Influence of Cluster Sets on Mechanical and Perceptual Variables in Adolescent Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design and Context
2.3. Anthropometrics and Peak Height Velocity
[−0.001663 × (CA × Leg Length)] + [0.007216 × (CA × Sitting Height)] + [0.02292 × (body mass by standing height ratio × 100)];
2.4. Mechanical Variables
2.5. Countermovement Jump
2.6. 1RM Back Squat Test
2.7. Velocity-Regulated Intensity
2.8. Perceptual Variables
2.9. Statistical Analysis
3. Results
3.1. Criteria
3.2. Velocity, Power, and Force Variables
3.3. Jump Variables
3.4. Perceptual Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mota, T.; Silva, R.; Clemente, F. Holistic Soccer Profile by Position: A Theoretical Framework. Hum. Mov. 2023, 24, 1–17. [Google Scholar] [CrossRef]
- Stone, M.H.; Hornsby, W.G.; Suarez, D.G.; Duca, M.; Pierce, K.C. Training Specificity for Athletes: Emphasis on Strength-Power Training: A Narrative Review. J. Funct. Morphol. Kinesiol. 2022, 7, 102. [Google Scholar] [CrossRef]
- Lauersen, J.B.; Andersen, T.E.; Andersen, L.B. Strength Training as Superior, Dose-Dependent and Safe Prevention of Acute and Overuse Sports Injuries: A Systematic Review, Qualitative Analysis and Meta-Analysis. Br. J. Sports Med. 2018, 52, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Malone, S.; Owen, A.; Newton, M.; Mendes, B.; Collins, K.D.; Gabbett, T.J. The Acute:Chonic Workload Ratio in Relation to Injury Risk in Professional Soccer. J. Sci. Med. Sport 2017, 20, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Doma, K.; Connor, J.; Gahreman, D.; Boullosa, D.; Ahtiainen, J.P.; Nagata, A. Resistance Training Acutely Impairs Agility and Spike-Specific Performance Measures in Collegiate Female Volleyball Players Returning from the off-Season. Int. J. Environ. Res. Public Health 2020, 17, 6488. [Google Scholar] [CrossRef] [PubMed]
- Conceição, M.; Cadore, E.L.; González-Izal, M.; Izquierdo, M.; Liedtke, G.V.; Wilhelm, E.N.; Pinto, R.S.; Reistenbach Goltz, F.; Dornelles Schneider, C.; Ferrari, R.; et al. Strength Training Prior to Endurance Exercise: Impact on the Neuromuscular System, Endurance Performance and Cardiorespiratory Responses. J. Hum. Kinet. 2014, 44, 171–181. [Google Scholar] [CrossRef]
- Doma, K.; Deakin, G.B.; Bentley, D.J. Implications of Impaired Endurance Performance Following Single Bouts of Resistance Training: An Alternate Concurrent Training Perspective. Sport. Med. 2017, 47, 2187–2200. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.D.d.V.; Ferreira, M.E.C.; Gantois, P.; Kassiano, W.; Paes, S.T.; de Lima-Júnior, D.; Cyrino, E.S.; Fortes, L.d.S. Acute Effect of Drop-Set, Traditional, and Pyramidal Systems in Resistance Training on Neuromuscular Performance in Trained Adults. J. strength Cond. Res. 2021, 35, 991–996. [Google Scholar] [CrossRef]
- Chow, Z.S.; Moreland, A.T.; Macpherson, H.; Teo, W.P. The Central Mechanisms of Resistance Training and Its Effects on Cognitive Function. Sport. Med. 2021, 51, 2483–2506. [Google Scholar] [CrossRef]
- Piqueras-Sanchiz, F.; Cornejo-Daza, P.J.; Sánchez-Valdepeñas, J.; Bachero-Mena, B.; Sánchez-Moreno, M.; Martín-Rodríguez, S.; García-García, Ó.; Pareja-Blanco, F. Acute Mechanical, Neuromuscular, and Metabolic Responses to Different Set Configurations in Resistance Training. J. Strength Cond. Res. 2022, 36, 2983–2991. [Google Scholar] [CrossRef]
- Held, S.; Rappelt, L.; Deutsch, J.-P.; Donath, L. Jump and Sprint Performance Directly and 24 h After Velocity- vs. Failure-Based Training. Int. J. Sports Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Padial, P.; Haff, G.G.; Argüelles-Cienfuegos, J.; García-Ramos, M.; Conde-Pipó, J.; Feriche, B. Effect of Different Interrepetition Rest Periods on Barbell Velocity Loss during the Ballistic Bench Press Exercise. J. Strength Cond. Res. 2015, 29, 2388–2396. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Whitley, A.; McCoy, L.B.; O’Bryant, H.S.; Kilgore, J.L.; Haff, E.E.; Pierce, K.; Stone, M.H. Effects of Different Set Configurations on Barbell Velocity and Displacement During a Clean Pull. J. Strength Cond. Res. 2003, 17, 95–103. [Google Scholar] [CrossRef]
- Hardee, J.P.; Travis Triplett, N.; Utter, A.C.; Zwetsloot, K.A.; McBride, J.M. Effect of Interrepetition Rest on Power Output in the Power Clean. J. Strength Cond. Res. 2012, 26, 883–889. [Google Scholar] [CrossRef]
- Hardee, J.P.; Lawrence, M.M.; Zwetsloot, K.A.; Triplett, N.T.; Utter, A.C.; McBride, J.M. Effect of Cluster Set Configurations on Power Clean Technique. J. Sports Sci. 2013, 31, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Moir, G.L.; Graham, B.W.; Davis, S.E.; Guers, J.J.; Witmer, C.A. Effect of Cluster Set Configurations on Mechanical Variables during the Deadlift Exercise. J. Hum. Kinet. 2013, 39, 15–23. [Google Scholar] [CrossRef]
- Mora-Custodio, R.; Rodríguez-Rosell, D.; Yáñez-García, J.M.; Sánchez-Moreno, M.; Pareja-Blanco, F.; González-Badillo, J.J. Effect of Different Inter-Repetition Rest Intervals across Four Load Intensities on Velocity Loss and Blood Lactate Concentration during Full Squat Exercise. J. Sports Sci. 2018, 36, 2856–2864. [Google Scholar] [CrossRef]
- Tufano, J.J.; Conlon, J.A.; Nimphius, S.; Oliver, J.M.; Kreutzer, A.; Haff, G.G. Different Cluster Sets Result in Similar Metabolic, Endocrine, and Perceptual Responses in Trained Men. J. Strength Cond. Res. 2017, 33, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Hobbs, R.T.; Haff, E.E.; Sands, W.A.; Pierce, K.C.; Stone, M.H. Cluster Training: A Novel Method for Introducing Training Program Variation. Strength Cond. J. 2008, 30, 67–76. [Google Scholar] [CrossRef]
- Lawton, T.W.; Cronin, J.B.; Lindsell, R.P. Effect of Interrepetition Rest Intervals on Weight Training Repetition Power Output. J. Strength Cond. Res. 2006, 20, 172–176. [Google Scholar] [CrossRef]
- Verkhoshansky, Y.V.; Siff, M.C. Supertraining, 6th ed.; Self Published: Roma, Italy, 2009. [Google Scholar]
- Tufano, J.J.; Brown, L.E.; Haff, G.G. Theoretical and Practical Aspects of Different Cluster Set Structures: A Systematic Review. J. Strength Cond. Res. 2017, 31, 848–867. [Google Scholar] [CrossRef]
- Tufano, J.J.; Conlon, J.A.; Nimphius, S.; Brown, L.E.; Seitz, L.B.; Williamson, B.D.; Haff, G.G. Maintenance of Velocity and Power With Cluster Sets During High-Volume Back Squats. Int. J. Sports Physiol. Perform. 2016, 11, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Aburto, J.; Jukic, I.; Chirosa-Ríos, L.J.; González-Hernández, J.M.; Janicijevic, D.; Barboza-González, P.; Guede-Rojas, F.; García-Ramos, A. Effect of Traditional, Cluster, and Rest Redistribution Set Configurations on Neuromuscular and Perceptual Responses During Strength-Oriented Resistance Training. J. Strength Cond. Res. 2022, 36, 1490–1497. [Google Scholar] [CrossRef]
- Ortega-Becerra, M.; Sánchez-Moreno, M.; Pareja-Blanco, F. Effects of Cluster Set Configuration on Mechanical Performance and Neuromuscular Activity. J. Strength Cond. Res. 2021, 35, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Girman, J.C.; Jones, M.T.; Matthews, T.D.; Wood, R.J. Acute Effects of a Cluster-Set Protocol on Hormonal, Metabolic and Performance Measures in Resistance-Trained Males. Eur. J. Sport Sci. 2014, 14, 151–159. [Google Scholar] [CrossRef]
- González-Hernández, J.M.; García-Ramos, A.; Castaño-Zambudio, A.; Capelo-Ramírez, F.; Marquez, G.; Boullosa, D.; Jiménez-Reyes, P. Mechanical, Metabolic, and Perceptual Acute Responses to Different Set Configurations in Full Squat. J. Strength Cond. Res. 2020, 34, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, G.; Ispoglou, T.; Bissas, A. The Impact of Repetition Mechanics on the Adaptations Resulting from Strength-, Hypertrophy- and Cluster-Type Resistance Training. Eur. J. Appl. Physiol. 2016, 116, 1875–1888. [Google Scholar] [CrossRef] [PubMed]
- Varela-Olalla, D.; Romero-Caballero, A.; Del Campo-Vecino, J.; Balsalobre-Fernández, C. A Cluster Set Protocol in the Half Squat Exercise Reduces Mechanical Fatigue and Lactate Concentrations in Comparison with a Traditional Set Configuratio. Sports 2020, 8, 45. [Google Scholar] [CrossRef]
- Mayo, X.; Iglesias-Soler, E.; Fernández-Del-Olmo, M. Effects of Set Configuration of Resistance Exercise on Perceived Exertion. Percept. Mot. Skills 2014, 119, 825–837. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Jones, M.T.; Malecek, J.; Padecky, J.; Omcirk, D.; Xu, N.; Peñailillo, L.; Tufano, J.J. Comparison of Traditional and Rest-Redistribution Sets on Indirect Markers of Muscle Damage Following Eccentric Exercise. J. Strength Cond. Res. 2022, 36, 1810–1818. [Google Scholar] [CrossRef]
- Vasconcelos, G.C.; Costa, B.D.D.V.; Damorim, I.R.; Santos, T.M.; Cyrino, E.S.; De Lima-Junior, D.; Fortes, L.S. Do Traditional and Cluster-Set Resistance Training Systems Alter the Pleasure and Effort Perception in Trained Men? J. Phys. Educ. Sport 2019, 19, 823–828. [Google Scholar] [CrossRef]
- Davies, T.B.; Tran, D.L.; Hogan, C.M.; Haff, G.G.; Latella, C. Chronic Effects of Altering Resistance Training Set Configurations Using Cluster Sets: A Systematic Review and Meta-Analysis. Sport. Med. 2021, 51, 707–736. [Google Scholar] [CrossRef] [PubMed]
- Torrejón, A.; Janicijevic, D.; Haff, G.G.; García-Ramos, A. Acute Effects of Different Set Configurations during a Strength-Oriented Resistance Training Session on Barbell Velocity and the Force–Velocity Relationship in Resistance-Trained Males and Females. Eur. J. Appl. Physiol. 2019, 119, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Wagle, J.; Taber, C.; Carroll, K.; Cunanan, A.; Sams, M.; Wetmore, A.; Bingham, G.; DeWeese, B.; Sato, K.; Stuart, C.; et al. Repetition-to-Repetition Differences Using Cluster and Accentuated Eccentric Loading in the Back Squat. Sports 2018, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Wetmore, A.B.; Wagle, J.P.; Sams, M.L.; Taber, C.B.; DeWeese, B.H.; Sato, K.; Stone, M.H. Cluster Set Loading In The Back Squat:Kinetic And Kinematic Implications. J. Strength Cond. Res. 2019, 33, S19–S25. [Google Scholar] [CrossRef]
- Jukic, I.; Van Hooren, B.; Ramos, A.G.; Helms, E.R.; McGuigan, M.R.; Tufano, J.J. The Effects of Set Structure Manipulation on Chronic Adaptations to Resistance Training: A Systematic Review and Meta-Analysis. Sport. Med. 2021, 51, 1061–1086. [Google Scholar] [CrossRef]
- Latella, C.; Teo, W.P.; Drinkwater, E.J.; Kendall, K.; Haff, G.G. The Acute Neuromuscular Responses to Cluster Set Resistance Training: A Systematic Review and Meta-Analysis. Sport. Med. 2019, 49, 1861–1877. [Google Scholar] [CrossRef]
- Falk, B.; Dotan, R. Child-Adult Differences in the Recovery from High-Intensity Exercise. Exerc. Sport Sci. Rev. 2006, 34, 107–112. [Google Scholar] [CrossRef]
- Tibana, R.A.; Prestes, J.; da Cunha Nascimento, D.; Martins, O.V. Higher Muscle Performance in Adolescents Compared with Adults after a Resistance Training Session with Different Rest Intervals. J. Strength Cond. Res. 2012, 26, 1027–1032. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Faigenbaum, A.D.; Stone, M.H.; Oliver, J.L.; Jeffreys, I.; Moody, J.A.; Brewer, C.; Pierce, K.C.; McCambridge, T.M.; Howard, R.; et al. Position Statement on Youth Resistance Training: The 2014 International Consensus. Br. J. Sports Med. 2014, 48, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Barahona-Fuentes, G.; Ojeda, Á.H.; Chirosa-Ríos, L. Effects of Training with Different Modes of Strength Intervention on Psychosocial Disorders in Adolescents: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 9477. [Google Scholar] [CrossRef] [PubMed]
- Gualdi-Russo, E.; Rinaldo, N.; Zaccagni, L. Physical Activity and Body Image Perception in Adolescents: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 13190. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Thompson, S.W.; Rogerson, D.; Ruddock, A.; Greig, L.; Dorrell, H.F.; Barnes, A. A Novel Approach to 1rm Prediction Using the Load-Velocity Profile: A Comparison of Models. Sports 2021, 9, 88. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; Pallarés, J.; Pérez, C.; Morán-Navarro, R.; González-Badillo, J. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sport. Med. Int. Open 2017, 01, E80–E88. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Castaño-Zambudio, A.; Cuadrado-Peñafiel, V.; González-Hernández, J.M.; Capelo-Ramírez, F.; Martínez-Aranda, L.M.; González-Badillo, J.J. Differences between Adjusted vs. Non-Adjusted Loads in Velocity-Based Training: Consequences for Strength Training Control and Programming. PeerJ 2021, 9, e10942. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An Assessment of Maturity from Anthropometric Measurements. Med. Sci. Sport. Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Garrido-Blanca, G.; Delgado-García, G.; Balsalobre-Fernández, C.; García-Ramos, A. Precision of 7 Commercially Available Devices for Predicting Bench-Press 1-Repetition Maximum from the Individual Load–Velocity Relationship. Int. J. Sports Physiol. Perform. 2019, 14, 1442–1446. [Google Scholar] [CrossRef]
- Vivancos, A.; Zambudio, A.; Ramírez, F.; Del Águila, A.; Castrillón, F.; Pardo, P. Reliability and Validity of a Linear Position Transducer for Strength Assessment. Br. J. Sports Med. 2014, 48, A5. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the Propulsive Phase in Strength Assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The Countermovement Jump to Monitor Neuromuscular Status: A Meta-Analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Zatsiorsky, V.M.; Kraemer, W.J.; Fry, A.C. Science and Practice of Strength Training, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- Helms, E.R.; Cronin, J.; Storey, A.; Zourdos, M.C. Application of the Repetitions in Reserve- Based Rating of Perceived Exertion Scale for Resistance Training. Strength Cond. J. 2016, 38, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Kenttä, G.; Hassmén, P. Overtraining and Recovery. A Conceptual Model. Sport. Med. 1998, 26, 1–16. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrov, L.A.; Suzanne, P.; Doleshal, A.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Stokes, M. Reliability and Repeatability of Methods for Measuring Muscle in Physiotherapy. Physiother. Theory Pract. 1985, 1, 71–76. [Google Scholar] [CrossRef]
- Hedges, L.V.; Olkin, I. Estimation of a Single Effect Size: Parametric and Nonparametric Methods. In Statistical Methods for Meta-Analysis; Academic Press: Cambridge, MA, USA, 1985; pp. 76–104. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Tufano, J.J.; Halaj, M.; Kampmiller, T.; Novosad, A.; Buzgo, G. Cluster Sets vs. Traditional Sets: Levelling out the Playing Field Using a Power-Based Threshold. PLoS ONE 2018, 13, e0208035. [Google Scholar] [CrossRef]
- Jukic, I.; Helms, E.R.; McGuigan, M.R.; García-Ramos, A. Using Cluster and Rest Redistribution Set Structures as Alternatives to Resistance Training Prescription Method Based on Velocity Loss Thresholds. PeerJ 2022, 10, e13195. [Google Scholar] [CrossRef]
- Oliver, J.M.; Kreutzer, A.; Jenke, S.C.; Phillips, M.D.; Mitchell, J.B.; Jones, M.T. Velocity Drives Greater Power Observed During Back Squat Using Cluster Sets. J. Strength Cond. Res. 2015, 30, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Jukic, I.; Tufano, J.J. Shorter but More Frequent Rest Periods: No Effect on Velocity and Power Compared to Traditional Sets Not Performed to Failure. J. Hum. Kinet. 2019, 66, 257–268. [Google Scholar] [CrossRef]
- Oliver, J.M.; Kreutzer, A.; Jenke, S.; Phillips, M.D.; Mitchell, J.B.; Jones, M.T. Acute Response to Cluster Sets in Trained and Untrained Men. Eur. J. Appl. Physiol. 2015, 115, 2383–2393. [Google Scholar] [CrossRef]
- Gorostiaga, E.M.; Navarro-Amézqueta, I.; Calbet, J.A.L.; Hellsten, Y.; Cusso, R.; Guerrero, M.; Granados, C.; González-Izal, M.; Ibañez, J.; Izquierdo, M. Energy Metabolism during Repeated Sets of Leg Press Exercise Leading to Failure or Not. PLoS ONE 2012, 7, e40621. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Saito, M.; Homma, H.; Inoguchi, T.; Naito, T.; Sakamaki-Sunaga, M.; Kikuchi, N. Does Resistance Exercise Lifting Velocity Change with Different Rest Intervals? J. Sports Med. Phys. Fit. 2022. [Google Scholar] [CrossRef] [PubMed]
- Lander, J. Maximum Based on Reps. NSCA J. 1985, 6, 60–61. [Google Scholar]
- Jukic, I.; Tufano, J.J. Acute Effects of Shorter but More Frequent Rest Periods on Mechanical and Perceptual Fatigue during a Weightlifting Derivative at Different Loads in Strength-Trained Men. Sport. Biomech. 2022, 21, 1122–1135. [Google Scholar] [CrossRef]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring Athlete Training Loads: Consensus Statement. Int. J. Sports Physiol. Perform. 2017, 12, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Doma, K.; Schumann, M.; Leicht, A.S.; Heilbronn, B.E.; Damas, F.; Burt, D. The Repeated Bout Effect of Traditional Resistance Exercises on Running Performance across 3 Bouts. Appl. Physiol. Nutr. Metab. 2017, 42, 978–985. [Google Scholar] [CrossRef]
- Chen, T.C.; Chen, H.L.; Lin, M.J.; Wu, C.J.; Nosaka, K. Muscle Damage Responses of the Elbow Flexors to Four Maximal Eccentric Exercise Bouts Performed Every 4 Weeks. Eur. J. Appl. Physiol. 2009, 106, 267–275. [Google Scholar] [CrossRef]
- Coratella, G.; Chemello, A.; Schena, F. Muscle Damage and Repeated Bout Effect Induced by Enhanced Eccentric Squats. J. Sports Med. Phys. Fitness 2015, 56, 1540–1546. [Google Scholar]
- Dong, Y.; Peng, C.Y.J. Principled Missing Data Methods for Researchers. Springerplus 2013, 2, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafer, J.L. Multiple Imputation: A Primer. Stat. Methods Med. Res. 1999, 8, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.A. How Can I Deal with Missing Data in My Study? Aust. N. Z. J. Public Health 2001, 25, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Tufano, J.J.; Conlon, J.A.; Nimphius, S.; Brown, L.E.; Banyard, H.G.; Williamson, B.D.; Bishop, L.G.; Hopper, A.J.; Haff, G.G. Cluster Sets Permit Greater Mechanical Stress Without Decreasing Relative Velocity. Int. J. Sports Physiol. Perform. 2017, 12, 463–469. [Google Scholar] [CrossRef]
- Morales-Artacho, A.J.; Padial, P.; García-Ramos, A.; Pérez-Castilla, A.; Feriche, B. Influence of a Cluster Set Configuration on the Adaptations to Short-Term Power Training. J. Strength Cond. Res. 2018, 32, 930–937. [Google Scholar] [CrossRef]
Protocols (Mean ± SD) | Effect Size (95% CI) | |||||
---|---|---|---|---|---|---|
Variables | CS2 | CS1 | TRD | CS2-CS1 | CS2-TRD | CS1-TRD |
MPV (m/s) | 0.46 ± 0.08 TRD | 0.43 ± 0.05 | 0.39 ± 0.05 | 0.48 (−0.42–1.39) | 0.99 (0.04–1.94) | 0.66 (−0.26–1.57) |
MPP (W) | 509.75 ± 127.34 TRD | 467.41 ± 90.41 | 434.98 ± 93.82 | 0.37 (−0.53–1.27) | 0.64 (−0.27–1.56) | 0.34 (−0.56–1.24) |
MPF (N) | 1096.03 ± 145.26 | 1095.98 ± 149.54 | 1099.46 ± 150.11 | 0.00 (−0.89–0.89) | −0.02 (−0.91–0.87) | −0.02 (−0.91–0.87) |
MPV Decline (%) | −5.61 ± 14.84 TRD, CS1 | −21.44 ± 12.13 | −21.10 ± 11.88 | 1.12 (0.16–2.09) | 1.11 (0.15–2.07) | −0.03 (−0.92–0.86) |
MPP Decline (%) | −5.63 ± 14.91 TRD, CS1 | −21.50 ± 12.20 | −20.98 ± 11.85 | 1.12 (0.16–2.08) | 1.10 (0.14–2.06) | −0.04 (−0.93–0.85) |
MPF Decline (%) | 0.10 ± 0.50 | −0.01 ± 1.50 | 0.45 ± 0.64 | 0.10 (−0.79–0.99) | −0.58 (−1.49–0.33) | −0.38 (−1.28–0.52) |
MPV Maintenance (%) | 97.74 ± 9.80 TRD, CS1 | 90.08 ± 8.34 | 87.93 ± 8.54 | 0.81 (−0.12–1.74) | 1.03 (0.08–1.98) | 0.24 (−0.65–1.14) |
MPP Maintenance (%) | 97.76 ± 9.82 TRD, CS1 | 89.98 ± 8.53 | 87.96 ± 8.55 | 0.81 (−0.12–1.74) | 1.02 (0.07–1.98) | 0.23 (−0.67–1.12) |
MPF Maintenance (%) | 100.12 ± 0.32 | 99.85 ± 1.31 | 100.13 ± 0.37 | 0.27 (−0.62–1.17) | −0.04 (−0.93–0.85) | −0.29 (−1.18–0.61) |
Protocols (Mean ± SD) | Effect Size [g, (95% CI)] | ||||||
---|---|---|---|---|---|---|---|
Variables | CS2 | CS1 | TRD | CS2-CS1 | CS2-TRD | CS1-TRD | |
CMJ Height (cm) | Pre | 32.55 ± 6.31 | 32.87 ± 6.75 | 33.12 ± 5.99 | −0.05 | −0.09 | −0.04 |
(−0.94–0.84) | (−0.98–0.80) | (−0.93–0.85) | |||||
0′ * | 31.86 ± 6.14 | 31.62 ± 6.07 | 30.84 ± 6.09 | 0.04 | 0.16 | 0.12 | |
(−0.85–0.93) | (−0.73–1.05) | (−0.77–1.01) | |||||
5′ ** | 31.17 ± 6.37 | 31.05 ± 6.43 | 31.41 ± 6.69 | 0.02 | −0.04 | −0.05 | |
(−0.87–0.91) | (−0.93–0.85) | (−0.94 −0.84) | |||||
10′ ** | 30.87 ± 6.22 | 30.73 ± 6.71 | 30.67 ± 6.67 | 0.02 | 0.03 | 0.01 | |
(−0.87–0.91) | (−0.86–0.92) | (−0.88–0.90) | |||||
∆CMJ (%) | Pre−0′ | −2.08 ± 7.11 | −3.52 ± 3.47 | −7.13 ± 4.70 | 0.25 | 0.81 | 0.84 |
(−0.65–1.14) | (−0.12–1.73) | (−0.09–1.77) | |||||
Pre−5′ | −4.45 ± 5.87 | −5.46 ± 4.39 | −5.77 ± 4.51 | 0.19 | 0.24 | 0.07 | |
(−0.70–1.08) | (−0.65–1.13) | (−0.82–0.96) | |||||
Pre−10′ | −5.30 ± 4.40 | −6.69 ± 4.72 | −8.02 ± 5.56 | 0.29 | 0.52 | 0.25 | |
(−0.60–1.19) | (−0.38–1.43) | (−0.65–1.14) |
Protocols (Mean ± SD) | Effect Size [g, (95% CI)] | |||||
---|---|---|---|---|---|---|
Variables | CS2 TRD | CS1 | TRD | CS2-CS1 | CS2-TRD | CS1-TRD |
RPE8 (1st Set) | 3.23 ± 0.61 | 4.27 ± 1.40 | 4.73 ± 1.33 | −0.93 (−1.87–0.01) | −1.39 (−2.40–0.39) | −0.32 (−1.22–0.57) |
RPE16 (2nd Set) * | 4.32 ± 1.42 | 5.05 ± 2.30 | 5.46 ± 1.62 | −0.37 (−1.27–0.53) | −0.72 (−1.64–0.20) | −0.2 (−1.09–0.69) |
RPE24 (3rd Set) *,** | 4.46 ± 1.51 | 5.91 ± 2.71 | 6.23 ± 1.97 | −0.64 (−1.55–0.28) | −0.97 (−1.92–0.02) | −0.13 (−1.02–0.76) |
S-RPE | 4.32 ± 1.59 | 5.14 ± 1.85 | 5.68 ± 1.75 | −0.46 (−1.36–0.44) | −0.78 (−1.71–0.14) | −0.29 (−1.18–0.61) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Api, G.; Legnani, R.F.d.S.; Foschiera, D.B.; Clemente, F.M.; Legnani, E. Influence of Cluster Sets on Mechanical and Perceptual Variables in Adolescent Athletes. Int. J. Environ. Res. Public Health 2023, 20, 2810. https://doi.org/10.3390/ijerph20042810
Api G, Legnani RFdS, Foschiera DB, Clemente FM, Legnani E. Influence of Cluster Sets on Mechanical and Perceptual Variables in Adolescent Athletes. International Journal of Environmental Research and Public Health. 2023; 20(4):2810. https://doi.org/10.3390/ijerph20042810
Chicago/Turabian StyleApi, Gustavo, Rosimeide Francisco dos Santos Legnani, Diogo Bertella Foschiera, Filipe Manuel Clemente, and Elto Legnani. 2023. "Influence of Cluster Sets on Mechanical and Perceptual Variables in Adolescent Athletes" International Journal of Environmental Research and Public Health 20, no. 4: 2810. https://doi.org/10.3390/ijerph20042810
APA StyleApi, G., Legnani, R. F. d. S., Foschiera, D. B., Clemente, F. M., & Legnani, E. (2023). Influence of Cluster Sets on Mechanical and Perceptual Variables in Adolescent Athletes. International Journal of Environmental Research and Public Health, 20(4), 2810. https://doi.org/10.3390/ijerph20042810