In Situ Remediation Technology for Heavy Metal Contaminated Sediment: A Review
Abstract
:1. Introduction
2. Heavy Metals in Sediment
2.1. Sources of Heavy Metals
2.2. Distribution and Transformation of Heavy Metals
3. In Situ Remediation Technology
3.1. Physical Remediation
3.2. Chemical Remediation
3.3. Bioremediation
3.4. Combined Remediation
4. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNEP. Responsible Resource Management for A Sustainable World: Findings from the International Resource Panel; Panel, T.I.R., Ed.; UNEP: Athens, Greece, 2012; pp. 1–36. [Google Scholar]
- Zeider, K.; Overmeiren, N.V.; Rine, K.P.; Sandhaus, S.; Ramírez-Andreotta, M.D. Foliar surfaces as dust and aerosol pollution monitors: An assessment by a mining site. Sci. Total Environ. 2021, 790, 148164. [Google Scholar] [CrossRef] [PubMed]
- Mnu, A.; Naka, B. Heavy metal pollution index of surface and groundwater from around an abandoned mine site, Klein Aub. Phys. Chem. Earth 2021, 124, 103067. [Google Scholar]
- Murguia, D.I.; Bringezu, S.; Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation. J. Environ. Manag. 2016, 180, 409–420. [Google Scholar] [CrossRef]
- Hajrić, D.; Smajlović, M.; Antunović, B.; Smajlović, A.; Alagić, D.; Tahirović, D.; Brenjo, D.; Članjak-Kudra, E.; Djedjibegović, J.; Porobić, A.; et al. Risk assessment of heavy metal exposure via consumption of fish and fish products from the retail market in Bosnia and Herzegovina. Food Control 2021, 133, 108631. [Google Scholar] [CrossRef]
- Kim, H.S.; Kin, Y.J.; Seo, Y.R. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.L.; Kuo, C.C.; Hsu, L.I.; Tsai, S.F.; Chiou, H.Y.; Chen, C.J.; Hsu, K.H.; Wang, S.L. Association between arsenic exposure, DNA damage, and urological cancers incidence: A long-term follow-up study of residents in an arseniasis endemic area of northeastern Taiwan. Chemosphere 2021, 166, 129094. [Google Scholar] [CrossRef] [PubMed]
- Stojsavljević, A.; Rovčanin, B.; Krstića, Đ.; Jagodić, J.; Borković-Mitić, S.; Paunović, I.; Živaljević, V.; Mitić, B.; Gavrović-Jankulović, M.; Manojlović, D. Cadmium as main endocrine disruptor in papillary thyroid carcinoma and the significance of Cd/Se ratio for thyroid tissue pathophysiology. J. Trace Elem. Med. Biol. 2019, 55, 190–195. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Wang, Z.; Xu, M.; Yuan, L.; Cui, J.; Liu, S. A protective role of Heme-regulated eIF2α kinase in cadmium-induced liver and kidney injuries. Chemosphere 2017, 185, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.F.; Song, Y.H.; Yuan, P.; Cui, X.Y.; Qiu, G.L. The remediation of heavy metals contaminated sediment. J. Hazard. Mater. 2009, 161, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Labianca, C.; Chen, L.; Gisi, S.D.; Wang, L. Sustainable ex-situ remediation of contaminated sediment: A review. Environ. Pollut. 2021, 287, 117333. [Google Scholar] [CrossRef]
- Peng, W.H.; Li, X.M.; Xiao, S.T.; Fan, W.H. Review of remediation technologies for sediments contaminated by heavy metals. J. Soil Sediments 2018, 18, 1701–1719. [Google Scholar] [CrossRef]
- Smolders, A.J.P.; Lock, R.A.C.; Velde, G.V.D.; Hoyos, R.I.M.; Roelofs, J.G.M. Effects of mining activities on eavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the pilcomayo river, South America. Arch. Environ. Contam. Toxicol. 2003, 44, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.; Rattan, V.K. Assessment of monthly variation in heavy metal characteristics of Electroplating industrial untreated wastewater at selected sites of Chandigarh. J. Appl. Nat. Sci. 2021, 13, 250–257. [Google Scholar] [CrossRef]
- Onder, S.; Dursun, S. Air borne heavy metal pollution of Cedrus libani (A. Rich.) in the city centre of Konya (Turkey). Atmos. Environ. 2006, 40, 1122–1133. [Google Scholar] [CrossRef]
- Gimeno-García, E.; Andreu, V.; Boluda, R. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ. Pollut. 1996, 92, 19–25. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.L.; Urango-Cardenas, I.D.; Núñez, S.M.B.; Díez, S. Atmospheric deposition of heavy metals in the mining area of the San Jorge river basin, Colombia. Air Qual. Atmos. Health 2014, 7, 577–588. [Google Scholar] [CrossRef]
- Khan, R.; Saxena, A.; Shukla, S. Evaluation of heavy metal pollution for River Gomti, in parts of Ganga Alluvial Plain, India. SN Appl. Sci. 2020, 2, 1451. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, T.; Song, B.; Geng, H.; Zhang, F. Risk assessment and prediction of heavy metal pollution in groundwater and river sediment: A case study of a typical agricultural irrigation area in Northeast China. Int. J. Anal. Chem. 2015, 2015, 921539. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.P.; Mohan, D.; Singh, V.K.; Malik, A. Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of the Ganges, India. J. Hydrol. 2005, 312, 14–27. [Google Scholar] [CrossRef]
- Simpson, S.L. Exposure-effect model for calculating copper effect concentrations in sediments with varying copper binding properties: A synthesis. Environ. Sci. Technol. 2005, 39, 7089–7096. [Google Scholar] [CrossRef]
- Chang, Z.; Yu, Z.G.; Zeng, G.M.; Jiang, M.; Yang, Z.Z.; Fang, C.; Zhu, M.Y.; Shen, L.Q.; Hu, L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef]
- Hou, D.; Jiang, H.; Lue, C.; Ren, L.; Fan, Q.; Wang, J.; Xie, Z. Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicol. Environ. Saf. 2013, 93, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Kelderman, P.; Osman, A.A. Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands). Water Res. 2007, 41, 4251–4261. [Google Scholar] [CrossRef] [PubMed]
- Baumann, Z.; Fisher, N.S. Relating the sediment phase speciation of arsenic, cadmium, and chromium with their bioavailability for the deposit-feeding polychaete Nereis succinea. Environ. Toxicol. Chem. 2011, 30, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Campana, O.; Blasco, J.; Simpson, S.L. Demonstrating the appropriateness of developing sediment quality guidelines based on sediment geochemical properties. Environ. Sci. Technol. 2013, 47, 7483–7489. [Google Scholar] [CrossRef] [Green Version]
- Gustavsson, J.; Yekta, S.S.; Karlsson, A.; Skyllberg, U.; Bo, H.S. Potential bioavailability and chemical forms of Co and Ni in the biogas process—An evaluation based on sequential and acid volatile sulfide extractions. Eng. Life Sci. 2013, 13, 572–579. [Google Scholar] [CrossRef]
- Burton, E.D.; Phillips, I.R.; Hawker, D.W. Factors controlling the geochemical partitioning of trace metals in estuarine sediments. Soil Sediment Contam. Int. J. 2006, 15, 253–276. [Google Scholar] [CrossRef]
- Simpson, S.L.; Rochford, L.; Birch, G.F. Geochemical influences on metal partitioning in contaminated estuarine sediments. Mar. Freshw. Res. 2002, 53, 9–17. [Google Scholar] [CrossRef]
- Yu, K.C.; Tsai, L.J.; Chen, S.H.; Ho, S.T. Chemical binding of heavy metals in anoxic river sediments. Water Res. 2001, 35, 4086–4094. [Google Scholar] [CrossRef]
- Equeenuddin, S.M.; Tripathy, S.; Sahoo, P.K.; Panigrahi, M.K. Metal behavior in sediment associated with acid mine drainage stream: Role of pH. J. Geochem. Explor. 2013, 124, 230–237. [Google Scholar] [CrossRef]
- Hong, Y.; Reible, D.D. Modeling the effect of pH and salinity on biogeochemical reactions and metal behavior in sediment. Water Air Soil Pollut. 2013, 225, 1800. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Zhao, P.; Chen, L.; Yan, C.; Yan, Y.; Chi, Q. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans. Mar. Pollut. Bull. 2015, 101, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Laing, G.D.; Rinklebe, J.; Vandecasteele, B.; Meers, E.; Tack, F.M.G. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Sci. Total Environ. 2009, 407, 3972–3985. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, B.P. Modelling the sulfide-oxygen reaction and associated pH gradients in porewaters. Geochim. Cosmochim. Acta 1991, 55, 145–159. [Google Scholar] [CrossRef]
- Gang, L.; Nan, L.; Yang, W.; Zhu, D. Relationship between heavy metal content in polluted soil and soil organic matter and pH in mining areas. IOP Conf. Ser. Mater. Sci. Eng. 2018, 394, 052081. [Google Scholar] [CrossRef]
- Li, Y.; Gong, X. Effects of Dissolved Organic Matter on the Bioavailability of Heavy Metals during Microbial Dissimilatory Iron Reduction: A Review. In Reviews of Environmental Contamination and Toxicology; Voogt, P.d., Ed.; Springer: New York, NY, USA, 2021; Volume 257, pp. 72–86. [Google Scholar]
- Sekaly, A.L.R.; Mandal, R.; Hassan, N.M.; Murimboh, J.; Chakrabarti, C.L.; Back, M.H.; Grégoire, D.C.; Schroeder, W.H. Effect of metal/fulvic acid mole ratios on the binding of Ni(II), Pb(II), Cu(II), Cd(II), and Al(III) by two well-characterized fulvic acids in aqueous model solutions. Anal. Chim. Acta 1999, 402, 211–221. [Google Scholar] [CrossRef]
- Clark, M.W.; Mcconchie, D.M.; Lewis, D.W.; Saenger, P. Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: A geochemical model. Chem. Geol. 1998, 149, 147–171. [Google Scholar] [CrossRef]
- Shyleshchandran, M.N.; Mohan, M.; Ramasamy, E.V. Risk assessment of heavy metals in Vembanad Lake sediments (south-west coast of India), based on acid-volatile sulfide (AVS)-simultaneously extracted metal (SEM) approach. Environ. Sci. Pollut. Res. 2017, 25, 7333–7345. [Google Scholar] [CrossRef]
- Jonge, M.D.; Blust, R.; Bervoets, L. The relation between Acid Volatile Sulfides (AVS) and metal accumulation in aquatic invertebrates: Implications of feeding behavior and ecology. Environ. Pollut. 2010, 158, 1381–1391. [Google Scholar] [CrossRef]
- Jonge, D.M.; Teuchies, J.; Meire, P.; Blust, R.; Bervoets, L. The impact of increased oxygen conditions on metal-contaminated sediments part I: Effects on redox status, sediment geochemistry and metal bioavailability. Water Res. 2012, 46, 2205–2214. [Google Scholar] [CrossRef]
- USEPA. Use of Amendments for in Situ Remediation at Superfund Sediment Sites. In Office of Superfund Remediation and Technology Innovation; 2013; pp. 1–61. Available online: https://semspub.epa.gov/work/01/538504.pdf (accessed on 15 November 2022).
- Knox, A.S.; Paller, M.H.; Roberts, J. Active capping technology-new approaches for in situ remediation of contaminated sediments. Rem. J. 2012, 22, 93–117. [Google Scholar] [CrossRef]
- Libralato, G.; Minetto, D.; Lofrano, G.; Guida, M.; Notarnicola, M. Toxicity assessment within the application of in situ contaminated sediment remediation technologies: A review. Sci. Total Environ. 2018, 621, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Kutuniva, J.; Mäkinen, J.; Kauppila, T.; Karppinen, A.; Hellsten, S.; Luukkonen, T.; Lassi, U. Geopolymers as active capping materials for in situ remediation of metal(loid)-contaminated lake sediments. J. Environ. Chem. Eng. 2019, 7, 102852. [Google Scholar] [CrossRef]
- Raymond, C.; Samuelsson, G.S.; Agrenius, S.; Schaanning, M.T.; Gunnarsson, J.S. Impaired benthic macrofauna function 4years after sediment capping with activated carbon in the Grenland fjords, Norway. Environ. Sci. Pollut. Res. 2020, 28, 16181–16197. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, D.K.; Bailon, M.X.; Kim, H.; Reible, D.; Hong, Y. Evaluation of sediment capping effectiveness in Hyeongsan River for in-situ management of total mercury and methylmercury contamination. J. Soils Sediments 2022, 22, 2578–2591. [Google Scholar] [CrossRef]
- Liu, C.; Lin, J.; Zhang, Z.; Zhan, Y.; Hu, D. Effect of application mode (capping and amendment) on the control of cadmium release from sediment by apatite/calcite mixture and its phosphorus release risk. Environ. Sci. Pollut. Res. 2022, 29, 59846–59861. [Google Scholar] [CrossRef]
- Laukkanen, J.; Takaluoma, E.; Runtti, H.; Mkinen, J.; Kauppila, T.; Hellsten, S.; Luukkonen, T.; Lassi, U. In situ remediation of metal(loid)-contaminated lake sediments with alkali-activated blast furnace slag granule amendment: A field experiment. J. Soils Sediments 2022, 22, 1054–1067. [Google Scholar] [CrossRef]
- Srmo, E.; Silvani, L.; Braaten, H.; Bryntesen, T.; Eek, E.; Cornelissen, G. Formation and availability of methylmercury in mercury-contaminated sediment: Effects of activated carbon and biochar amendments. J. Soils Sediments 2022, 22, 1041–1053. [Google Scholar] [CrossRef]
- Wikstrom, J.; Bonaglia, S.; Ramo, R.; Renman, G.; Walve, J.; Hedberg, J.; Gunnarsson, J.S. Sediment Remediation with New Composite Sorbent Amendments to Sequester Phosphorus, Organic Contaminants, and Metals. Environ. Sci. Technol. 2021, 55, 11937–11947. [Google Scholar] [CrossRef]
- Cervi, E.C.; Hudson, M.; Rentschler, A.; Clark, S.; Brown, S.S.; Burton, G.A. Evaluation of Capping Materials to Reduce Zinc Flux from Sediments in a Former Mining Pit Lake. Environ. Toxicol. Chem. 2021, 41, 193–200. [Google Scholar] [CrossRef]
- Liu, Q.; Sheng, Y.; Liu, X. Efficacy of in situ active capping Cd highly contaminated sediments with nano-Fe2O3 modified biochar. Environ. Pollut. 2021, 290, 118134. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Ch’Ng, B.L.; Chen, C.; Ou, M.Y.; Cheng, Y.H.; Hsu, C.J.; Hsi, H.C. A simulation study of mercury immobilization in estuary sediment microcosm by activated carbon/clay-based thin-layer capping under artificial flow and turbation. Sci. Total Environ. 2020, 708, 135068. [Google Scholar]
- Aliyu, M.K.; Karim, A.T.A.; Chan, C.M.; Nda, M. In Situ Remediation of Lead Contaminated Marine Sediment using Bentonite, Kaolin and Sand as Capping Materials. IOP Conf. Ser. Earth Environ. Sci. 2020, 498, 012078. [Google Scholar] [CrossRef]
- Liu, Q.; Sheng, Y.; Wang, W.; Liu, X. Efficacy and microbial responses of biochar-nanoscale zero-valent during in-situ remediation of Cd-contaminated sediment. J. Clean. Prod. 2020, 287, 125076. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, M.; Ji, M.; Wang, Z.; Hou, H.; Zhang, J.; Huang, X.; Hursthouse, A.; Qian, G. Evaluation of heavy metals stability and phosphate mobility in the remediation of sediment by calcium nitrate. Water Environ. Res. 2020, 92, 1017–1026. [Google Scholar] [CrossRef]
- Wang, A.O.; Ptacek, C.J.; Blowes, D.W.; Gibson, B.D.; Landis, R.C.; Dyer, J.A.; Ma, J. Application of hardwood biochar as a reactive capping mat to stabilize mercury derived from contaminated floodplain soil and riverbank sediments. Sci. Total Environ. 2019, 652, 549–561. [Google Scholar] [CrossRef]
- Li, X.C.; Yang, Z.Z.; Zhang, C.; Wei, J.J.; Hu, J.W. Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment. Chem. Eng. J. 2019, 373, 307–317. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, Y.; Zhong, G.; Hui, Z. A comparison study on heavy metal/metalloid stabilization in Maozhou River sediment by five types of amendments. J. Soils Sediments 2019, 19, 3922–3933. [Google Scholar] [CrossRef]
- Leven, A.; Vlassopoulos, D.; Kanematsu, M.; Goin, J.; O’Day, P.A. Characterization of manganese oxide amendments for in situ remediation of mercury-contaminated sediments. Environ. Sci. Process. Impacts 2018, 20, 1761–1773. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, D.; Fungyee, T.N.; Dai, Y.; Zhang, X.; Tang, X.; Yang, Y. Enhancement of active thin-layer capping with natural zeolite to simultaneously inhibit nutrient and heavy metal release from sediments. Ecol. Eng. 2018, 119, 64–72. [Google Scholar] [CrossRef]
- Chung, C.S.; Song, K.H.; Choi, K.Y.; Kim, Y.I.; Kim, H.E.; Jung, J.M.; Kim, C.J. Variations in the concentrations of heavy metals through enforcement of a rest-year system and dredged sediment capping at the Yellow Sea-Byung dumping site, Korea. Mar. Pollut. Bull. 2017, 124, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tian, K.; Jiang, S.F.; Jiang, H. Preventing the Release of Cu2+ and 4-CP from Contaminated Sediments by Employing a Biochar Capping Treatment. Ind. Eng. Chem. Res. 2017, 56, 7730–7738. [Google Scholar] [CrossRef]
- Fu, R.; Wen, D.; Xia, X.; Zhang, W.; Gu, Y. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes. Chem. Eng. J. 2017, 316, 601–608. [Google Scholar] [CrossRef]
- Santos, E.; Ferro, S.; Vocciante, M. The Handbook of Environmental Remediation: Classic and Modern Techniques. In Chapter 5: Electrokinetic Remediation; Hussain, C.M., Ed.; CPI Group (UK) Ltd: Croydon, UK, 2020; pp. 121–144. [Google Scholar]
- Wen, D.; Fu, R.; Li, Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review. J. Hazard. Mater. 2021, 401, 123345. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhao, P.; Ran, Q.; Li, W.; Zhang, R. Enhanced electrokinetic remediation for Cd-contaminated clay soil by addition of nitric acid, acetic acid, and EDTA: Effects on soil micro-ecology. Sci. Total Environ. 2021, 772, 145029. [Google Scholar] [CrossRef]
- Vizcaino, R.L.; Yustres, A.; Asensio, L.; Saez, C.; Cañizares, P.; Rodrigo, M.A.; Navarro, V. Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning. Chemosphere Environ. Toxicol. Risk Assess. 2018, 199, 477–485. [Google Scholar] [CrossRef]
- Pazos, M.; Sanroman, M.A.; Cameselle, C. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere 2006, 62, 817–822. [Google Scholar] [CrossRef]
- Li, G.; Guo, S.; Li, S.; Zhang, L.; Wang, S. Comparison of approaching and fixed anodes for avoiding the ‘focusing’ effect during electrokinetic remediation of chromium-contaminated soil. Chem. Eng. J. 2012, 203, 231–238. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, B.; Guo, P.; Wang, S.; Guo, S. Enhanced electrokinetic remediation and simulation of cadmium-contaminated soil by superimposed electric field. Chemosphere 2019, 233, 17–24. [Google Scholar] [CrossRef]
- Wen, D.D.; Fu, R.B.; Zhang, W.; Gu, Y.Y. Enhanced electrokinetic remediation of heavy metals contaminated soils by stainless steel electrodes as well as the phenomenon and mechanism of electrode corrosion and crystallization. Env. Sci. 2017, 38, 1209–1217. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, H.; Ma, Y.; Yi, T.; Mao, X.; Lin, A. Corrosion protection of stainless steel by separate polypyrrole electrode in acid solutions. Mater. Corros.-Werkst. Und Korros. 2011, 62, 68–73. [Google Scholar] [CrossRef]
- Ferro, S.; Vocciante, M. ElectroKinetic Remediation. In Scholarly Community Encyclopedia; MDPI AG: Basel, Switzerland, 2021; pp. 1–7. [Google Scholar]
- Hu, L.; Hu, W.; Zhai, S.; Wu, H. Effects on water quality following water transfer in Lake Taihu, China. Ecol. Eng. 2010, 36, 471–481. [Google Scholar] [CrossRef]
- Zhang, M.; Dolatshah, A.; Zhu, W.; Yu, G. Case study on water quality improvement in Xihu Lake through diversion and water distribution. Water 2018, 10, 333. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Huang, A.; Peng, W.; Liu, X. Study on effect of different reservoir water diversion modes on river water quality improvement. IOP Conf. Ser. Earth Environ. Sci. 2021, 826, 012021. [Google Scholar] [CrossRef]
- Wu, Y.; Pang, H.; Liu, Y.; Wang, X.; Yu, S. Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environ. Pollut. 2019, 246, 608–620. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J.; Li, J.; Zhou, H.; Liu, Z. Modelling impacts of water diversion on water quality in an urban artificial lake. Environ. