Organic Carbon Controls Mercury Distribution and Storage in the Surface Soils of the Water-Level-Fluctuation Zone in the Three Gorges Reservoir Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Analysis Method
2.3. Statistical Analysis
3. Results
3.1. Distribution of Hg in the Surface Soils
3.2. Distribution of the Organic Carbon in the Surface Soil
3.3. Hg Storage in the Surface Soil
3.4. The SOC Storage in the Surface Soil
3.5. The Physical and Chemical Properties of the Surface Soil
4. Discussion
4.1. Distribution and Storage of Hg in the Surface Soil
4.2. Distribution and Storage of SOC in the Surface Soils
4.3. Correlation between Hg Distribution, Storage, and SOC
4.4. Partial Least Squares Path Modeling (PLS-PM) Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WLFZ | The water-level fluctuation zone |
TGR | The Three Gorges Reservoir |
Hg | Mercury |
SOC | Soil organic carbon |
THg | Total Hg |
Hg0 | Elemental mercury |
HgII | Divalent inorganic mercury |
MeHg | Methylmercury |
DOM | Dissolved organic matter |
Feo | Amorphous Fe oxide |
CEC | Cation exchange capacity |
PLS-PM | Partial least square path modeling |
References
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. A review on the distribution of Hg in the environment and its human health impacts. J. Hazard. Mater. 2016, 306, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Clayden, M.G.; Kidd, K.A.; Wyn, B.; Kirk, J.L.; Muir, D.C.G.; O’Driscoll, N.J. Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environ. Sci. Technol. 2013, 47, 12047–12053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, X.; Tian, Y.; Zhu, Y.; Tong, Y.; Li, Y.; Wang, X. Risk assessment of total mercury and methylmercury in aquatic products from offshore farms in China. J. Hazard. Mater. 2018, 354, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Skyllberg, U.; Bloom, P.R.; Qian, J.; Lin, C.-M.; Bleam, W.F. Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ. Sci. Technol. 2006, 40, 4174–4180. [Google Scholar] [CrossRef]
- Jiang, T.; Wei, S.-Q.; Flanagan, D.; Li, M.-J.; Li, X.-M.; Wang, Q.; Luo, C. Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems. Pedosphere 2014, 24, 125–136. [Google Scholar] [CrossRef]
- Hammerschmidt, C.R.; Fitzgerald, W.F. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ. Sci. Technol. 2004, 38, 1487–1495. [Google Scholar] [CrossRef]
- Padalkar, P.P.; Chakraborty, P.; Chennuri, K.; Jayachandran, S.; Sitlhou, L.; Nanajkar, M.; Tilvi, S.; Singh, K. Molecular characteristics of sedimentary organic matter in controlling mercury (Hg) and elemental mercury (Hg0) distribution in tropical estuarine sediments. Sci. Total Environ. 2019, 668, 592–601. [Google Scholar] [CrossRef]
- Teršič, T.; Biester, H.; Gosar, M. Leaching of mercury from soils at extremely contaminated historical roasting sites (Idrija area, Slovenia). Geoderma 2014, 226, 213–222. [Google Scholar] [CrossRef]
- Teršič, T.; Gosar, M. Comparison of elemental contents in earthworm cast and soil from a mercury-contaminated site (Idrija area, Slovenia). Sci. Total Environ. 2012, 430, 28–33. [Google Scholar] [CrossRef]
- Gu, B.; Bian, Y.; Miller, C.L.; Dong, W.; Jiang, X.; Liang, L. Mercury reduction and complexation by natural organic matter in anoxic environments. Proc. Natl. Acad. Sci. USA 2011, 108, 1479–1483. [Google Scholar] [CrossRef] [Green Version]
- TJiang, T.; Skyllberg, U.; Wei, S.; Wang, D.; Lu, S.; Jiang, Z.; Flanagan, D.C. Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement. Geochim. Cosmochim. Acta 2015, 154, 151–167. [Google Scholar]
