Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Quantifying Ecosystem Services
2.3.1. Water Supply Service
2.3.2. Carbon Sequestration Service
2.3.3. Cooling Service
2.3.4. Biodiversity
2.3.5. Cultural Service
2.4. Magnitude of Annual Heatwave Events
- (1)
- Daily threshold: In this study, the threshold is the 90th percentile of the daily maximum temperature from 2000 to 2015.
- (2)
- Heatwave selection: The periods with an excessive threshold for three days or more are selected as heat waves.
- (3)
- Heat wave to subheat waves: Each heat wave can be decomposed to n subheat waves. A subheat wave is three consecutive heat wave days. For example, if the length of a detected heat wave is 11 days, then the study obtained 3 subheat waves for a total of 9 days; the last 2 days of the heat wave are grouped with the value below the threshold. Thus, the last subheat wave of the heat wave includes 3 days as well.
- (4)
- Subheat wave magnitude: The maximum temperatures for three consecutive days are added together to obtain the unscaled magnitude. The subheat wave unscaled magnitude is normalized from 0 to 1 by the min–max normalization method.
- (5)
- Heatwave magnitude: The heatwave magnitude is defined as the sum of n subheat wave magnitudes.
- (6)
- Heat Wave Magnitude Index: The HWMI is defined as the sum of all heatwave magnitudes in this year.
2.5. Mortality Risk Caused by Heat
2.6. Statistical Analysis
3. Results
3.1. Spatial-Temporal Patterns of Ecosystem Services
3.2. Spatial-Temporal Patterns of HWMI
3.3. Mortality Risks Associated with Extreme Heat
3.4. Relationships between ESs, Heat Waves and Heat-Related Mortality Risks
3.4.1. Correlation Analysis
3.4.2. Mediating Effect Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Zhang, Y.; Ban, J.; Zhu, H.; Xu, H.; Li, T. The Relationship between Population Heat Vulnerability and Urbanization Levels: A County-Level Modeling Study across China. Environ. Int. 2021, 156, 106742. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, W.; Liu, J.; He, P.; Wang, J.; Huang, L.; Zhang, B. Analysis and Intervention of Heatwave Related Economic Loss: Comprehensive Insights from Supply, Demand, and Public Expenditure into the Relationship between the Influencing Factors. J. Environ. Manag. 2023, 326, 116654. [Google Scholar] [CrossRef]
- McGregor, G.R.; Bessmoulin, P.; Ebi, K.; Menne, B. Heatwaves and Health: Guidance on Warning-System Development; Durham University Library: Durham, UK, 2015; ISBN 9263111421. [Google Scholar]
- Luber, G.; McGeehin, M. Climate Change and Extreme Heat Events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing Trends in Regional Heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Yin, P.; Chen, R.; Wang, L.; Liu, C.; Niu, Y.; Wang, W.; Jiang, Y.; Liu, Y.; Liu, J.; Qi, J.; et al. The Added Effects of Heatwaves on Cause-Specific Mortality: A Nationwide Analysis in 272 Chinese Cities. Environ. Int. 2018, 121, 898–905. [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.; Sun, J.; Wang, B.; Zhou, M.; Li, M.; Tong, S.; Meng, B.; Guo, Y.; Liu, Q. Heatwave and Mortality in 31 Major Chinese Cities: Definition, Vulnerability and Implications. Sci. Total Environ. 2019, 649, 695–702. [Google Scholar] [CrossRef]
- Saucy, A.; Ragettli, M.S.; Vienneau, D.; de Hoogh, K.; Tangermann, L.; Schäffer, B.; Wunderli, J.M.; Probst-Hensch, N.; Röösli, M. The Role of Extreme Temperature in Cause-Specific Acute Cardiovascular Mortality in Switzerland: A Case-Crossover Study. Sci. Total Environ. 2021, 790, 147958. [Google Scholar] [CrossRef]
- Chen, K.; Horton, R.M.; Bader, D.A.; Lesk, C.; Jiang, L.; Jones, B.; Zhou, L.; Chen, X.; Bi, J.; Kinney, P.L. Impact of Climate Change on Heat-Related Mortality in Jiangsu Province, China. Environ. Pollut. 2017, 224, 317–325. [Google Scholar] [CrossRef]
