Is Glucose-6-Phosphate Dehydrogenase Deficiency a Risk Factor for Autoimmune Thyroid Disease? A Retrospective Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Thyroid Disorders
2.4. Glucose-6-Phosphate Dehydrogenase Deficiency
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mancini, A.; Di Segni, C.; Raimondo, S.; Olivieri, G.; Silvestrini, A.; Meucci, E.; Curro, D. Thyroid Hormones, Oxidative Stress, and Inflammation. Mediat. Inflamm. 2016, 2016, 6757154. [Google Scholar] [CrossRef] [PubMed]
- Gavaret, J.M.; Cahnmann, H.J.; Nunez, J. Thyroid hormone synthesis in thyroglobulin. The mechanism of the coupling reaction. J. Biol. Chem. 1981, 256, 9167–9173. [Google Scholar] [CrossRef] [PubMed]
- Virion, A.; Pommier, J.; Deme, D.; Nunez, J. Kinetics of thyroglobulin iodination and thyroid hormone synthesis catalyzed by peroxidases: The role of H2O2. Eur. J. Biochem. 1981, 117, 103–109. [Google Scholar] [CrossRef]
- Bjorkman, U.; Ekholm, R. Generation of H2O2 in isolated porcine thyroid follicles. Endocrinology 1984, 115, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.P.; Dupuy, C. Thyroid hormone biosynthesis and release. Mol. Cell. Endocrinol. 2017, 458, 6–15. [Google Scholar] [CrossRef]
- Deme, D.; Virion, A.; Hammou, N.A.; Pommier, J. NADPH-dependent generation of H2O2 in a thyroid particulate fraction requires Ca2+. FEBS Lett. 1985, 186, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, R.M.; Vicchio, T.M.; Cristani, M.; Certo, R.; Caccamo, D.; Alibrandi, A.; Giovinazzo, S.; Saija, A.; Campenni, A.; Trimarchi, F.; et al. Oxidative Stress and Advanced Glycation End Products in Hashimoto’s Thyroiditis. Thyroid 2016, 26, 504–511. [Google Scholar] [CrossRef]
- Karbownik-Lewinska, M.; Kokoszko-Bilska, A. Oxidative damage to macromolecules in the thyroid—Experimental evidence. Thyroid Res. 2012, 5, 25. [Google Scholar] [CrossRef]
- Ramli, N.S.F.; Mat Junit, S.; Leong, N.K.; Razali, N.; Jayapalan, J.J.; Abdul Aziz, A. Analyses of antioxidant status and nucleotide alterations in genes encoding antioxidant enzymes in patients with benign and malignant thyroid disorders. PeerJ 2017, 5, e3365. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Feng, J.F.; Zeng, P.; Yang, Y.H.; Luo, J.; Yang, Y.W. Total oxidant/antioxidant status in sera of patients with thyroid cancers. Endocr. Relat. Cancer 2011, 18, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, S.A. Effect of glutathione (GSH) depletion on the serum levels of triiodothyronine (T3), thyroxine (T4), and T3/T4 ratio in allyl alcohol-treated male rats and possible protection with zinc. Int. J. Toxicol. 2001, 20, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.R.; Nicol, F.; Beckett, G.J. Selenium deficiency, thyroid hormone metabolism, and thyroid hormone deiodinases. Am. J. Clin. Nutr. 1993, 57, 236S–239S. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E. G6PD deficiency. Blood 1994, 84, 3613–3636. [Google Scholar] [CrossRef] [PubMed]
- Luzzatto, L.; Ally, M.; Notaro, R. Glucose-6-phosphate dehydrogenase deficiency. Blood 2020, 136, 1225–1240. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.S.; Gouroju, S.; Suchitra, M.M.; Suresh, V.; Sachan, A.; Srinivasa Rao, P.V.; Bitla, A.R. Antioxidant defense in overt and subclinical hypothyroidism. Horm. Metab. Res. 2013, 45, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.A. Erythrocyte Metabolism and Enzyme Defects. Lab. Med. 1996, 27, 329–333. [Google Scholar] [CrossRef]
- Siniscalco, M.; Bernini, L.; Filippi, G.; Latte, B.; Meera Khan, P.; Piomelli, S.; Rattazzi, M. Population genetics of haemoglobin variants, thalassaemia and glucose-6-phosphate dehydrogenase deficiency, with particular reference to the malaria hypothesis. Bull. World Health Organ. 1966, 34, 379–393. [Google Scholar] [PubMed]
- Yang, C.A.; Huang, H.Y.; Lin, C.L.; Chang, J.G. G6PD as a predictive marker for glioma risk, prognosis and chemosensitivity. J. Neurooncol. 2018, 139, 661–670. [Google Scholar] [CrossRef]
- Shah, M.; Gopalareddy, V. Liver Failure in Neonates With G6PD Deficiency. ACG Case Rep J 2022, 9, e00845. [Google Scholar] [CrossRef]
- Dore, M.P.; Parodi, G.; Portoghese, M.; Pes, G.M. The Controversial Role of Glucose-6-Phosphate Dehydrogenase Deficiency on Cardiovascular Disease: A Narrative Review. Oxid. Med. Cell. Longev. 2021, 2021, 5529256. [Google Scholar] [CrossRef]
- Sardu, C.; Cocco, E.; Mereu, A.; Massa, R.; Cuccu, A.; Marrosu, M.G.; Contu, P. Population based study of 12 autoimmune diseases in Sardinia, Italy: Prevalence and comorbidity. PLoS ONE 2012, 7, e32487. [Google Scholar] [CrossRef]
- Delitala, A.P.; Pes, G.M.; Errigo, A.; Maioli, M.; Delitala, G.; Dore, M.P. Helicobacter pylori CagA antibodies and thyroid function in latent autoimmune diabetes in adults. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4041–4047. [Google Scholar] [PubMed]
- Dore, M.P.; Fanciulli, G.; Manca, A.; Cocco, V.; Nieddu, A.; Murgia, M.; Pes, G.M. Clinically relevant thyroid disorders and inflammatory bowel disease are inversely related: A retrospective case-control study. Scand. J. Gastroenterol. 2021, 56, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Dore, M.P.; Fanciulli, G.; Rouatbi, M.; Mereu, S.; Pes, G.M. Autoimmune Thyroid Disorders Are More Prevalent in Patients with Celiac Disease: A Retrospective Case-Control Study. J. Clin. Med. 2022, 11, 6027. [Google Scholar] [CrossRef]
- Pes, G.M.; Tolu, F.; Dore, M.P. Anti-Thyroid Peroxidase Antibodies and Male Gender Are Associated with Diabetes Occurrence in Patients with Beta-Thalassemia Major. J. Diabetes Res. 2016, 2016, 1401829. [Google Scholar] [CrossRef]
- Mosca, A.; Paleari, R.; Rosti, E.; Luzzana, M.; Barella, S.; Sollaino, C.; Galanello, R. Simultaneous automated determination of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities in whole blood. Eur. J. Clin. Chem. Clin. Biochem. 1996, 34, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Dore, M.P.; Marras, G.; Rocchi, C.; Soro, S.; Pes, G.M. G6PD Deficiency Does Not Enhance Susceptibility for Acquiring Helicobacter pylori Infection in Sardinian Patients. PLoS ONE 2016, 11, e0160032. [Google Scholar] [CrossRef]
- Ruf, J.; Carayon, P. Structural and functional aspects of thyroid peroxidase. Arch. Biochem. Biophys. 2006, 445, 269–277. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef]
- Sanna, F.; Bonatesta, R.R.; Frongia, B.; Uda, S.; Banni, S.; Melis, M.P.; Collu, M.; Madeddu, C.; Serpe, R.; Puddu, S.; et al. Production of inflammatory molecules in peripheral blood mononuclear cells from severely glucose-6-phosphate dehydrogenase-deficient subjects. J. Vasc. Res. 2007, 44, 253–263. [Google Scholar] [CrossRef]
- Parsanathan, R.; Jain, S.K. Glucose-6-Phosphate Dehydrogenase Deficiency Activates Endothelial Cell and Leukocyte Adhesion Mediated via the TGFbeta/NADPH Oxidases/ROS Signaling Pathway. Int. J. Mol. Sci. 2020, 21, 7474. [Google Scholar] [CrossRef] [PubMed]
- Kardalas, E.; Sakkas, E.; Ruchala, M.; Macut, D.; Mastorakos, G. The role of transforming growth factor beta in thyroid autoimmunity: Current knowledge and future perspectives. Rev. Endocr. Metab. Disord. 2022, 23, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Rayman, M.P.; Lv, H.; Schomburg, L.; Cui, B.; Gao, C.; Chen, P.; Zhuang, G.; Zhang, Z.; Peng, X.; et al. Low Population Selenium Status Is Associated With Increased Prevalence of Thyroid Disease. J. Clin. Endocrinol. Metab. 2015, 100, 4037–4047. [Google Scholar] [CrossRef] [PubMed]
- Spadoni, M.; Voltaggio, M.; Carcea, M.; Coni, E.; Raggi, A.; Cubadda, F. Bioaccessible selenium in Italian agricultural soils: Comparison of the biogeochemical approach with a regression model based on geochemical and pedoclimatic variables. Sci. Total Environ. 2007, 376, 160–177. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.; Chen, P.; Wei, J.; Lv, H.; Wang, S.; Wu, Y.; Zhao, X.; Peng, X.; Rijntjes, E.; et al. Increased Incidence of Hashimoto Thyroiditis in Selenium Deficiency: A Prospective 6-Year Cohort Study. J. Clin. Endocrinol. Metab. 2022, 107, e3603–e3611. [Google Scholar] [CrossRef]
- Khanfar, A.; Al Qaroot, B. Could glutathione depletion be the Trojan horse of COVID-19 mortality? Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 12500–12509. [Google Scholar] [CrossRef]
- Athersuch, T.J.; Antoine, D.J.; Boobis, A.R.; Coen, M.; Daly, A.K.; Possamai, L.; Nicholson, J.K.; Wilson, I.D. Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions: A perspective. Toxicol. Res. 2018, 7, 347–357. [Google Scholar] [CrossRef]
- Finamor, I.; Perez, S.; Bressan, C.A.; Brenner, C.E.; Rius-Perez, S.; Brittes, P.C.; Cheiran, G.; Rocha, M.I.; da Veiga, M.; Sastre, J.; et al. Chronic aspartame intake causes changes in the trans-sulphuration pathway, glutathione depletion and liver damage in mice. Redox Biol. 2017, 11, 701–707. [Google Scholar] [CrossRef]
- Lee, D.H.; Jacobs, D.R., Jr. Hormesis and public health: Can glutathione depletion and mitochondrial dysfunction due to very low-dose chronic exposure to persistent organic pollutants be mitigated? J. Epidemiol. Community Health 2015, 69, 294–300. [Google Scholar] [CrossRef]
- Kato, T.; Tada-Oikawa, S.; Takahashi, K.; Saito, K.; Wang, L.; Nishio, A.; Hakamada-Taguchi, R.; Kawanishi, S.; Kuribayashi, K. Endocrine disruptors that deplete glutathione levels in APC promote Th2 polarization in mice leading to the exacerbation of airway inflammation. Eur. J. Immunol. 2006, 36, 1199–1209. [Google Scholar] [CrossRef]
- Sekhar, R.V.; McKay, S.V.; Patel, S.G.; Guthikonda, A.P.; Reddy, V.T.; Balasubramanyam, A.; Jahoor, F. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 2011, 34, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.A.; Parker, S.J.; Fiske, B.P.; McCloskey, D.; Gui, D.Y.; Green, C.R.; Vokes, N.I.; Feist, A.M.; Vander Heiden, M.G.; Metallo, C.M. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 2014, 55, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Pes, G.M.; Errigo, A.; Bitti, A.; Dore, M.P. Effect of age, period and birth-cohort on the frequency of glucose-6-phosphate dehydrogenase deficiency in Sardinian adults. Ann. Med. 2018, 50, 68–73. [Google Scholar] [CrossRef] [PubMed]
Variables | Patients with TDs § (n = 1218) | Patients without TDs (n = 7676) | p-Value |
---|---|---|---|
Sex, n (%) | |||
Male Female | 131 (10.8) 1087 (89.2) | 3035 (39.5) 4641 (60.5) | <0.0001 |
Mean age, years | 55.1 ± 14.9 | 52.6 ± 17.4 | 0.001 |
Smoking habits, n (%) | |||
No | 685 (56.2) | 4223 (55.0) | 0.438 |
Current or former smoker | 533 (43.8) | 3453 (45.0) | |
Body mass index, kg/m2 | |||
<25 | 678 (55.7) | 4568 (59.5) | |
25–29.5 | 392 (32.2) | 2266 (29.5) | 0.040 |
≥30 | 148 (12.2) | 842 (11.0) | |
G6PD deficiency, n (%) | |||
None | 1014 (83.3) | 6818 (88.8) | |
Yes | 204 (16.7) | 858 (11.2) | <0.0001 |
Variables | Males | Females | ||
---|---|---|---|---|
AITD (n = 72) | Controls (n = 3035) | AITD (n = 695) | Controls (n = 4641) | |
G6PD deficiency, n (%) | ||||
None | 60 (83.3) | 2780 (91.6) | 577 (83.0) | 4057 (87.4) |
Yes | 12 (16.7) * | 255 (8.4) | 118 (17.0) * | 584 (12.6) |
Variables | AITD (n = 767) | Controls (n = 7676) | Unadjusted OR (95% CI #) | Adjusted OR (95% CI #) |
---|---|---|---|---|
Sex, n (%) Male Female | ||||
72 (9.4) | 3035 (39.5) | 1.00 | 1.00 | |
695 (90.6) | 4641 (60.5) | 6.29 (4.91–8.06) ** | 6.34 (4.95–8.13) ** | |
Age, n (%) | ||||
<60 years ≥60 years | 484 (63.1) | 4719 (61.4) | 1.00 | 1.00 |
283 (36.9) | 2957 (38.5) | 0.92 (0.79–1.07) | 0.97 (0.83–1.14) | |
Smoking habits, n (%) No Current/former smoker | ||||
429 (55.9) | 4223 (55.0) | 1.00 | 1.00 | |
338 (44.1) | 3453 (45.0) | 0.98 (0.84–1.13) | 1.06 (0.91–1.23) | |
Body mass index, kg/m2 | ||||
<25 | 441 (57.5) | 4568 (59.5) | 1.00 | 1.00 |
25–29.5 | 237 (30.9) | 2266 (29.5) | 1.09 (0.93–1.29) | 1.26 (1.06–1.49) * |
≥30 | 89 (11.6) | 842 (11.0) | 1.10 (0.86–1.39) | 1.17 (0.91–1.50) |
G6PD deficiency, n (%) | ||||
None | 637 (83.1) | 6818 (88.8) | 1.00 | 1.00 |
Yeas | 130 (16.9) | 858 (11.2) | 1.62 (1.32–1.98) ** | 1.43 (1.17–1.76) * |
Variables | Males | Females | ||
---|---|---|---|---|
Unadjusted OR (95% CI #) | Adjusted OR (95% CI #) | Unadjusted OR (95% CI #) | Adjusted OR (95% CI #) | |
Age, n (%) | ||||
<60 years ≥60 years | 1.00 | 1.00 | 1.00 | 1.00 |
1.16 (0.73–1.86) | 1.15 (0.72–1.85) | 0.98 (0.84–1.16) | 0.96 (0.82–1.14) | |
Smoking habits, n (%) No Current/former smoker | ||||
1.00 | 1.00 | 1.00 | 1.00 | |
0.88 (0.55–1.40) | 0.91 (0.56–1.47) | 1.11 (0.94–1.30) | 1.07 (0.91–1.26) | |
Body mass index, kg/m2 | ||||
<25 | 1.00 | 1.00 | 1.00 | 1.00 |
25–29.5 | 0.93 (0.56–1.54) | 0.94 (0.56–1.57) | 1.30 (1.05–1.55) * | 1.29 (1.08–1.55) * |
≥30 | 0.67 (0.28–1.58) | 0.67 (0.28–1.62) | 1.23 (0.96–1.61) | 1.23 (0.95–1.59) |
G6PD deficiency, n (%) | ||||
None | 1.00 | 1.00 | 1.00 | 1.00 |
Yes | 2.20 (1.17–4.15) * | 2.18 (1.16–4.12) * | 1.35 (1.09–1.68) ** | 1.35 (1.09–1.68) ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dore, M.P.; Fanciulli, G.; Pes, G.M. Is Glucose-6-Phosphate Dehydrogenase Deficiency a Risk Factor for Autoimmune Thyroid Disease? A Retrospective Case–Control Study. Int. J. Environ. Res. Public Health 2023, 20, 2709. https://doi.org/10.3390/ijerph20032709
Dore MP, Fanciulli G, Pes GM. Is Glucose-6-Phosphate Dehydrogenase Deficiency a Risk Factor for Autoimmune Thyroid Disease? A Retrospective Case–Control Study. International Journal of Environmental Research and Public Health. 2023; 20(3):2709. https://doi.org/10.3390/ijerph20032709
Chicago/Turabian StyleDore, Maria Pina, Giuseppe Fanciulli, and Giovanni Mario Pes. 2023. "Is Glucose-6-Phosphate Dehydrogenase Deficiency a Risk Factor for Autoimmune Thyroid Disease? A Retrospective Case–Control Study" International Journal of Environmental Research and Public Health 20, no. 3: 2709. https://doi.org/10.3390/ijerph20032709
APA StyleDore, M. P., Fanciulli, G., & Pes, G. M. (2023). Is Glucose-6-Phosphate Dehydrogenase Deficiency a Risk Factor for Autoimmune Thyroid Disease? A Retrospective Case–Control Study. International Journal of Environmental Research and Public Health, 20(3), 2709. https://doi.org/10.3390/ijerph20032709