- Wei, Z.; Yu, S.; Adediran, G.A.; Tao, J.; Björn, E. Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter. Geochim. Cosmochim. Acta 2018, 220, 158–179. [Google Scholar]
- Hsu-Kim, H.; Eckley, C.S.; Achá, D.; Feng, X.; Gilmour, C.C.; Jonsson, S.; Mitchell, C.P.J. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio 2018, 47, 141–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, T.A.; Bodaly, R.A.; Mathias, J.A. Predicting fish mercury levels from physical characteristics of boreal reservoirs. Can. J. Fish. Aquat. Sci. 1991, 48, 1468–1475. [Google Scholar] [CrossRef]
- Tremblay, A.; Lucotte, M.; Schetagne, R. Total mercury and methylmercury accumulation in zooplankton of hydroelectric reservoirs in northern Québec (Canada). Sci. Total Environ. 1998, 213, 307–315. [Google Scholar] [CrossRef]
- Friedl, G.; Wüest, A. Disrupting biogeochemical cycles-consequences of damming. Aquat. Sci. 2002, 64, 55–65. [Google Scholar] [CrossRef]
- Feng, P.; Xiang, Y.; Cao, D.; Li, H.; Wang, L.; Wang, M.; Jiang, T.; Wang, Y.; Wang, D.; Shen, H. Occurrence of methylmercury in aerobic environments: Evidence of mercury bacterial methylation based on simulation experiments. J. Hazard. Mater. 2022, 428, 129560–129575. [Google Scholar] [CrossRef]
- Yin, D.L.; Wang, Y.M.; Xiang, Y.P.; Xu, Q.Q.; Xie, Q.; Zhang, C.; Liu, J.; Wang, D.Y. Production and migration of methylmercury in water-level- fluctuating zone of the Three Gorges Reservoir, China: Dual roles of flooding-tolerant perennial herb. J. Hazard. Mater. 2020, 381, 120962–120966. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Xie, D.; Liu, H. Spatial variability of soil heavy metals in the three gorges area: Multivariate and geostatistical analyses. Environ. Monit. Assess. 2019, 157, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Li, S.; Zhang, Y.; Zhang, Q. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the TGR, China. J. Hazard. Mater. 2011, 191, 366–372. [Google Scholar] [CrossRef]
- Lin, F.; Li, D.; Pan, G.; Xu, X.; Zhang, X.; Chi, C.; Li, Z. Organic carbon density of soil of wetland and its change after cultivation along the Yangtze River in Anhui province, China. Wetland Sci. 2008, 6, 192–197. [Google Scholar]
- Wang, F.; Zhang, J. Mercury contamination in aquatic ecosystems under a changing environment: Implications for the TGR. Chin. Sci. Bull. 2013, 58, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Li, S.; Zhang, Y.; Tong, X.; Zhang, Q. Assessing heavy metal pollution in the water level fluctuation zone of China’s TGR using geochemical and soil microbial approaches. Environ. Monit. Assess. 2013, 185, 231–240. [Google Scholar] [CrossRef]
- Cheng, N.; Xie, Q.; Fan, Y.-F.; Wang, Y.-M.; Zhang, C.; Wang, D.-Y. Hair mercury concentrations in residents of fuling and Zhongxian in the three Gorges reservoir region and their influence factors. J. Environ. Sci. 2018, 39, 3426–3433. [Google Scholar]
- Xu, Q.; Zhao, L.; Wang, Y.; Xie, Q.; Yin, D.; Feng, X.; Wang, D. Bioaccumulation characteristics of mercury in fish in the Three Gorges, China. Environ. Pollut. 2018, 243, 115–126. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, Y.; Li, S.; Zhang, C.; Tian, X.; Cheng, N.; Zhang, Y.; Wang, D. Total mercury and methylmercury in human hair and food: Implications for the exposure and health risk to residents in the three gorges reservoir region, China. Environ. Pollut. 2021, 282, 117041. [Google Scholar] [CrossRef]