- Kollanus, V.; Tiittanen, P.; Lanki, T. Mortality Risk Related to Heatwaves in Finland–Factors Affecting Vulnerability. Environ. Res. 2021, 201, 111503. [Google Scholar] [CrossRef]
- Henrique, I.; Vilella, S.; Nascimento, M.; Rodrigues, T.; Leite, W.; Cirino, G.; Ignotti, E. International Journal of Hygiene and Environmental Health Heat Waves and Mortality in the Brazilian Amazon: Effect Modification by Heat Wave Characteristics, Population Subgroup, and Cause of Death. Int. J. Hyg. Environ. Health 2023, 248, 114109. [Google Scholar] [CrossRef]
- Dimitrova, A.; Ingole, V.; Basagaña, X.; Ranzani, O.; Milà, C.; Ballester, J.; Tonne, C. Association between Ambient Temperature and Heat Waves with Mortality in South Asia: Systematic Review and Meta-Analysis. Environ. Int. 2021, 146, 106170. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef] [PubMed]
- van Steen, Y.; Ntarladima, A.-M.; Grobbee, R.; Karssenberg, D.; Vaartjes, I. Sex Differences in Mortality after Heat Waves: Are Elderly Women at Higher Risk? Int. Arch. Occup. Environ. Health 2019, 92, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Ding, G.; Gu, S.; Bi, P.; Su, B.; Qin, D.; Xu, G.; Liu, Q. The Effects of Summer Temperature and Heat Waves on Heat-Related Illness in a Coastal City of China, 2011-2013. Environ. Res. 2014, 132, 212–219. [Google Scholar] [CrossRef]
- Rocklöv, J.; Forsberg, B.; Ebi, K.; Bellander, T. Susceptibility to Mortality Related to Temperature and Heat and Cold Wave Duration in the Population of Stockholm County, Sweden. Glob. Health Action 2014, 7, 22737. [Google Scholar] [CrossRef] [PubMed]
- Díaz, J.; López, I.A.; Carmona, R.; Mirón, I.J.; Luna, M.Y.; Linares, C. Short-Term Effect of Heat Waves on Hospital Admissions in Madrid: Analysis by Gender and Comparision with Previous Findings. Environ. Pollut. 2018, 243, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.K.; Lal, P.; Kumar, P.; Kumar, A.; Dvornikov, A.Y. Present and Future Projections of Heatwave Hazard-Risk over India: A Regional Earth System Model Assessment. Environ. Res. 2021, 201, 111573. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing Frequency, Intensity and Duration of Observed Global Heatwaves and Warm Spells. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef]
- Sebastiani, A.; Marando, F.; Manes, F. Mismatch of Regulating Ecosystem Services for Sustainable Urban Planning: PM10 Removal and Urban Heat Island Effect Mitigation in the Municipality of Rome (Italy). Urban For. Urban Green. 2021, 57, 126938. [Google Scholar] [CrossRef]
- Ainscough, J.; de Vries Lentsch, A.; Metzger, M.; Rounsevell, M.; Schröter, M.; Delbaere, B.; de Groot, R.; Staes, J. Navigating Pluralism: Understanding Perceptions of the Ecosystem Services Concept. Ecosyst. Serv. 2019, 36, 100892. [Google Scholar] [CrossRef] [Green Version]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Matsueda, M. Predictability of Euro-Russian Blocking in Summer of 2010. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Pfahl, S.; Wernli, H. Quantifying the Relevance of Atmospheric Blocking for Co-Located Temperature Extremes in the Northern Hemisphere on (Sub-)Daily Time Scales. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Aram, F.; Higueras García, E.; Solgi, E.; Mansournia, S. Urban Green Space Cooling Effect in Cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef]
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating Ecosystem Services and Green Infrastructure: Assessment of Urban Heat Island Effect Mitigation in the Municipality of Rome, Italy. Ecol. Modell. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; Zeng, Y.; Liu, M.; Bi, J.; Ji, J.S. Effect of Heatwaves and Greenness on Mortality among Chinese Older Adults. Environ. Pollut. 2021, 290, 118009. [Google Scholar] [CrossRef] [PubMed]
