistic) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
N. of observation | 126 | |||||
Confident interval | 95% |
Model_7 | Model_8 | Model_9 | ||||
---|---|---|---|---|---|---|
Independent Variables | Coef. | Sig. | Coef. | Sig. | Coef. | Sig. |
LnPOP | 0.505 | 0.000 | 0.514 | 0.000 | 0.701 | 0.000 |
LnperGDP | 0.522 | 0.000 | 0.527 | 0.000 | 0.481 | 0.000 |
LnIC | 0.666 | 0.000 | 0.682 | 0.000 | 0.772 | 0.000 |
P_UC | 1.156 | 0.006 | ||||
P_DUC | ||||||
P_SDUC | ||||||
P_SUA | ||||||
P_LR | 3.727 | 0.000 | ||||
P_RA | ||||||
NP | 0.001 | 0.071 | ||||
LPI | ||||||
LSI | 0.029 | 0.003 | 0.002 | 0.855 | ||
PARFRAC | ||||||
COHESION | ||||||
Constant | 3.743 | 0.000 | 3.418 | 0.000 | 1.973 | 0.031 |
R-sq (within) | 0.7813 | 0.785 | 0.8062 | |||
F-statistic | 244.64 | 252.760 | 201.820 | |||
Prob (F-statistic) | 0 | 0.000 | 0.000 | |||
N. of observation | 126 | |||||
Confident interval | 95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhang, H.; Liao, X.; Wang, H.; Bian, Y.; Liu, G.; Luo, W. The Relationship between Spatial Characteristics of Urban-Rural Settlements and Carbon Emissions in Guangdong Province. Int. J. Environ. Res. Public Health 2023, 20, 2659. https://doi.org/10.3390/ijerph20032659
Yang L, Zhang H, Liao X, Wang H, Bian Y, Liu G, Luo W. The Relationship between Spatial Characteristics of Urban-Rural Settlements and Carbon Emissions in Guangdong Province. International Journal of Environmental Research and Public Health. 2023; 20(3):2659. https://doi.org/10.3390/ijerph20032659
Chicago/Turabian StyleYang, Liya, Honghui Zhang, Xinqi Liao, Haiqi Wang, Yong Bian, Geng Liu, and Weiling Luo. 2023. "The Relationship between Spatial Characteristics of Urban-Rural Settlements and Carbon Emissions in Guangdong Province" International Journal of Environmental Research and Public Health 20, no. 3: 2659. https://doi.org/10.3390/ijerph20032659
APA StyleYang, L., Zhang, H., Liao, X., Wang, H., Bian, Y., Liu, G., & Luo, W. (2023). The Relationship between Spatial Characteristics of Urban-Rural Settlements and Carbon Emissions in Guangdong Province. International Journal of Environmental Research and Public Health, 20(3), 2659. https://doi.org/10.3390/ijerph20032659