- Li, J.; Haffner, G.D.; Wang, D.; Zhang, L.; Li, Y.; Deng, H.; Drouillard, K.G. Protein and lipid growth rates regulate bioaccumulation of PCBs and Hg in Bighead Carp (Hypophthalmichthys nobilis) and Silver Carp (Hypophthalmichthys molitrix) from the Three Gorges Reservoir, China. Environ. Pollut. 2018, 243, 152–162. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D.; Zhang, J.; Liem-Nguyen, V.; Huang, R.; Jiang, T. Evaluation of hg methylation in the water-level-fluctuation zone of the three gorges reservoir region by using the mehg/hgt ratio. Ecotoxicol. Environ. Saf. 2020, 195, 110468. [Google Scholar] [CrossRef]
- Xiang, Y.P.; Du, H.X.; Shen, H.; Zhang, C.; Wang, D.Y. Dynamics of total culturable bacteria and its relationship with methylmercury in the soils of the water level fluctuation zone of the Three Gorges Reservoir. Chin. Sci. Bull. 2014, 59, 2966–2972. [Google Scholar] [CrossRef]
- Xiang, Y.P.; Wang, Y.M.; Zhang, C.; Shen, H.; Wang, D.Y. Water level fluctuations influence microbial communities and mercury methylation in soils in the Three Gorges Reservoir, China. J. Environ. Sci. 2018, 68, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.L.; Wang, Y.M.; Jiang, T.; Qin, C.Q.; Xiang, Y.P.; Chen, Q.Y.; Xue, J.P.; Wang, D.Y. Methylmercury production in soil in the water-level-fluctuating zone of the Three Gorges Reservoir, China: The key role of low-molecular-weight organic acids. Environ. Pollut. 2018, 235, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Li, C.; Zhang, C.; Wang, D.; Wang, Y. Nutrients uptake and low molecular weight organic acids secretion in the rhizosphere of Cynodon dactylon facilitate mercury activation and migration. J. Hazard. Mater. 2023, 441, 129961–129965. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, T.; Huang, R.; Wang, D.; Zhang, J.; Qian, S.; Yin, D.; Chen, H. A simulation study of inorganic sulfur cycling in the water level fluctuation zone of the Three Gorges Reservoir, China and the implications for mercury methylation. Chemosphere 2017, 166, 31–40. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, T.; Wang, F.; Zhang, J.; Wang, D.; Huang, R.; Yin, D.; Liu, Z.; Wang, J. Inorganic sulfur and mercury speciation in the water level fluctuation zone of the Three Gorges Reservoir, China: The role of inorganic reduced sulfur on mercury methylation. Environ. Pollut. 2018, 237, 1112–1123. [Google Scholar] [CrossRef]
- Jiang, T.; Bravo, A.G.; Skyllberg, U.; Björn, E.; Wang, D.Y.; Yan, H.Y.; Green, N.W. Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China. Water Res. 2018, 146, 146–158. [Google Scholar] [CrossRef]
- Bao, Y.; Gao, P.; He, X. The water-level fluctuation zone of Three Gorges Reservoir—A unique geomorphological unit. Earth Sci. Rev. 2015, 150, 14–24. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Tang, X.-Y.; Guan, Z.; Liu, C. Occurrence of antibiotic resistome in farmland soils near phosphorus chemical industrial area. Sci. Total Environ. 2021, 796, 149053–149060. [Google Scholar] [CrossRef]
- Liao, J.; Wen, Z.; Ru, X.; Chen, J.; Wu, H.; Wei, C. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China. Ecotoxicol. Environ. Saf. 2016, 124, 460–469. [Google Scholar] [CrossRef]
- Shen, Q.; Demisie, W.; Zhang, S.; Zhang, M. The association of heavy metals with iron oxides in the aggregates of naturally enriched soil. Bull. Environ. Contam. Toxicol. 2020, 104, 144–148. [Google Scholar] [CrossRef]
- Meimaroglou, N.; Mouzakis, C. Cation Exchange Capacity (CEC), texture, consistency and organic matter in soil assessment for earth construction: The case of earth mortars. Constr. Build. Mater. 2019, 221, 27–39. [Google Scholar] [CrossRef]
- Dong, J.; Jiang, Y.; Lyu, M.; Cao, C.; Li, X.; Xiong, X.; Lin, W.; Yang, Z.; Chen, G.; Yang, Y.; et al. Drought Changes the Trade-Off Strategy of Root and Arbuscular Mycorrhizal Fungi Growth in a Subtropical Chinese Fir Plantation. Forests 2023, 14, 114. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R: Vienna, Austria, 2022. [Google Scholar]