- Burkart, K.; Meier, F.; Schneider, A.; Breitner, S.; Canário, P.; Alcoforado, M.J.; Scherer, D.; Endlicher, W. Modification of Heat-Related Mortality in an Elderly Urban Population by Vegetation (Urban Green) and Proximity to Water (Urban Blue): Evidence from Lisbon, Portugal. Environ. Health Perspect. 2016, 124, 927–934. [Google Scholar] [CrossRef]
- Marvuglia, A.; Koppelaar, R.; Rugani, B. The Effect of Green Roofs on the Reduction of Mortality Due to Heatwaves: Results from the Application of a Spatial Microsimulation Model to Four European Cities. Ecol. Modell. 2020, 438, 109351. [Google Scholar] [CrossRef]
- Choi, H.M.; Lee, W.; Roye, D.; Heo, S.; Urban, A.; Entezari, A.; Vicedo-Cabrera, A.M.; Zanobetti, A.; Gasparrini, A.; Analitis, A.; et al. Effect Modification of Greenness on the Association between Heat and Mortality: A Multi-City Multi-Country Study. eBioMedicine 2022, 84, 104251. [Google Scholar] [CrossRef]
- Gronlund, C.J.; Zanobetti, A.; Wellenius, G.A.; Schwartz, J.D.; O’Neill, M.S. Vulnerability to Renal, Heat and Respiratory Hospitalizations During Extreme Heat among U.S. Elderly. Clim. Chang. 2016, 136, 631–645. [Google Scholar] [CrossRef]
- Xu, Y.; Dadvand, P.; Barrera-Gómez, J.; Sartini, C.; Marí-Dell’Olmo, M.; Borrell, C.; Medina-Ramón, M.; Sunyer, J.; Basagaña, X. Differences on the Effect of Heat Waves on Mortality by Sociodemographic and Urban Landscape Characteristics. J. Epidemiol. Community Health 2013, 67, 519–525. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, Y.; Wang, P. Driving Effects of Urbanization on City-Level Carbon Dioxide Emissions: From Multiple Perspectives of Urbanization. Int. J. Urban Sci. 2022, 26, 108–128. [Google Scholar] [CrossRef]
- Wang, P.; Yu, P.; Huang, L.; Zhang, Y. An Integrated Technical, Economic, and Environmental Framework for Evaluating the Rooftop Photovoltaic Potential of Old Residential Buildings. J. Environ. Manag. 2022, 317, 115296. [Google Scholar] [CrossRef] [PubMed]
- Boithias, L.; Acuña, V.; Vergoñós, L.; Ziv, G.; Marcé, R.; Sabater, S. Assessment of the Water Supply: DEmand Ratios in a Mediterranean Basin under Different Global Change Scenarios and Mitigation Alternatives. Sci. Total Environ. 2014, 470–471, 567–577. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of Mean Annual Evapotranspiration to Vegetation Changes at Catchment Scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Zhang, K.; Lyu, Y.; Fu, B.; Yin, L.; Yu, D. The Effects of Vegetation Coverage Changes on Ecosystem Service and Their Threshold in the Loess Plateau. Dili Xuebao/Acta Geogr. Sin. 2020, 75, 949–960. [Google Scholar] [CrossRef]
- Lu, N.; Sun, G.; Feng, X.; Fu, B. Water Yield Responses to Climate Change and Variability across the North-South Transect of Eastern China (NSTEC). J. Hydrol. 2013, 481, 96–105. [Google Scholar] [CrossRef]
- Cao, W.; Li, R.; Chi, X.; Chen, N.; Chen, J.; Zhang, H.; Zhang, F. Island Urbanization and Its Ecological Consequences: A Case Study in the Zhoushan Island, East China. Ecol. Indic. 2017, 76, 1–14. [Google Scholar] [CrossRef]
- Hou, X.; Wu, S.; Chen, D.; Cheng, M.; Yu, X.; Yan, D.; Dang, Y.; Peng, M. Can Urban Public Services and Ecosystem Services Achieve Positive Synergies? Ecol. Indic. 2021, 124, 107433. [Google Scholar] [CrossRef]
- Bastin, J.F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Tree Restoration Potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-Temporal Assessment of Urbanization Impacts on Ecosystem Services: Case Study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Antrop, M. Why Landscapes of the Past Are Important for the Future. Landsc. Urban Plan. 2005, 70, 21–34. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the Use of Landscape Spatial Metrics as Landscape Indicators: A Review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Chen, A.; Yao, L.; Sun, R.; Chen, L. How Many Metrics Are Required to Identify the Effects of the Landscape Pattern on Land Surface Temperature? Ecol. Indic. 2014, 45, 424–433. [Google Scholar] [CrossRef]
- Bing, Z.; Qiu, Y.; Huang, H.; Chen, T.; Zhong, W.; Jiang, H. Spatial Distribution of Cultural Ecosystem Services Demand and Supply in Urban and Suburban Areas: A Case Study from Shanghai, China. Ecol. Indic. 2021, 127, 107720. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of Extreme Heat Waves in Present Climate and Their Projection in a Warming World. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, L.; Chen, K. Burden of Cause-Specific Mortality Attributable to Heat and Cold: A Multicity Time-Series Study in Jiangsu Province, China. Environ. Int. 2020, 144, 105994. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Gasparrini, A. Distributed Lag Linear and Non-Linear Models in R: The Package Dlnm. J. Stat. Softw. 2011, 43, 1–20. [Google Scholar] [CrossRef]
- Chen, R.; Yin, P.; Wang, L.; Liu, C.; Niu, Y.; Wang, W.; Jiang, Y.; Liu, Y.; Liu, J.; Qi, J.; et al. Association between Ambient Temperature and Mortality Risk and Burden: Time Series Study in 272 Main Chinese Cities. BMJ 2018, 363, k4306. [Google Scholar] [CrossRef]
- Wu, W.; Xiao, Y.; Li, G.; Zeng, W.; Lin, H.; Rutherford, S.; Xu, Y.; Luo, Y.; Xu, X.; Chu, C.; et al. Temperature–Mortality Relationship in Four Subtropical Chinese Cities: A Time-Series Study Using a Distributed Lag Non-Linear Model. Sci. Total Environ. 2013, 449, 355–362. [Google Scholar] [CrossRef]
- Wang, C.; Sheng, Y.; Wang, J.; Wang, Y.; Wang, P. Air Pollution and Human Health: Investigating the Moderating Effect of the Built Environment. Remote Sens. 2022, 14, 3703. [Google Scholar] [CrossRef]
- Wang, P.; Yu, P.; Lu, J.; Zhang, Y. The Mediation Effect of Land Surface Temperature in the Relationship between Land Use-Cover Change and Energy Consumption under Seasonal Variations. J. Clean. Prod. 2022, 340, 130804. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Publications: New York, NY, USA, 2017; ISBN 1462534651. [Google Scholar]
- Wang, P.; Zhu, Y.; Yu, P. Assessment of Urban Flood Vulnerability Using the Integrated Framework and Process Analysis: A Case from Nanjing, China. Int. J. Environ. Res. Public Health 2022, 19, 16595. [Google Scholar]
- Shen, X.; Ma, L.J.C. Privatization of Rural Industry and de Facto Urbanization from below in Southern Jiangsu, China. Geoforum 2005, 36, 761–777. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Liu, X.; Zhang, B. Complexity of the Relationship between 2D/3D Urban Morphology and the Land Surface Temperature: A Multiscale Perspective. Environ. Sci. Pollut. Res. 2021, 28, 66804–66818. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Wang, J.; Wang, Y.; Huang, L. Projected Attributable Mortality of Characteristic Populations Related to Different Definitions of Heat: Evidence from Jiangsu Province, China. Urban Clim. 2022, 45, 101259. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, Z.; Bambrick, H.; Su, H.; Tong, S.; Hu, W. Heatwave and Elderly Mortality: An Evaluation of Death Burden and Health Costs Considering Short-Term Mortality Displacement. Environ. Int. 2018, 115, 334–342. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, H. Effect Modification of Individual- and Regional-Scale Characteristics on Heat Wave-Related Mortality Rates between 2009 and 2012 in Seoul, South Korea. Sci. Total Environ. 2017, 595, 141–148. [Google Scholar] [CrossRef]
- Lo, S.H.; Chen, C.T.; Russo, S.; Huang, W.R.; Shih, M.F. Tracking Heatwave Extremes from an Event Perspective. Weather Clim. Extrem. 2021, 34, 100371. [Google Scholar] [CrossRef]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal Contrast of the Dominant Factors for Spatial Distribution of Land Surface Temperature in Urban Areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Ma, W.; Chen, R.; Kan, H. Temperature-Related Mortality in 17 Large Chinese Cities: How Heat and Cold Affect Mortality in China. Environ. Res. 2014, 134, 127–133. [Google Scholar] [CrossRef]
- Liu, T.; Ren, Z.; Zhang, Y.; Feng, B.; Lin, H.; Xiao, J.; Zeng, W.; Li, X.; Li, Z.; Rutherford, S.; et al. Modification Effects of Population Expansion, Ageing, and Adaptation on Heat-Related Mortality Risks under Different Climate Change Scenarios in Guangzhou, China. Int. J. Environ. Res. Public Health 2019, 16, 376. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Leung, J.; Yu, B.; Woo, J.; Kwok, T.; Ka-Lun Lau, K. Socioeconomic Status as an Effect Modifier of the Association between Built Environment and Mortality in Elderly Hong Kong Chinese: A Latent Profile Analysis. Environ. Res. 2021, 195, 110830. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Shao, C.; Dong, C.; Wang, X. Happiness in Urbanizing China: The Role of Commuting and Multi-Scale Built Environment across Urban Regions. Transp. Res. Part D Transp. Environ. 2019, 74, 306–317. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, S.; Bao, H.; Chen, D.; Wang, C.; Li, B.; Tong, G.; Yuan, Y.; Xu, B. Improving Risk Management by Using the Spatial Interaction Relationship of Heavy Metals and PAHs in Urban Soil. J. Hazard. Mater. 2019, 364, 108–116. [Google Scholar] [CrossRef]
Data | Resolution | Sources |
---|---|---|
Precipitation (mm) | 1 km × 1 km | National Earth System Science Data Center |
Potential evapotranspiration (mm) | 1 km × 1 km | |
Land cover | 300 m × 300 m | European Space Agency |
Net primary production (g C/m2) | 500 m × 500 m | National Aeronautics and Space Administration |
NDVI | 1 km × 1 km | Resource and Environmental Science and Data Center |
Maximum temperature (oC) | weather station | China Meteorological Data Service Center |
Relative humidity (%) | ||
Wind speed (m/s) | ||
Mortality | city | Jiangsu Provincial Center for Disease Prevention and Control |
WY | CS | NDVI | COHESION | SHDI | |
---|---|---|---|---|---|
Nonaccidental | - | −0.448 | - | −0.362 | 0.437 |
Cardiorespiratory | - | −0.585 | −0.212 | −0.462 | 0.552 |
Hypertensive diseases | - | −0.475 | −0.125 | −0.216 | 0.400 |
IHD | - | −0.530 | −0.187 | - | 0.410 |
Stroke | −0.149 | −0.534 | −0.227 | −0.507 | 0.528 |
COPD | −0.134 | −0.700 | −0.284 | −0.512 | 0.636 |
Men | - | −0.440 | - | −0.436 | 0.450 |
Women | - | −0.690 | −0.275 | −0.475 | 0.619 |
15–64 | - | - | - | −0.130 | 0.177 |
65–74 | −0.213 | - | −0.154 | −0.396 | 0.294 |
≥75 | - | −0.636 | −0.232 | −0.453 | 0.581 |
15–64 men | - | - | - | −0.146 | - |
15–64 women | - | −0.320 | - | −0.290 | 0.332 |
65–74 men | −0.171 | −0.369 | −0.180 | −0.450 | 0.399 |
65–74 women | −0.221 | - | −0.121 | −0.330 | - |
≥75 men | - | −0.540 | −0.185 | −0.453 | 0.521 |
≥75 women | - | −0.707 | −0.279 | −0.433 | 0.615 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L. Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China. Int. J. Environ. Res. Public Health 2023, 20, 2750. https://doi.org/10.3390/ijerph20032750
Wang L. Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China. International Journal of Environmental Research and Public Health. 2023; 20(3):2750. https://doi.org/10.3390/ijerph20032750
Chicago/Turabian StyleWang, Lu. 2023. "Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China" International Journal of Environmental Research and Public Health 20, no. 3: 2750. https://doi.org/10.3390/ijerph20032750
APA StyleWang, L. (2023). Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China. International Journal of Environmental Research and Public Health, 20(3), 2750. https://doi.org/10.3390/ijerph20032750