The Impact of Location-Based Tax Incentives and Carbon Emission Intensity: Evidence from China’s Western Development Strategy
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
Hypotheses and Research Model
4. Results
4.1. Data and Descriptive Statistics
4.2. Main Results
4.3. Robustness Check
4.3.1. Propensity Score Matching Difference-in-Differences Method (PSM-DID)
4.3.2. Parallel Trend Test
4.3.3. Placebo Test
4.3.4. Change Reference Group
4.3.5. Extension of Observation Time
4.3.6. External Effects
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Eastside County Moved 3 Units Eastward | Eastside County Moved 2 Units Eastward | Eastside County Moved 1 Unit Eastward | Eastside of Provincial Border | Westside of Provincial Border | |
---|---|---|---|---|---|
Mean (sd) | Mean (sd) | Mean (sd) | Mean (sd) | Mean (sd) | |
Year | 2002.07 (3.129) | 2002.06 (3.14) | 2002.01 (3.173) | 2002.03 (3.149) | 2002.25 (3.039) |
Emm | 1.74 (1.337) | 1.67 (1.354) | 1.28 (1.149) | 1.04 (1.023) | 0.93 (1.19) |
Emm_den | 5.63 (4.395) | 7.01 (6.925) | 7.09 (6.86) | 6.19 (6.643) | 5.71 (5.447) |
Lngdp | 12.61 (0.841) | 12.44 (0.933) | 12.13 (0.987) | 11.99 (1.001) | 11.71 (0.889) |
Lnpop | 3.73 (0.643) | 3.75 (0.584) | 3.6 (0.687) | 3.58 (0.716) | 3.39 (0.63) |
Urban | 0.22 (0.138) | 0.18 (0.109) | 0.2 (0.143) | 0.21 (0.157) | 0.22 (0.2) |
Edu | 0.06 (0.027) | 0.05 (0.022) | 0.05 (0.022) | 0.06 (0.024) | 0.06 (0.022) |
Citypercent | 5.51 (7.29) | 3.75 (5.578) | 3.41 (5.388) | 2.14 (2.66) | 2.51 (2.376) |
Appendix B
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variable | Population Logarithm | ||||
int_west_po | −0.002 | −0.002 | |||
(0.008) | (0.008) | ||||
1998.year | 0.011 | ||||
(0.008) | |||||
1999.year | 0.013 | 0.004 ** | 0.002 | 0.005 ** | |
(0.009) | (0.002) | (0.002) | (0.002) | ||
2000.year | 0.021 ** | 0.003 | 0.008 ** | 0.008 * | |
(0.010) | (0.006) | (0.004) | (0.004) | ||
2001.year | 0.026 *** | 0.004 | 0.007 | 0.006 | |
(0.008) | (0.008) | (0.005) | (0.006) | ||
2002.year | 0.028 *** | 0.006 | 0.007 | 0.006 | |
(0.008) | (0.008) | (0.005) | (0.007) | ||
2003.year | 0.037 *** | 0.017 ** | 0.017 *** | 0.015 * | |
(0.008) | (0.008) | (0.005) | (0.008) | ||
2004.year | 0.038 *** | 0.016 * | 0.020 *** | 0.017 ** | |
(0.008) | (0.008) | (0.005) | (0.008) | ||
2005.year | 0.039 *** | 0.016 ** | 0.020 *** | 0.016 * | |
(0.008) | (0.008) | (0.006) | (0.008) | ||
2006.year | 0.046 *** | 0.023 *** | 0.023 *** | 0.022 *** | |
(0.009) | (0.008) | (0.006) | (0.008) | ||
2007.year | 0.056 *** | 0.034 *** | 0.036 *** | 0.034 *** | |
(0.009) | (0.008) | (0.007) | (0.008) | ||
post | 0.027 *** | ||||
(0.004) | |||||
int_west_po_r1 | 0.005 | ||||
(0.007) | |||||
int_west_po_r2 | 0.004 | ||||
(0.006) | |||||
int_west_po_r3 | 0.007 | ||||
(0.007) | |||||
Constant | 3.452 *** | 3.441 *** | 3.475 *** | 3.554 *** | 3.537 *** |
(0.003) | (0.009) | (0.004) | (0.003) | (0.004) | |
Observations | 2044 | 2044 | 1748 | 1784 | 1694 |
R-squared | 0.070 | 0.103 | 0.080 | 0.105 | 0.091 |
Number of counties | 188 | 188 | 176 | 180 | 171 |
References
- Zhang, C.; Wang, Q.; Shi, D.; Li, P.; Cai, W. Scenario-based potential effects of carbon trading in China: An integrated approach. Appl. Energy 2016, 182, 177–190. [Google Scholar] [CrossRef]
- Neumark, D.; Simpson, H. Place-based policies. In Handbook of Regional and Urban Economics; Elsevier: Amsterdam, The Netherlands, 2015; Volume 5, pp. 1197–1287. [Google Scholar]
- While, A.; Jonas, A.E.; Gibbs, D. From sustainable development to carbon control: Eco-state restructuring and the politics of urban and regional development. Trans. Inst. Br. Geogr. 2010, 35, 76–93. [Google Scholar] [CrossRef]
- Wang, J. The economic impact of special economic zones: Evidence from Chinese municipalities. J. Dev. Econ. 2013, 101, 133–147. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, J.; Li, X.; Xiong, B. China’s regional natural resource allocation and utilization: A DEA-based approach in a big data environment. J. Clean. Prod. 2017, 142, 809–818. [Google Scholar] [CrossRef]
- Cheong, T.S.; Wu, Y. The impacts of structural transformation and industrial upgrading on regional inequality in China. China Econ. Rev. 2014, 31, 339–350. [Google Scholar] [CrossRef]
- Huang, Y.; Todd, D.; Zhang, L. Capitalizing on energy supply: Western China’s opportunity for development. Resour. Policy 2011, 26, 227–237. [Google Scholar] [CrossRef]
- Zhang, X.; Kumar, A. Evaluating renewable energy-based rural electrification program in western China: Emerging problems and possible scenarios. Renew. Sust. Energ. Rev. 2011, 15, 773–779. [Google Scholar] [CrossRef]
- Feng, K.; Siu, Y.L.; Guan, D.; Hubacek, K. Analyzing Drivers of Regional Carbon Dioxide Emissions for China: A Structural Decomposition Analysis. J. Ind. Ecol. 2012, 16, 600–611. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, J.; Zheng, S.; Sun, H. Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method. Energy Policy 2015, 77, 46–55. [Google Scholar] [CrossRef]
- Du, L.; Wei, C.; Cai, S. Economic development and carbon dioxide emissions in China: Provincial panel data analysis. China Econ. Rev. 2012, 23, 371–384. [Google Scholar] [CrossRef]
- Zheng, J.; Mi, Z.; Coffman, D.M.; Milcheva, S.; Shan, Y.; Guan, D.; Wang, S. Regional development and carbon emissions in China. Energy Econ. 2019, 81, 25–36. [Google Scholar] [CrossRef]
- Moore, B.; Rhodes, J. Evaluating the effects of British regional economic policy. Econ. J. 1973, 83, 87–110. [Google Scholar] [CrossRef]
- Fleisher, B.; Li, H.; Zhao, M.Q. Human capital, economic growth, and regional inequality in China. J. Dev. Econ. 2010, 92, 215–231. [Google Scholar] [CrossRef]
- Parikh, J.; Shukla, V. Urbanization, energy use and greenhouse effects in economic development: Results from a cross-national study of developing countries. Glob. Environ. Chang. 1995, 5, 87–103. [Google Scholar] [CrossRef]
- Fan, S.; Kanbur, R.; Zhang, X. China’s regional disparities: Experience and policy. Rev. Dev. Financ. 2011, 1, 47–56. [Google Scholar] [CrossRef]
- Golley, J. China’s Western Development Strategy and nature versus nurture. J. Chin. Econ. Bus. Stud. 2007, 5, 115–129. [Google Scholar] [CrossRef]
- Démurger, S.; Sachs, J.; Woo, W.T.; Bao, S.; Chang, G.; Mellinger, A. Geography, economic policy and regional development in China. Asian Econ. Pap. 2007, 1, 146–197. [Google Scholar] [CrossRef]
- Lei, M.; Yin, Z.; Yu, X.; Deng, S. Carbon-weighted economic development performance and driving force analysis: Evidence from China. Energy Policy 2017, 111, 179–192. [Google Scholar] [CrossRef]
- Lai, H.H. China’s western development program: Its rationale, implementation, and prospects. Mod. China 2015, 28, 432–466. [Google Scholar] [CrossRef]
- Wang, M.L.; Wang, W.; Du, S.Y.; Li, C.F.; He, Z. Causal relationships between carbon dioxide emissions and economic factors: Evidence from China. Sustain. Dev. 2020, 28, 73–82. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Tian, M.; Wen, F. Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015. Energy 2019, 171, 1139–1149. [Google Scholar] [CrossRef]
- Lu, Z.; Deng, X. China’s Western Development Strategy: Policies, effects and prospects. MPRA Paper. 2011, p. 35201. Available online: https://mpra.ub.uni-muenchen.de/id/eprint/35201 (accessed on 1 December 2022).
- Zhang, C.; Zhou, B.; Wang, Q. Effect of China’s western development strategy on carbon intensity. J. Clean. Prod. 2019, 215, 1170–1179. [Google Scholar] [CrossRef]
- Warner, J.M. Regional Development Discrepancies and Public Policy: Evaluating China’s Western Development Strategy; School of International Relations & Pacific Studies, University of California: San Diego, CA, USA, 2011. [Google Scholar]
- Dai, M.; Li, X.; Lu, Y. How urbanization economies impact tfp of r&d performers: Evidence from China. Sustainability 2017, 9, 1766. [Google Scholar]
- Liu, Z.; Wu, H.; Wu, J. Location-based tax incentives and entrepreneurial activities: Evidence from Western Regional Development Strategy in China. Small Bus. Econ. 2019, 52, 729–742. [Google Scholar] [CrossRef]
- Shao, S.; Qi, Z. Energy exploitation and economic growth in Western China: An emprical analysis based on the resource curse hypothesis. Front. Econ. China 2009, 4, 125–152. [Google Scholar] [CrossRef]
- Luo, M.; Fan, Z.; Chen, C. Redistribution Effect of Regional Tax Preferential Policies—Evidence from the Western Development Strategy. Chin. Ind. Econ. 2019, 2, 61–79. [Google Scholar]
- Zhao, X.; Burnett, J.W.; Lacombe, D.J. Province-level convergence of China’s carbon dioxide emissions. Appl. Energy 2015, 150, 286–295. [Google Scholar] [CrossRef]
- Wei, C.; Ni, J.; Du, L. Regional allocation of carbon dioxide abatement in China. China Econ. Rev. 2012, 23, 552–565. [Google Scholar] [CrossRef]
- Briant, A.; Lafourcade, M.; Schmutz, B. Can tax breaks beat geography? Lessons from the French enterprise zone experience. Am. Econ. J. Econ. Policy 2015, 7, 88–124. [Google Scholar] [CrossRef]
- Grewal, B.S.; Ahmed, A.D. Is China’s Western region development strategy on track? an assessment. J. Contemp. China 2015, 20, 161–181. [Google Scholar] [CrossRef]
- Zellner, A.; Kmenta, J.; Dreze, J. Specification and estimation of Cobb-Douglas production function models. Econom. J. Econom. Soc. 1966, 34, 784–795. [Google Scholar] [CrossRef]
- Murthy, K.V. Arguing a case for Cobb-Douglas production function. Rev. Commer. Stud. 2002, 20, 21. [Google Scholar]
- Sandelin, B. On the origin of the Cobb-Douglas production function. Econ. Hist. 1976, 19, 117–123. [Google Scholar]
- Cheng, M.L.; Han, Y. A modified Cobb-Douglas production function model and its application. IMA J. Manag. Math. 2014, 25, 353–365. [Google Scholar] [CrossRef]
- Yu, X. Coal mining and environmental development in southwest China. Environ. Dev. 2017, 21, 77–86. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Z.; Wang, Q. Effect of Western Development Strategy on carbon productivity and its influencing mechanisms. Environ. Dev. Sustain. 2022, 24, 4963–5002. [Google Scholar] [CrossRef]
- Alder, S.; Shao, L.; Zilibotti, F. Economic reforms and industrial policy in a panel of Chinese cities. J. Econ. Growth 2016, 21, 305–349. [Google Scholar] [CrossRef]
- Zhuo, C.; Deng, F. How does China’s Western Development Strategy affect regional green economic efficiency? Sci. Total Environ. 2020, 707, 135939. [Google Scholar] [CrossRef]
- Shiu, A.; Li, R.; Woo, C.K. Economic growth and infrastructure investments in energy and transportation: A causality interpretation of China’s western development strategy. Energy J. 2016, 37, 211–233. [Google Scholar] [CrossRef]
- Jia, J.; Ma, G.; Qin, C.; Wang, L. Place-based policies, state-led industrialisation, and regional development: Evidence from China’s Great Western Development Programme. Euro. Econ. Rev. 2020, 123, 103398. [Google Scholar] [CrossRef]
- Zhang, W. Can the strategy of western development narrow down China’s regional disparity? Asian Econ. Pap. 2004, 3, 1–23. [Google Scholar] [CrossRef]
- Deng, X.; Bai, X. Sustainable urbanization in western China. Environ. Sci. Policy Sustain. Dev. 2014, 56, 12–24. [Google Scholar] [CrossRef]
Variable | Number of Samples | Mean | Standard Deviation | Minimum | Maximum Value |
---|---|---|---|---|---|
West | 4.45 | −0.94 | 1.40 | −3 | 1 |
Year | 4.45 | 2003 | 2.87 | 1998 | 2007 |
Emm (carbon emissions) | 4.36 | 1.34 | 1.27 | 0.001 | 11.78 |
Emmden (carbon intensity) | 4.33 | 6.16 | 5.98 | 0.06 | 55.76 |
Lngdp (ln ten thousand yuan) | 4.41 | 12.20 | 0.98 | 9.00 | 15.20 |
Lnpop (ln population) | 4.40 | 3.60 | 0.67 | 1.61 | 5.12 |
Urban (urbanization rate) | 4.34 | 0.21 | 0.15 | 0.01 | 1 |
Edu (educational level) | 4.40 | 0.06 | 0.02 | 0.01 | 0.45 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variable | Carbon Intensity | ||||
Interactive term | 0.918 ** | 0.915 ** | 1.137 *** | 1.404 *** | 1.275 *** |
(0.434) | (0.434) | (0.369) | (0.333) | (0.309) | |
GDP per capita | −3.105 *** | −6.784 *** | −7.012 *** | ||
(0.406) | (0.719) | (0.699) | |||
Lnpop | −12.462 *** | ||||
(2.504) | |||||
Urban | 3.632 ** | ||||
(1.701) | |||||
Edu | −11.254 *** | ||||
(4.078) | |||||
Individual fixed effects | √ | √ | √ | √ | √ |
year fixed effect | √ | √ | √ | ||
post | −1.331 *** | 0.203 | |||
(0.336) | (0.187) | ||||
Constant | 6.405 *** | 6.081 *** | 31.323 *** | 60.333 *** | 105.098 *** |
(0.154) | (0.165) | (3.368) | (5.808) | (12.719) | |
Observations | 1826 | 1826 | 1819 | 1819 | 1788 |
R-squared | 0.053 | 0.093 | 0.295 | 0.474 | 0.515 |
Number of counties | 184 | 184 | 184 | 184 | 184 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | Ln Carbon Emissions | Carbon Emissions Per Capita | ||
Interactive term | 0.164 *** | 0.164 *** | 0.007 ** | 0.007 ** |
(0.038) | (0.037) | (0.003) | (0.003) | |
Individual fixed effects | √ | √ | √ | √ |
Year fixed effect | √ | √ | ||
Large development Dummy variables | √ | √ | ||
Constant | −1.021 *** | −0.932 *** | 0.020 *** | 0.021 *** |
(0.016) | (0.013) | (0.001) | (0.001) | |
Observations | 1840 | 1840 | 1822 | 1822 |
R-squared | 0.835 | 0.417 | 0.361 | 0.140 |
Number of counties | 184 | 184 | 184 | 184 |
Control Group (Pre-WDS) | Treatment Group (Pre-WDS) | Treatment Group (Pre- WDS)— Control Group (Pre-WDS) | Control Group (Post- WDS | Treatment Group (Post- WDS) | Treatment Group (Post- WDS)— Control Group (Post- WDS | Difference-in-Differences Test Results | |
---|---|---|---|---|---|---|---|
Carbon emission Density | 7.873 | 5.906 | −1.964 | 6.262 | 5.461 | −0.801 | 1.166 |
Standard error | 0.521 | 0.342 | 0.623 | ||||
T value | −3.78 | 2.34 | 1.87 | ||||
Salience | 0.000 | 0.019 | 0.061 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Eastside County vs. Eastside County Moved 1 Unit Eastward | Eastside Counties Moved 1 Unit Eastward vs. Eastside Counties Moved 2 Units Eastward | Eastside Counties Moved 2 Units Eastward vs. Eastside Counties Moved 3 Units Eastward | Eastside Counties vs. Eastside Counties Moved 2 Units Eastward | Eastside Counties vs. Eastside Counties Moved 3 Units Eastward | |
Carbon Intensity | |||||
“Pseudo-handling” interaction | 0.089 | −0.159 | −0.102 | −0.069 | −0.171 |
(0.503) | (0.499) | (0.438) | (0.472) | (0.443) | |
Individual fixed effects | √ | √ | √ | √ | √ |
Year fixed effect | √ | √ | √ | √ | √ |
Constant | 6.925 *** | 7.331 *** | 6.655 *** | 6.771 *** | 6.263 *** |
(0.180) | (0.168) | (0.138) | (0.144) | (0.156) | |
Observations | 1768 | 1712 | 1674 | 1824 | 1730 |
R-squared | 0.142 | 0.149 | 0.144 | 0.143 | 0.142 |
Number of counties | 178 | 172 | 169 | 184 | 175 |
(1) | (2) | (3) | |
---|---|---|---|
Westside Counties vs. Westside Counties Moved 1 Unit Eastward | Westside Counties vs. Westside Counties Moved 2 Units Eastward | Westside Counties vs. Westside Counties Moved 3 Units Eastward | |
Variable | Carbon Intensity | ||
Interactive term (Control group moved east) | 1.005 ** | 0.846 * | 0.744 * |
(0.464) | (0.429) | (0.397) | |
Individual fixed effects | √ | √ | √ |
Year fixed effect | √ | √ | √ |
Constant | 6.591 *** | 6.447 *** | 5.900 *** |
(0.187) | (0.152) | (0.162) | |
Observations | 1714 | 1770 | 1676 |
R-squared | 0.093 | 0.092 | 0.087 |
Number of counties | 172 | 178 | 169 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variable | Carbon Intensity | Lngdp_per_cap | |||
Interactive term | 1.363 ** | 1.588 *** | 2.125 *** | 0.087 | 0.093 * |
(0.569) | (0.506) | (0.439) | (0.057) | (0.052) | |
GDP per capita | −2.734 *** | −5.924 *** | |||
(0.552) | (0.846) | ||||
Lnpop | −5.808 *** | −0.850 *** | |||
(0.902) | (0.045) | ||||
Edu | −7.333 ** | −0.507 | |||
(3.649) | (0.606) | ||||
Individual fixed effects | √ | √ | √ | √ | √ |
Year fixed effect | √ | √ | √ | √ | √ |
Constant | 6.018 *** | 27.928 *** | 73.829 *** | 8.016*** | 10.987 *** |
(0.235) | (4.532) | (9.775) | (0.024) | (0.159) | |
Observations | 2991 | 2990 | 2908 | 3027 | 2944 |
R-squared | 0.256 | 0.359 | 0.515 | 0.969 | 0.984 |
Number of xzdm | 184 | 184 | 184 | 188 | 188 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Eastside County vs. Eastside County Moved 1 Unit Eastward | Eastside County Moved 1 Unit Eastward vs. Eastside County Moved 2 Units Eastward | Eastside Counties Moved 2 Units Eastward vs. Eastside Counties Moved 3 Units Eastward | Eastside County vs. Eastside County Moved 2 Units Eastward | Eastside County vs. Eastside County Moved 3 Units Eastward | |
Variable | Ln Carbon Emissions | ||||
“Pseudo-treatment” interaction effects | 0.017 | 0.016 | 0.013 | 0.033 * | 0.046 *** |
(0.020) | (0.018) | (0.014) | (0.017) | (0.016) | |
Individual fixed effects | √ | √ | √ | √ | √ |
Year fixed effect | √ | √ | √ | √ | √ |
Constant | −0.615 *** | −0.242 *** | −0.054 *** | −0.449 *** | −0.439 *** |
(0.009) | (0.009) | (0.008) | (0.009) | (0.008) | |
Observations | 1780 | 1720 | 1690 | 1840 | 1750 |
R-squared | 0.921 | 0.929 | 0.953 | 0.932 | 0.940 |
Number of counties | 178 | 172 | 169 | 184 | 175 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
West County vs. East County | West County vs. East County | Counties on the West Side vs. 1 County on the East Side | Counties on the West Side vs. 2 Counties on the East Side | Counties on the West Side vs. 1 County on the East Side | |
Variable | GDP Per Capita | ||||
interactive term | 0.082 * | 0.084 ** | 0.060 | 0.062 | 0.035 |
(0.042) | (0.042) | (0.039) | (0.038) | (0.038) | |
individual fixed effects | √ | √ | √ | √ | √ |
year fixed effect | √ | √ | √ | √ | |
large development dummy variables | √ | ||||
Constant | 7.997 *** | 7.912 *** | 8.049 *** | 8.131 *** | 8.182 *** |
(0.013) | (0.019) | (0.017) | (0.017) | (0.017) | |
Observations | 2.039 | 2.039 | 1.745 | 1.779 | 1.687 |
R-squared | 0.419 | 0.778 | 0.789 | 0.803 | 0.805 |
Number of counties | 188 | 188 | 176 | 180 | 171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, S.; Zhang, L. The Impact of Location-Based Tax Incentives and Carbon Emission Intensity: Evidence from China’s Western Development Strategy. Int. J. Environ. Res. Public Health 2023, 20, 2669. https://doi.org/10.3390/ijerph20032669
Wang Y, Zhang S, Zhang L. The Impact of Location-Based Tax Incentives and Carbon Emission Intensity: Evidence from China’s Western Development Strategy. International Journal of Environmental Research and Public Health. 2023; 20(3):2669. https://doi.org/10.3390/ijerph20032669
Chicago/Turabian StyleWang, Yufeng, Shijun Zhang, and Luyao Zhang. 2023. "The Impact of Location-Based Tax Incentives and Carbon Emission Intensity: Evidence from China’s Western Development Strategy" International Journal of Environmental Research and Public Health 20, no. 3: 2669. https://doi.org/10.3390/ijerph20032669
APA StyleWang, Y., Zhang, S., & Zhang, L. (2023). The Impact of Location-Based Tax Incentives and Carbon Emission Intensity: Evidence from China’s Western Development Strategy. International Journal of Environmental Research and Public Health, 20(3), 2669. https://doi.org/10.3390/ijerph20032669