- Nam, C.; Kwon, D.S.; Lee, M. Is technical expert compensated for the education on finance and management? J. Digit. Converg. 2014, 12, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Lai, W.; Xu, M.; Zheng, C. Background values of 11 elements in soil of Chongqing in China. Chongqing Environ Prot. 1982, 8, 38–51. [Google Scholar]
- Zhang, W.; Peng, P.; Tong, C.; Wang, X.; Wu, J. Characteristics of distribution and composition of organic carbon in Dongting lake floodplain. Environ. Sci. 2005, 26, 56–60. [Google Scholar]
- Zhou, J.; Wang, Z.; Sun, T.; Zhang, H.; Zhang, X. Mercury in terrestrial forested systems with highly elevated mercury deposition in southwestern China: The risk to insects and potential release from wildfires. Environ. Pollut. 2016, 212, 188–196. [Google Scholar] [CrossRef]
- Brix, H.; Sorrel, B.K.; Lorenzen, B. Are phragimates dominated wetlands a net source or net sink of greenhouse gases. Aquat. Bot. 2001, 69, 313–324. [Google Scholar] [CrossRef]
- Emde, D.; Hannam, K.D.; Most, I.; Nelson, L.M.; Jones, M.D. Soil organic carbon in irrigated agricultural systems: A meta-analysis. Global Chang. Biol. 2021, 27, 3898–3910. [Google Scholar] [CrossRef] [PubMed]
- Keller, P.S.; Marcé, R.; Obrador, B.; Koschorreck, M. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nat. Geosci. 2021, 14, 402–408. [Google Scholar] [CrossRef]
- Obrist, D.; Johnson, D.W.; Lindberg, S.E. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences 2009, 6, 765–777. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Li, F.; Liang, N.; Zhang, P.; Xu, Y.; Chang, Z.; Wu, M.; Duan, W.; Steinberg, C.E.W.; Pan, B. Protection of Extractable Lipid and Lignin: Differences in Undisturbed and Cultivated Soils Detected by Molecular Markers. Chemosphere 2018, 213, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Sanei, H.; Outridge, P.M.; Stern, G.A.; Macdonald, R.W. Classification of mercury–labile organic matter relationships in lake sediments. Chem. Geol. 2014, 373, 87–92. [Google Scholar] [CrossRef]
- He, M.; Tian, L.; Braaten, H.F.V.; Wu, Q.; Luo, J.; Cai, L.-M.; Meng, J.-H.; Lin, Y. Mercury–Organic Matter Interactions in Soils and Sediments: Angel or Devil? Bull. Environ. Contam. Toxicol. 2019, 102, 1–7. [Google Scholar] [CrossRef]
- Chakraborty, P.; Sarkar, A.; Vudamala, K.; Naik, R.; Nath, B.N. Organic matter—A key factor in controlling mercury distribution in estuarine sediment. Mar. Chem. 2015, 173, 302–309. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Liem-Nguyen, V.; Tian, S.; Zhang, S.; Wang, D.; Jiang, T. Binding strength of mercury (ii) to different dissolved organic matter: The roles of dom properties and sources. Sci. Total Environ. 2021, 807, 150979–150988. [Google Scholar] [CrossRef]
County/District | pH | CEC (cmol kg−1) | Feo (mg kg−1) |
---|---|---|---|
Jiangjin | 8.28 ± 0.75 | 15.73 ± 3.92 | 4202.42 ± 1042.86 |
Banan | 7.74 ± 0.43 | 10.81 ± 7.09 | 4298.48 ± 1241.03 |
Nan’an | 7.73 ± 0.43 | 14.16 ± 6.70 | 5426.34 ± 878.24 |
Jiangbei | 7.88 ± 0.36 | 14.10 ± 9.46 | 3515.49 ± 609.66 |
Yubei | 7.02 ± 0.90 | 17.64 ± 6.73 | 4524.21 ± 1194.03 |
Changshou | 6.63 ± 1.25 | 11.39 ± 2.36 | 5153.01 ± 756.26 |
Fuling | 7.18 ± 0.68 | 21.06 ± 9.95 | 5121.29 ± 1007.42 |
Fengdu | 8.04 ± 0.19 | 13.74 ± 4.78 | 3546.34 ± 738.53 |
Shizhu | 7.7 ± 0.19 | 13.75 ± 4.22 | 2591.38 ± 1012.06 |
Zhongxian | 6.81 ±0.98 | 16.37 ± 5.10 | 3551.69 ± 1286.33 |
Wanzhou | 7.43 ± 0.61 | 16.25 ± 6.27 | 4041.99 ± 1799.65 |
Kaixian | 7.15 ± 0.61 | 16.70 ± 4.14 | 3222.15 ± 865.25 |
