Quantitative Ultrasound Examination (QUS) of the Calcaneus in Long-Term Martial Arts Training on the Example of Long-Time Practitioners of Okinawa Kobudo/Karate Shorin-Ryu
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Basic Considerations
4.2. Skeletal Status Assessed with QUS and PA and Non-Combat Sports
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cummings, S.R.; Kelsey, J.L.; Nevitt, M.C.; O’Dowd, K.J. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol. Rev. 1985, 7, 178–208. [Google Scholar] [CrossRef]
- Kanis, J.A.; Aaron, J.E.; Evans, D.; Thavarajah, M.; Beneton, M. Bone loss and age-related fractures. Exp. Gerontol. 1990, 25, 289–296. [Google Scholar] [CrossRef]
- Nevitt, M.C. Epidemiology of osteoporosis. Rheum. Dis. Clin. N. Am. 1994, 20, 535–559. [Google Scholar] [CrossRef]
- Lochmuller, E.M.; Zeller, J.B.; Kaiser, D.; Eckstein, F.; Landgraf, J.; Putz, R.; Steldinger, R. Correlation of femoral and lumbar DXA and calcaneal ultrasound, measured in situ with intact soft tissues, with the in vitro failure loads of the proximal femur. Osteoporos. Int. 1998, 8, 591–598. [Google Scholar] [CrossRef]
- Wolf, R.L.; Zmuda, J.M.; Stone, K.L.; Cauley, J.A. Update on the epidemiology of osteoporosis. Curr. Rheumatol. Rep. 2000, 2, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Osteoporosis prevention, diagnosis, and therapy. JAMA 2001, 285, 785–795. [CrossRef]
- LeBoff, M.S.; Greenspan, S.L.; Insogna, K.L.; Lewiecki, E.M.; Saag, K.G.; Singer, A.J.; Siris, E.S. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 2022, 33, 2049–2102. [Google Scholar] [CrossRef]
- Mora, S.; Gilsanz, V. Establishment of peak bone mass. Endocrinol. Metab. Clin. N. Am. 2003, 32, 39–63. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.Y.; Ima-Nirwana, S. Calcaneal quantitative ultrasound as a determinant of bone health status: What properties of bone does it reflect? Int. J. Med. Sci. 2013, 10, 1778–1783. [Google Scholar] [CrossRef]
- Hans, D.; Wu, C.; Njeh, C.F.; Zhao, S.; Augat, P.; Newitt, D.; Link, T.; Lu, Y.; Majumdar, S.; Genant, H.K. Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity. Calcif. Tissue Int. 1999, 64, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Gluer, C.C.; Eastell, R.; Reid, D.M.; Felsenberg, D.; Roux, C.; Barkmann, R.; Timm, W.; Blenk, T.; Armbrecht, G.; Stewart, A.; et al. Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: The OPUS Study. J. Bone Min. Res. 2004, 19, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Lorenc, S.; Glinkowski, W.; Rydzynski, P.; Lorenc, R.S. The influence of the height of body mass on ultrasound measurements of bones in healthy Polish women. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 1998, 5, 215–217. [Google Scholar]
- Falk, B.; Galili, Y.; Zigel, L.; Constantini, N.; Eliakim, A. A cumulative effect of physical training on bone strength in males. Int. J. Sport. Med. 2007, 28, 449–455. [Google Scholar] [CrossRef]
- Pashkova, A.; Hartman, J.M.; Letuchy, E.M.; Janz, K.F. Interscholastic Athletics and Bone Strength: The Iowa Bone Development Study. J. Strength Cond. Res. 2022, 36, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Arnett, M.G.; Lutz, B. Effects of rope-jump training on the os calcis stiffness index of postpubescent girls. Med. Sci. Sport. Exerc. 2002, 34, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Kemmler, W.; von Stengel, S.; Weineck, J.; Lauber, D.; Kalender, W.; Engelke, K. Exercise effects on menopausal risk factors of early postmenopausal women: 3-yr Erlangen fitness osteoporosis prevention study results. Med. Sci. Sport. Exerc. 2005, 37, 194–203. [Google Scholar] [CrossRef]
- Inomoto, T. Physical activity/sports and bone mineral density. Clin. Calcium 2008, 18, 1339–1348. [Google Scholar]
- Tenforde, A.S.; Fredericson, M. Influence of sports participation on bone health in the young athlete: A review of the literature. PM R J. Inj. Funct. Rehabil. 2011, 3, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Sammut, L.; Denison, H.; Teesdale-Spittle, P.; Dennison, E. The Relationship Between Non-elite Sporting Activity and Calcaneal Bone Density in Adolescents and Young Adults: A Narrative Systematic Review. Front. Physiol. 2020, 11, 167. [Google Scholar] [CrossRef]
- Agostinete, R.R.; Vlachopoulos, D.; Werneck, A.O.; Maillane-Vanegas, S.; Lynch, K.R.; Naughton, G.; Fernandes, R.A. Bone accrual over 18 months of participation in different loading sports during adolescence. Arch. Osteoporos. 2020, 15, 64. [Google Scholar] [CrossRef]
- Henriques-Neto, D.; Magalhães, J.P.; Júdice, P.; Hetherington-Rauth, M.; Peralta, M.; Marques, A.; Sardinha, L.B. Mediating role of physical fitness and fat mass on the associations between physical activity and bone health in youth. J. Sport. Sci. 2020, 38, 2811–2818. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, C.; Fan, R.; Liu, T.; Li, Y.; Zhong, D.; Zhou, L.; Liu, T.; Li, J.; Jin, R. The effect and safety of Tai Chi on bone health in postmenopausal women: A meta-analysis and trial sequential analysis. Front. Aging Neurosci. 2022, 14, 935326. [Google Scholar] [CrossRef] [PubMed]
- Sinaki, M. Critical appraisal of physical rehabilitation measures after osteoporotic vertebral fracture. Osteoporos. Int. 2003, 14, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, N. Exercise and physical activities for the prevention of osteoporotic fractures: A review of the evidence. Nihon Eiseigaku Zasshi. Jpn. J. Hyg. 2003, 58, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.M.; Nydick, M. Osteoporosis: Current modes of prevention and treatment. J. Am. Acad. Orthop. Surg. 1999, 7, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Bonaiuti, D.; Shea, B.; Iovine, R.; Negrini, S.; Robinson, V.; Kemper, H.C.; Wells, G.; Tugwell, P.; Cranney, A. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst. Rev. 2002, 7, CD000333. [Google Scholar] [CrossRef]
- Bailey, C.A.; Brooke-Wavell, K. Exercise for optimising peak bone mass in women. Proc. Nutr. Soc. 2008, 67, 9–18. [Google Scholar] [CrossRef] [PubMed]
- De Kam, D.; Smulders, E.; Weerdesteyn, V.; Smits-Engelsman, B.C. Exercise interventions to reduce fall-related fractures and their risk factors in individuals with low bone density: A systematic review of randomized controlled trials. Osteoporos. Int. 2009, 20, 2111–2125. [Google Scholar] [CrossRef]
- Imagama, S.; Hasegawa, Y.; Matsuyama, Y.; Sakai, Y.; Ito, Z.; Hamajima, N.; Ishiguro, N. Influence of sagittal balance and physical ability associated with exercise on quality of life in middle-aged and elderly people. Arch. Osteoporos. 2011, 6, 13–20. [Google Scholar] [CrossRef]
- Kemmler, W.; von Stengel, S. Exercise and osteoporosis-related fractures: Perspectives and recommendations of the sports and exercise scientist. Physician Sportsmed. 2011, 39, 142–157. [Google Scholar] [CrossRef]
- Pop, T.; Czarny, W.; Glista, J.; Skrzypiec, M. Influence of traditional karate training on the stability and symmetry of the load on lower limbs Arch. Bud. 2013, 9, 39–49. [Google Scholar]
- Wąsik, J.; Bajkowski, D.; Shan, G.; Podstawski, R.; Cynarski, W.J. The Influence of the Practiced Karate Style on the Dexterity and Strength of the Hand. Appl. Sci. 2022, 12, 3811. [Google Scholar] [CrossRef]
- Branco, M.A.C.; VencesBrito, A.M.V.; Rodrigues-Ferreira, M.A.; Branco, G.A.C.; Polak, E.; Cynarski, W.J.; Jacek, W. Effect of Aging on the Lower Limb Kinematics in Karate Practitioners: Comparing Athletes and Their Senseis. J. Healthc. Eng. 2019, 2019, 2672185. [Google Scholar] [CrossRef] [Green Version]
- Groen, B.E.; Weerdesteyn, V.; Duysens, J. Martial arts fall techniques decrease the impact forces at the hip during sideways falling. J. Biomech. 2007, 40, 458–462. [Google Scholar] [CrossRef]
- Weerdesteyn, V.; Groen, B.E.; van Swigchem, R.; Duysens, J. Martial arts fall techniques reduce hip impact forces in naive subjects after a brief period of training. J. Electromyogr. Kinesiol. 2008, 18, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Groen, B.E.; Weerdesteyn, V.; Duysens, J. The relation between hip impact velocity and hip impact force differs between sideways fall techniques. J. Electromyogr. Kinesiol. 2008, 18, 228–234. [Google Scholar] [CrossRef]
- Groen, B.E.; Smulders, E.; Duysens, J.; van Lankveld, W.; Weerdesteyn, V. Could martial arts fall training be safe for persons with osteoporosis? A feasibility study. BMC Res. Notes 2010, 3, 111. [Google Scholar] [CrossRef]
- Van der Zijden, A.M.; Groen, B.E.; Tanck, E.; Nienhuis, B.; Verdonschot, N.; Weerdesteyn, V. Can martial arts techniques reduce fall severity? An in vivo study of femoral loading configurations in sideways falls. J. Biomech. 2012, 45, 1650–1655. [Google Scholar] [CrossRef]
- Van der Zijden, A.M.; Groen, B.E.; Tanck, E.; Nienhuis, B.; Verdonschot, N.; Weerdesteyn, V. Estimating severity of sideways fall using a generic multi linear regression model based on kinematic input variables. J. Biomech. 2017, 54, 19–25. [Google Scholar] [CrossRef]
- Origua Rios, S.; Marks, J.; Estevan, I.; Barnett, L.M. Health benefits of hard martial arts in adults: A systematic review. J. Sport. Sci. 2018, 36, 1614–1622. [Google Scholar] [CrossRef]
- Stahl, J.E.; Belisle, S.S.; Zhao, W. Medical Qigong for Mobility and Balance Self-Confidence in Older Adults. Front. Med. 2020, 7, 422. [Google Scholar] [CrossRef]
- Nurmi-Lawton, J.A.; Baxter-Jones, A.D.; Mirwald, R.L.; Bishop, J.A.; Taylor, P.; Cooper, C.; New, S.A. Evidence of sustained skeletal benefits from impact-loading exercise in young females: A 3-year longitudinal study. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2004, 19, 314–322. [Google Scholar] [CrossRef]
- Kuramoto, A.M. Therapeutic benefits of Tai Chi exercise: Research review. WMJ Off. Publ. State Med. Soc. Wis. 2006, 105, 42–46. [Google Scholar]
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Lamb, S.E.; Gates, S.; Cumming, R.G.; Rowe, B.H. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2009, 9, CD007146. [Google Scholar] [CrossRef]
- Chyu, M.C.; James, C.R.; Sawyer, S.F.; Brismee, J.M.; Xu, K.T.; Poklikuha, G.; Dunn, D.M.; Shen, C.L. Effects of tai chi exercise on posturography, gait, physical function and quality of life in postmenopausal women with osteopaenia: A randomized clinical study. Clin. Rehabil. 2010, 24, 1080–1090. [Google Scholar] [CrossRef]
- Jahnke, R.; Larkey, L.; Rogers, C.; Etnier, J.; Lin, F. A comprehensive review of health benefits of qigong and tai chi. Am. J. Health Promot. AJHP 2010, 24, e1–e25. [Google Scholar] [CrossRef]
- Song, R.; Roberts, B.L.; Lee, E.O.; Lam, P.; Bae, S.C. A randomized study of the effects of t’ai chi on muscle strength, bone mineral density, and fear of falling in women with osteoarthritis. J. Altern. Complement. Med. 2010, 16, 227–233. [Google Scholar] [CrossRef]
- Wayne, P.M.; Kiel, D.P.; Buring, J.E.; Connors, E.M.; Bonato, P.; Yeh, G.Y.; Cohen, C.J.; Mancinelli, C.; Davis, R.B. Impact of Tai Chi exercise on multiple fracture-related risk factors in post-menopausal osteopenic women: A pilot pragmatic, randomized trial. BMC Complement. Altern. Med. 2012, 12, 7. [Google Scholar] [CrossRef]
- Bolam, K.A.; van Uffelen, J.G.; Taaffe, D.R. The effect of physical exercise on bone density in middle-aged and older men: A systematic review. Osteoporos. Int. 2013, 24, 2749–2762. [Google Scholar] [CrossRef] [PubMed]
- Drozdzowska, B.; Münzer, U.; Adamczyk, P.; Pluskiewicz, W. Skeletal status assessed by quantitative ultrasound at the hand phalanges in karate training males. Ultrasound Med. Biol. 2011, 37, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Serres, P.; Calas, J.; Guilbert, F. Karate and cheek fracture. Rev. De Stomatol. Et De Chir. Maxillo-Faciale 1973, 74, 177–178. [Google Scholar]
- Chaabene, H.; Hachana, Y.; Franchini, E.; Mkaouer, B.; Chamari, K. Physical and physiological profile of elite karate athletes. Sport. Med. 2012, 42, 829–843. [Google Scholar] [CrossRef]
- Nasri, R.; Hassen Zrour, S.; Rebai, H.; Fadhel Najjar, M.; Neffeti, F.; Bergaoui, N.; Mejdoub, H.; Tabka, Z. Grip strength is a predictor of bone mineral density among adolescent combat sport athletes. J. Clin. Densitom. 2013, 16, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Nakagawa, S.; Nishida, S.; Hirota, R. Bone density and bone metabolic markers in active collegiate athletes: Findings in long-distance runners, judoists, and swimmers. Int. J. Sport. Med. 1997, 18, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, A.; Monteleone, M.; Van Loan, M.; Promenzio, L.; Tarantino, U.; De Lorenzo, A. Effects of different sports on bone density and muscle mass in highly trained athletes. Med. Sci. Sport. Exerc. 2001, 33, 507–511. [Google Scholar] [CrossRef]
- Prouteau, S.; Pelle, A.; Collomp, K.; Benhamou, L.; Courteix, D. Bone density in elite judoists and effects of weight cycling on bone metabolic balance. Med. Sci. Sport. Exerc. 2006, 38, 694–700. [Google Scholar] [CrossRef]
- Sabo, D.; Bernd, L.; Pfeil, J.; Reiter, A. Bone quality in the lumbar spine in high-performance athletes. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 1996, 5, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Trutschnigg, B.; Chong, C.; Habermayerova, L.; Karelis, A.D.; Komorowski, J. Female boxers have high bone mineral density despite low body fat mass, high energy expenditure, and a high incidence of oligomenorrhea. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Et Metab. 2008, 33, 863–869. [Google Scholar] [CrossRef]
- Dolan, E.; Crabtree, N.; McGoldrick, A.; Ashley, D.T.; McCaffrey, N.; Warrington, G.D. Weight regulation and bone mass: A comparison between professional jockeys, elite amateur boxers, and age, gender and BMI matched controls. J. Bone Miner. Metab. 2012, 30, 164–170. [Google Scholar] [CrossRef]
- Polska Unia Shorin-Ryu Karate Kobudo Website by Mateusz Staniszew. Available online: http://www.okinawakarate.pl/ (accessed on 23 December 2022).
- World Oshukai Okinawa Shorin-Ryu Karate Do Kobudo Federation. Available online: https://www.oshukai.com/kobudo/okinawa-kobudo/ (accessed on 23 December 2022).
- Töyräs, J.; Kröger, H.; Jurvelin, J.S. Bone properties as estimated by mineral density, ultrasound attenuation, and velocity. Bone 1999, 25, 725–731. [Google Scholar] [CrossRef]
- Töyräs, J.; Nieminen, M.T.; Kröger, H.; Jurvelin, J.S. Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently. Bone 2002, 31, 503–507. [Google Scholar] [CrossRef]
- Cortet, B.; Boutry, N.; Dubois, P.; Legroux-Gérot, I.; Cotten, A.; Marchandise, X. Does quantitative ultrasound of bone reflect more bone mineral density than bone microarchitecture? Calcif. Tissue Int. 2004, 74, 60–67. [Google Scholar] [CrossRef]
- Guglielmi, G.; de Terlizzi, F. Quantitative ultrasond in the assessment of osteoporosis. Eur. J. Radiol. 2009, 71, 425–431. [Google Scholar] [CrossRef]
- Baroncelli, G.I. Quantitative Ultrasound Methods to Assess Bone Mineral Status in Children: Technical Characteristics, Performance, and Clinical Application. Pediatr. Res. 2008, 63, 220–228. [Google Scholar] [CrossRef]
- Krieg, M.A.; Barkmann, R.; Gonnelli, S.; Stewart, A.; Bauer, D.C.; Del Rio Barquero, L.; Kaufman, J.J.; Lorenc, R.; Miller, P.D.; Olszynski, W.P.; et al. Quantitative ultrasound in the management of osteoporosis: The 2007 ISCD Official Positions. J. Clin. Densitom. 2008, 11, 163–187. [Google Scholar] [CrossRef]
- Pluskiewicz, W.; Drozdzowska, B. Ultrasonic measurement of the calcaneus in Polish normal and osteoporotic women and men. Bone 1999, 24, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Pluskiewicz, W.; Drozdzowska, B. Ultrasound measurements at the calcaneus in men: Differences between healthy and fractured persons and the influence of age and anthropometric features on ultrasound parameters. Osteoporos Int. 1999, 10, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Bruyere, O.; Cannata-Andia, J.B.; Devogelaer, J.; Lyritis, G.; Ringe, J.D.; Vellas, B.; Reginster, J. Management of osteoporosis in the elderly. Curr. Med. Res. Opin. 2009, 25, 2373–2387. [Google Scholar] [CrossRef]
- Hervás, G.; Ruiz-Litago, F.; Irazusta, J.; Fernández-Atutxa, A.; Fraile-Bermúdez, A.B.; Zarrazquin, I. Physical Activity, Physical Fitness, Body Composition, and Nutrition Are Associated with Bone Status in University Students. Nutrients 2018, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Bianchi, M.L.; Garabédian, M.; McKay, H.A.; Moreno, L.A. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 2010, 46, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Au, S.; Choy, W.; Leung, P.; Neff, M.; Lee, K.; Lau, M.; Woo, J.; Chan, K. Regular Tai Chi Chuan exercise may retard bone loss in postmenopausal women: A case-control study. Arch. Phys. Med. Rehabil. 2002, 83, 1355–1359. [Google Scholar] [CrossRef] [PubMed]
- Oral, A.; Tarakçi, D.; Dişçi, R. Calcaneal quantitative ultrasound measurements in young male and female professional dancers. J. Strength Cond. Res. 2006, 20, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Pohlabeln, H.; Ahrens, W.; Lauria, F.; Veidebaum, T.; Chadjigeorgiou, C.; Molnár, D.; Eiben, G.; Michels, N.; Moreno, L.A.; et al. Cross-sectional and longitudinal associations between physical activity, sedentary behaviour and bone stiffness index across weight status in European children and adolescents. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bruton, A.; Gonzalez-Aguero, A.; Gomez-Cabello, A.; Casajus, J.A.; Vicente-Rodriguez, G. Is bone tissue really affected by swimming? A systematic review. PLoS ONE 2013, 8, e70119. [Google Scholar] [CrossRef]
- Gomez-Bruton, A.; Gonzalez-Aguero, A.; Gomez-Cabello, A.; Matute-Llorente, A.; Casajus, J.A.; Vicente-Rodriguez, G. The effects of swimming training on bone tissue in adolescence. Scand. J. Med. Sci. Sport. 2015, 25, e589–e602. [Google Scholar] [CrossRef] [PubMed]
- Lofgren, B.; Detter, F.; Dencker, M.; Stenevi-Lundgren, S.; Nilsson, J.A.; Karlsson, M.K. Influence of a 3-year exercise intervention program on fracture risk, bone mass, and bone size in prepubertal children. J. Bone Min. Res. 2011, 26, 1740–1747. [Google Scholar] [CrossRef] [PubMed]
- Lofgren, B.; Dencker, M.; Nilsson, J.A.; Karlsson, M.K. A 4-year exercise program in children increases bone mass without increasing fracture risk. Pediatrics 2012, 129, e1468–e1476. [Google Scholar] [CrossRef]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E.; et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J. Clin. Endocrinol. Metab. 2008, 93, 861–868. [Google Scholar] [CrossRef]
- Cavani, F.; Giavaresi, G.; Fini, M.; Bertoni, L.; de Terlizzi, F.; Barkmann, R.; Cane, V. Influence of density, elasticity, and structure on ultrasound transmission through trabecular bone cylinders. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2008, 55, 1465–1472. [Google Scholar] [CrossRef]
- Bouxsein, M.L.; Radloff, S.E. Quantitative ultrasound of the calcaneus reflects the mechanical properties of calcaneal trabecular bone. J. Bone Min. Res. 1997, 12, 839–846. [Google Scholar] [CrossRef]
- Montagnani, A.; Gonnelli, S.; Cepollaro, C.; Mangeri, M.; Monaco, R.; Gennari, L.; Gennari, C. Usefulness of bone quantitative ultrasound in management of osteoporosis in men. J. Clin. Densitom. 2001, 4, 231–237. [Google Scholar] [CrossRef]
- Drozdzowska, B.; Pluskiewicz, W. Skeletal status in males aged 7-80 years assessed by quantitative ultrasound at the hand phalanges. Osteoporos. Int. 2003, 14, 295–300. [Google Scholar] [CrossRef]
- Chwałczyńska, A.; Pluskiewicz, W.; Syrycka, J.; Bolanowski, M. Quantitative ultrasound at the hand phalanges in adolescent boys in relation to their pubertal development and physical efficiency. Endokrynol. Pol. 2013, 64, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Alenfeld, F.E.; Wüster, C.; Funck, C.; Pereira-Lima, J.F.; Fritz, T.; Meeder, P.J.; Ziegler, R. Ultrasound measurements at the proximal phalanges in healthy women and patients with hip fractures. Osteoporos. Int. 1998, 8, 393–398. [Google Scholar] [CrossRef]
- Trovas, G.; Tsekoura, M.; Galanos, A.; Dionyssiotis, Y.; Dontas, I.; Lyritis, G.; Papaioanou, N. Quantitative ultrasound of the calcaneus in greek women: Normative data are different from the manufacturer’s normal range. J. Clin. Densitom. 2009, 12, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Q.; Liu, W.; Xu, C.L.; Han, S.M.; Zu, S.Y.; Zhu, G.J. Reference data for quantitative ultrasound values of calcaneus in 2927 healthy Chinese men. J. Bone Miner. Metab. 2008, 26, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Paley, M.; Ordidge, R.; Speller, R. In vivo MRI measurements of bone quality in the calcaneus: A comparison with DXA and ultrasound. Osteoporos. Int. 1999, 9, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Tylavsky, F.A.; Orwoll, E.S.; Rho, J.Y.; Carbone, L.D. The role of collagen abnormalities in ultrasound and densitometry assessment: In vivo evidence. Calcif. Tissue Int. 1999, 64, 470–476. [Google Scholar] [CrossRef]
- Pluskiewicz, W.; Drozdzowska, B. Ultrasound measurement of proximal phalanges in a normal Polish female population. Osteoporos. Int. 1998, 8, 349–354. [Google Scholar] [CrossRef]
- Barkmann, R.; Laugier, P.; Moser, U.; Dencks, S.; Klausner, M.; Padilla, F.; Haiat, G.; Gluer, C.C. A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2008, 55, 1197–1204. [Google Scholar] [CrossRef]
- Hans, D.; Srivastav, S.K.; Singal, C.; Barkmann, R.; Njeh, C.F.; Kantorovich, E.; Gluer, C.C.; Genant, H.K. Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture? J. Bone Min. Res. 1999, 14, 644–651. [Google Scholar] [CrossRef]
- Bouxsein, M.L.; Courtney, A.C.; Hayes, W.C. Ultrasound and densitometry of the calcaneus correlate with the failure loads of cadaveric femurs. Calcif. Tissue Int. 1995, 56, 99–103. [Google Scholar] [CrossRef]
- Varner, J.M. Osteoporosis: A silent disease. Ala. Nurse 2012, 39, 10–11. [Google Scholar]
- Verbrugge, F.H.; Gielen, E.; Milisen, K.; Boonen, S. Who should receive calcium and vitamin D supplementation? Age Ageing 2012, 41, 576–580. [Google Scholar] [CrossRef]
- Lippuner, K. The future of osteoporosis treatment—A research update. Swiss Med. Wkly. 2012, 142, w13624. [Google Scholar] [CrossRef]
- Vaile, J.H.; Sullivan, L.; Connor, D.; Bleasel, J.F. A Year of Fractures: A snapshot analysis of the logistics, problems and outcomes of a hospital-based fracture liaison service. Osteoporos. Int. 2013, 24, 2619–2625. [Google Scholar] [CrossRef]
- Eleftheriou, K.I.; Rawal, J.S.; James, L.E.; Payne, J.R.; Loosemore, M.; Pennell, D.J.; World, M.; Drenos, F.; Haddad, F.S.; Humphries, S.E.; et al. Bone structure and geometry in young men: The influence of smoking, alcohol intake and physical activity. Bone 2013, 52, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Falk, B.; Sadres, E.; Constantini, N.; Eliakim, A.; Zigel, L.; Foldes, A.J. Quantitative ultrasound (QUS) of the tibia: A sensitive tool for the detection of bone changes in growing boys. J. Pediatr. Endocrinol. Metab. 2000, 13, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Drozdzowska, B.; Pluskiewicz, W. The ability of quantitative ultrasound at the calcaneus to identify postmenopausal women with different types of nontraumatic fractures. Ultrasound Med. Biol. 2002, 28, 1491–1497. [Google Scholar] [CrossRef] [PubMed]
- Pluskiewicz, W.; Halaba, Z. First prospective report with the use of quantitative ultrasound (QUS) in children and adolescents. J. Clin. Densitom. 2001, 4, 173. [Google Scholar] [CrossRef] [PubMed]
- Valimaki, V.V.; Loyttyniemi, E.; Valimaki, M.J. Quantitative ultrasound variables of the heel in Finnish men aged 18–20 yr: Predictors, relationship to bone mineral content, and changes during military service. Osteoporos. Int. 2006, 17, 1763–1771. [Google Scholar] [CrossRef]
- Karlsson, M.K.; Duan, Y.; Ahlborg, H.; Obrant, K.J.; Johnell, O.; Seeman, E. Age, gender, and fragility fractures are associated with differences in quantitative ultrasound independent of bone mineral density. Bone 2001, 28, 118–122. [Google Scholar] [CrossRef]
- Zagorski, P.; Tabor, E.; Martela, K.; Adamczyk, P.; Glinkowski, W.; Pluskiewicz, W. Does Quantitative Ultrasound at the Calcaneus Predict an Osteoporosis Diagnosis in Postmenopausal Women from the Silesia Osteo Active Study? Ultrasound Med. Biol. 2021, 47, 527–534. [Google Scholar] [CrossRef]
- Lee, M.S.; Pittler, M.H.; Shin, B.C.; Ernst, E. Tai chi for osteoporosis: A systematic review. Osteoporos. Int. 2008, 19, 139–146. [Google Scholar] [CrossRef]
- Tabor, E.; Zagorski, P.; Martela, K.; Glinkowski, W.; Kuzniewicz, R.; Pluskiewicz, W. The role of physical activity in early adulthood and middle-age on bone health after menopause in epidemiological population from Silesia Osteo Active Study. Int. J Clin Pract. 2016, 70, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Pluskiewicz, W.; Drozdzowska, B. Ultrasound measurements of proximal phalanges in Polish early postmenopausal women. Osteoporos. Int. 1998, 8, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, D.; Barker, A.R.; Ubago-Guisado, E.; Ortega, F.B.; Krustrup, P.; Metcalf, B.; Castro Pinero, J.; Ruiz, J.R.; Knapp, K.M.; Williams, C.A.; et al. The effect of 12-month participation in osteogenic and non-osteogenic sports on bone development in adolescent male athletes. The PRO-BONE study. J. Sci. Med. Sport 2018, 21, 404–409. [Google Scholar] [CrossRef]
- Tarakçi, D.; Oral, A. How do contralateral calcaneal quantitative ultrasound measurements in male professional football (soccer) players reflect the effects of high-impact physical activity on bone? J. Sport. Med. Phys. Fit. 2009, 49, 78–84. [Google Scholar]
- Gaudio, A.; Rapisarda, R.; Xourafa, A.; Zanoli, L.; Manfrè, V.; Catalano, A.; Signorelli, S.S.; Castellino, P. Effects of competitive physical activity on serum irisin levels and bone turnover markers. J. Endocrinol. Investig. 2021, 44, 2235–2241. [Google Scholar] [CrossRef] [PubMed]
- Martyn-St James, M.; Carroll, S. A meta-analysis of impact exercise on postmenopausal bone loss: The case for mixed loading exercise programmes. Br. J. Sport. Med. 2009, 43, 898. [Google Scholar] [CrossRef] [PubMed]
- Brahm, H.; Ström, H.; Piehl-Aulin, K.; Mallmin, H.; Ljunghall, S. Bone metabolism in endurance trained athletes: A comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers. Calcif. Tissue Int. 1997, 61, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Yung, P.S.; Lai, Y.M.; Tung, P.Y.; Tsui, H.T.; Wong, C.K.; Hung, V.W.; Qin, L. Effects of weight bearing and non-weight bearing exercises on bone properties using calcaneal quantitative ultrasound. Br. J. Sport. Med. 2005, 39, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Dib, L.; Arabi, A.; Maalouf, J.; Nabulsi, M.; El-Hajj Fuleihan, G. Impact of anthropometric, lifestyle, and body composition variables on ultrasound measurements in school children. Bone 2005, 36, 736–742. [Google Scholar] [CrossRef]
- Glinkowski, W. Young female physical activity influence on peak ultrasonometric values of calcaneus Med. Sport. 2000, 4, 99–104. [Google Scholar]
- Bolanowski, M.; Pluskiewicz, W.; Syrycka, J.; Chwałczyńska, A. Quantitative Ultrasound at the Hand Phalanges in Adolescent Girls is Related to Their Overall Physical Fitness. Adv. Clin. Exp. Med. 2016, 25, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bruton, A.; Montero-Marín, J.; González-Agüero, A.; Gómez-Cabello, A.; García-Campayo, J.; Moreno, L.A.; Casajús, J.A.; Vicente-Rodríguez, G. Swimming and peak bone mineral density: A systematic review and meta-analysis. J. Sport. Sci. 2018, 36, 365–377. [Google Scholar] [CrossRef]
- Mentzel, H.J.; Wünsche, K.; Malich, A.; Böttcher, J.; Vogt, S.; Kaiser, W.A. Einfluss sportlicher Aktivität von Kindern und Jugendlichen auf den Kalkaneus—Eine Untersuchung mit quantitativem Ultraschall. Roefo 2005, 177, 524–529. [Google Scholar] [CrossRef]
- Czajkowska, A.; Wit, B.; Glinkowski, W. Effect of training on the ultrasound parameters of bones and on selected body components of young females. Wych. Fiz. Sport 1999, 43, 304–305. [Google Scholar]
- Glinkowski, W.; Czajkowska, A. Wpływ aktywności fizycznej młodych kobiet na szczytowe wartości ultrasonometryczne kości piętowych. Med. Sport. 2000, 4, S99–S104. [Google Scholar]
- Glinkowski, W.; Czajkowska, A.; Wit, B.; Andrzejewska, B. Wpływ gimnastyki rekreacyjnej kobiet po menopauzie na jakość tkanki kostnej i wybrane komponenty ciała. Med. Sport. 1999, 3, 73–78. [Google Scholar]
- Karlsson, M.K.; Magnusson, H.; Karlsson, C.; Seeman, E. The duration of exercise as a regulator of bone mass. Bone 2001, 28, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Suominen, H.; Ollikainen, S.; Goll, J.; Sipila, S.; Taaffe, D.; Fuerst, T.; Njeh, C.F.; Genant, H.K. Comparison of ultrasound and bone mineral density assessment of the calcaneus with different regions of interest in healthy early menopausal women. J. Clin. Densitom. 1999, 2, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Sherrington, C.; Gates, S.; Clemson, L.M.; Lamb, S.E. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2012, 9, CD007146. [Google Scholar] [CrossRef]
- Glinkowski, W. Quantitative ultrasound (QUS) of bone in sport. Pol. J. Sport. Med. 2022, 38, 215–226. [Google Scholar] [CrossRef]
- Chan, K.; Qin, L.; Lau, M.; Woo, J.; Au, S.; Choy, W.; Lee, K.; Lee, S. A randomized, prospective study of the effects of Tai Chi Chun exercise on bone mineral density in postmenopausal women. Arch. Phys. Med. Rehabil. 2004, 85, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Choy, W.; Leung, K.; Leung, P.C.; Au, S.; Hung, W.; Dambacher, M.; Chan, K. Beneficial effects of regular Tai Chi exercise on musculoskeletal system. J. Bone Miner. Metab. 2005, 23, 186–190. [Google Scholar] [CrossRef]
- Wayne, P.M.; Kiel, D.P.; Krebs, D.E.; Davis, R.B.; Savetsky-German, J.; Connelly, M.; Buring, J.E. The effects of Tai Chi on bone mineral density in postmenopausal women: A systematic review. Arch. Phys. Med. Rehabil. 2007, 88, 673–680. [Google Scholar] [CrossRef]
- Woo, J.; Hong, A.; Lau, E.; Lynn, H. A randomised controlled trial of Tai Chi and resistance exercise on bone health, muscle strength and balance in community-living elderly people. Age Ageing 2007, 36, 262–268. [Google Scholar] [CrossRef]
- Alperson, S.Y.; Berger, V.W. Opposing systematic reviews: The effects of two quality rating instruments on evidence regarding t’ai chi and bone mineral density in postmenopausal women. J. Altern. Complement. Med. 2011, 17, 389–395. [Google Scholar] [CrossRef]
- Lee, M.S.; Ernst, E. Systematic reviews of t’ai chi: An overview. Br. J. Sport. Med. 2012, 46, 713–718. [Google Scholar] [CrossRef]
- Lip, R.W.; Fong, S.S.; Ng, S.S.; Liu, K.P.; Guo, X. Effects of Ving Tsun Chinese martial art training on musculoskeletal health, balance performance, and self-efficacy in community-dwelling older adults. J. Phys. Sci. 2015, 27, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, W.Q.; Huang, X.Y.; Zhang, J.; Liu, X.C.; Huang, M.M. Effect of Tai Chi for the prevention or treatment of osteoporosis in elderly adults: Protocol for a systematic review and meta-analysis. BMJ Open 2018, 8, e020123. [Google Scholar] [CrossRef] [PubMed]
- Howe, T.E.; Rochester, L.; Neil, F.; Skelton, D.A.; Ballinger, C. Exercise for improving balance in older people. Cochrane Database Syst. Rev. 2011, 11, CD004963. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, N.M.; Schmitt, J.; Doren, M. The role of physical activity in the prevention of osteoporosis in postmenopausal women-An update. Maturitas 2009, 63, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, L.D.; Gillespie, W.J.; Robertson, M.C.; Lamb, S.E.; Cumming, R.G.; Rowe, B.H. Interventions for preventing falls in elderly people. Cochrane Database Syst. Rev. 2003, 4, CD000340. [Google Scholar] [CrossRef]
- Hendriks, M.R.; Evers, S.M.; Bleijlevens, M.H.; van Haastregt, J.C.; Crebolder, H.F.; van Eijk, J.T. Cost-effectiveness of a multidisciplinary fall prevention program in community-dwelling elderly people: A randomized controlled trial (ISRCTN 64716113). Int. J. Technol. Assess. Health Care 2008, 24, 193–202. [Google Scholar] [CrossRef]
- Franco, M.R.; Pereira, L.S.; Ferreira, P.H. Exercise interventions for preventing falls in older people living in the community. Br. J. Sport. Med. 2013, 48, 867–868. [Google Scholar] [CrossRef]
- Tsang, T.W.; Kohn, M.; Chow, C.M.; Singh, M.F. Health benefits of Kung Fu: A systematic review. J. Sport. Sci. 2008, 26, 1249–1267. [Google Scholar] [CrossRef]
- Bagrichevsky, M.; Martins-Filho, J.; Guerra-Junior, G. Bone density gain at proximal phalanges in healthy males aged 18–25 years after 16 weeks of upper-arm muscle weight training. J. Sport. Med. Phys. Fit. 2007, 47, 437–442. [Google Scholar]
- Adamczyk, P.; Pluskiewicz, W. Karate Training Improves Skeletal Status Assessed by Quantitative Ultrasound in Girls and Premenopausal Women. J. Clin. Densitom. 2020, 23, 314–321. [Google Scholar] [CrossRef]
- Barbeta, C.J.O.; Gonçalves, E.M.; Ribeiro, K.D.S.; Ribeiro, R.; Roman, E.P.; Guerra-Júnior, G. Bone Mass by Quantitative Ultrasound of Finger Phalanges in Young Karate Practitioners. Rev. Paul. Pediatr. 2017, 35, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Fong, S.S.M.; Guo, X.; Cheung, A.P.M.; Jo, A.T.L.; Lui, G.K.W.; Mo, D.K.C.; Ng, S.S.M.; Tsang, W.W.N. Elder Chinese Martial Art Practitioners Have Higher Radial Bone Strength, Hand-Grip Strength, and Better Standing Balance Control. ISRN Rehabil. 2013, 2013, 185090. [Google Scholar] [CrossRef] [Green Version]
- Fong, S.S.M.; Ng, S.S.M.; Liu, K.P.Y.; Pang, M.Y.C.; Lee, H.W.; Chung, J.W.Y.; Lam, P.L.; Guo, X. Musculoskeletal Strength, Balance Performance, and Self-Efficacy in Elderly Ving Tsun Chinese Martial Art Practitioners: Implications for Fall Prevention. Evid. Based Complement. Altern. Med. 2014, 2014, 402314. [Google Scholar] [CrossRef] [PubMed]
- Than, C.A.; Seidl, L.A.; Beck, B.R. Comparative Acceptability of Weightbearing Physical Activity in Sporting Footwear Versus Barefoot in Habitually Shod Individuals. J. Am. Podiatr. Med. Assoc. 2022, 112, 20–148. [Google Scholar] [CrossRef]
Variable | Mean | Minimum | Maximum | Std. Dev. |
---|---|---|---|---|
Age | 36.4 | 20 | 68 | 10.72 |
Years of practice | 15.9 | 1.0 | 53.0 | 11.65 |
SI | 115.4 | 87.3 | 154.2 | 17.53 |
SOS | 1608.4 | 1540.5 | 1725.8 | 44.76 |
BUA | 127.9 | 98.2 | 154.9 | 11.44 |
YoungAdult% | 115.4 | 87.3 | 154.2 | 17.5 |
T-Score | 0.9 | −0.79 | 3.4 | 1.09 |
Z-Score | 1.1 | −0.75 | 3.7 | 1.15 |
Age-Matched% | 119.6 | 87.8 | 173.2 | 20.14 |
Variable\Belt | Black (Mean) | Black (STD) | Color (Mean) | Color (STD) | All (Mean) | All (STD) |
---|---|---|---|---|---|---|
Years of practice (years) | 22.8 | 10.9 | 7.8 | 5.8 | 16.0 | 11.7 |
SI | 121.7 | 18.8 | 107.9 | 12.7 | 115.4 | 17.5 |
SOS (m/s) | 1620.6 | 49.2 | 1593.8 | 34.5 | 1608.4 | 44.8 |
BUA (dB/MHz) | 132.3 | 9.8 | 122.8 | 11.3 | 128.0 | 11.4 |
YoungAdult% | 121.7 | 18.8 | 107.9 | 12.7 | 115.4 | 17.5 |
T-Score (SD) | 1.4 | 1.2 | 0.5 | 0.8 | 1.0 | 1.1 |
Z-Score (SD) | 1.6 | 1.2 | 0.6 | 0.8 | 1.2 | 1.2 |
Age-Matched% | 127.9 | 21.5 | 109.8 | 13.1 | 119.6 | 20.1 |
Variable/Sex (M/F) | M (Mean) | M (STD) | F (Mean) | F (STD) |
---|---|---|---|---|
Age | 37.72973 | 10.79261 | 29.28571 | 7.47695 |
Years of practice | 16.62162 | 12.32962 | 12.57143 | 6.67975 |
SI | 116.2836 | 18.67943 | 110.8992 | 9.00148 |
SOS | 1610.009 | 47.78311 | 1600.017 | 23.75996 |
BUA | 128.5883 | 11.6732 | 124.6752 | 10.30149 |
YoungAdult% | 116.2836 | 18.67943 | 110.8992 | 9.00148 |
T-Score | 1.017726 | 1.167464 | 0.681201 | 0.562592 |
Z-Score | 1.239812 | 1.226614 | 0.723421 | 0.556512 |
Age-Matched% | 121.1548 | 21.36752 | 111.647 | 8.94256 |
Group/Variable | SOS [m/s] | SD [m/s] | BUA [dB/MHz] | SD [dB/MHz] |
---|---|---|---|---|
Kobudo practitioners | 1608.4 | +/−49.2 | 127.9 | +/−9.8 |
Females | 1610.0 | +/−44.76 | 124.6 | +/−10.3 |
Males | 1608.4 | +/−25.7 | 127.9 | +/−11.4 |
Black belts | 1620.6 | +/−34.5 | 132.2 | +/−11.3 |
Color belts | 1593.7 | +/−44.7 | 122.8 | +/−11.4 |
unfractured men * | 1517.5 | +/−35.3 | 114.0 | +/−13.3 |
fractured men * | 1492.6 | +/−24.6 | 106.1 | +/−11.6 |
healthy men * | 1517.5 | +/−35.3 | 114.0 | +/−13.3 |
healthy women * | 1511.1 | +/−25.6 | 108.7 | +/−9.5 |
osteoporotic men * | 1492.6 | +/−24.6 | 106.1 | +/−11.6 |
osteoporotic women * | 1490.4 | +/−19.5 | 103.2 | +/−8.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glinkowski, W.M.; Żukowska, A.; Glinkowska, B. Quantitative Ultrasound Examination (QUS) of the Calcaneus in Long-Term Martial Arts Training on the Example of Long-Time Practitioners of Okinawa Kobudo/Karate Shorin-Ryu. Int. J. Environ. Res. Public Health 2023, 20, 2708. https://doi.org/10.3390/ijerph20032708
Glinkowski WM, Żukowska A, Glinkowska B. Quantitative Ultrasound Examination (QUS) of the Calcaneus in Long-Term Martial Arts Training on the Example of Long-Time Practitioners of Okinawa Kobudo/Karate Shorin-Ryu. International Journal of Environmental Research and Public Health. 2023; 20(3):2708. https://doi.org/10.3390/ijerph20032708
Chicago/Turabian StyleGlinkowski, Wojciech M., Agnieszka Żukowska, and Bożena Glinkowska. 2023. "Quantitative Ultrasound Examination (QUS) of the Calcaneus in Long-Term Martial Arts Training on the Example of Long-Time Practitioners of Okinawa Kobudo/Karate Shorin-Ryu" International Journal of Environmental Research and Public Health 20, no. 3: 2708. https://doi.org/10.3390/ijerph20032708
APA StyleGlinkowski, W. M., Żukowska, A., & Glinkowska, B. (2023). Quantitative Ultrasound Examination (QUS) of the Calcaneus in Long-Term Martial Arts Training on the Example of Long-Time Practitioners of Okinawa Kobudo/Karate Shorin-Ryu. International Journal of Environmental Research and Public Health, 20(3), 2708. https://doi.org/10.3390/ijerph20032708