Yuyang | 8.13 ± 0.69 | 16.78 ± 5.38 | 3618. 50 ± 801.57 |
Fengjie | 7.50 ± 0.52 | 22.80 ± 8.72 | 4197.57 ± 1244.67 |
Wushan | 8.19 ± 0.23 | 18.29 ± 8.71 | 4736.56 ± 1053.78 |
County/District | N | Mean | Min | Max | Median | SD | CV (%) |
---|---|---|---|---|---|---|---|
Jiangjin | 12 | 76.0 | 21.2 | 131.6 | 72.2 | 37.1 | 48.8 |
Banan | 13 | 75.2 | 26.5 | 143.2 | 70.9 | 33.5 | 44.5 |
Nan’an | 12 | 125.5 | 66.8 | 181.2 | 136.5 | 33.8 | 27.0 |
Jiangbei | 15 | 110.3 | 43.3 | 218.5 | 105.0 | 50.2 | 45.5 |
Yubei | 16 | 85.4 | 23.8 | 162.7 | 80.6 | 32.6 | 38.2 |
Changshou | 16 | 63.4 | 33.2 | 137.0 | 58.8 | 29.7 | 46.8 |
Fuling | 18 | 108.9 | 46.1 | 192.1 | 97.2 | 85.6 | 45.4 |
Fengdu | 16 | 54.4 | 18.4 | 118.0 | 48.8 | 25.8 | 47.4 |
Shizhu | 8 | 38.9 | 28.6 | 45.8 | 40.3 | 5.5 | 14.2 |
Zhongxian | 16 | 55.7 | 26.5 | 111.9 | 44.5 | 25.5 | 45.8 |
Wanzhou | 18 | 99.3 | 18.8 | 204.8 | 82.0 | 52.6 | 53.0 |
Kaixian | 24 | 92.2 | 36.8 | 184.5 | 86.2 | 37.3 | 40.5 |
Yuyang | 22 | 46.8 | 29.6 | 68.3 | 45.4 | 10.0 | 21.4 |
Fengjie | 18 | 86.9 | 27.5 | 172.0 | 77.2 | 43.9 | 50.5 |
Wushan | 18 | 47.8 | 23.3 | 76.2 | 46.0 | 14.4 | 30.1 |
County/District | N | Mean | Min | Max | Median | SD | CV (%) |
---|---|---|---|---|---|---|---|
Jiangjin | 12 | 7.35 | 3.03 | 12.45 | 6.92 | 3.65 | 49.72 |
Banan | 13 | 6.61 | 2.41 | 16.02 | 5.97 | 3.88 | 58.62 |
Nan’an | 12 | 10.16 | 5.74 | 17.19 | 9.94 | 3.09 | 30.46 |
Jiangbei | 15 | 8.92 | 3.89 | 23.79 | 7.92 | 5.10 | 57.15 |
Yubei | 16 | 8.83 | 3.28 | 20.48 | 8.06 | 5.07 | 57.44 |
Changshou | 16 | 8.34 | 3.25 | 14.81 | 8.35 | 2.97 | 35.62 |
Fuling | 18 | 8.68 | 4.23 | 13.49 | 8.27 | 3.14 | 36.16 |
Fengdu | 16 | 5.84 | 2.34 | 10.55 | 5.95 | 2.48 | 42.52 |
Shizhu | 8 | 6.02 | 2.53 | 11.25 | 5.13 | 2.73 | 45.37 |
Zhongxian | 16 | 8.82 | 3.83 | 14.83 | 7.46 | 3.31 | 37.49 |
Wanzhou | 18 | 8.30 | 3.02 | 14.79 | 8.56 | 3.47 | 41.76 |
Kaixian | 24 | 8.52 | 3.92 | 18.86 | 7.82 | 3.71 | 43.49 |
Yuyang | 22 | 5.29 | 2.28 | 8.55 | 5.09 | 1.65 | 31.25 |
Fengjie | 18 | 12.20 | 5.27 | 22.30 | 12.82 | 4.64 | 38.03 |
Wushan | 18 | 6.98 | 2.29 | 13.22 | 6.25 | 3.42 | 49.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Yang, C.; Chen, H.; Wang, Y.; Li, J.; Zhang, R.; Yang, Y.; Zhang, C.; Wang, D. Organic Carbon Controls Mercury Distribution and Storage in the Surface Soils of the Water-Level-Fluctuation Zone in the Three Gorges Reservoir Region, China. Int. J. Environ. Res. Public Health 2023, 20, 3681. https://doi.org/10.3390/ijerph20043681
Zhu S, Yang C, Chen H, Wang Y, Li J, Zhang R, Yang Y, Zhang C, Wang D. Organic Carbon Controls Mercury Distribution and Storage in the Surface Soils of the Water-Level-Fluctuation Zone in the Three Gorges Reservoir Region, China. International Journal of Environmental Research and Public Health. 2023; 20(4):3681. https://doi.org/10.3390/ijerph20043681
Chicago/Turabian StyleZhu, Sihua, Caiyun Yang, Hong Chen, Yongmin Wang, Jieqin Li, Ruixi Zhang, Yu Yang, Cheng Zhang, and Dingyong Wang. 2023. "Organic Carbon Controls Mercury Distribution and Storage in the Surface Soils of the Water-Level-Fluctuation Zone in the Three Gorges Reservoir Region, China" International Journal of Environmental Research and Public Health 20, no. 4: 3681. https://doi.org/10.3390/ijerph20043681
APA StyleZhu, S., Yang, C., Chen, H., Wang, Y., Li, J., Zhang, R., Yang, Y., Zhang, C., & Wang, D. (2023). Organic Carbon Controls Mercury Distribution and Storage in the Surface Soils of the Water-Level-Fluctuation Zone in the Three Gorges Reservoir Region, China. International Journal of Environmental Research and Public Health, 20(4), 3681. https://doi.org/10.3390/ijerph20043681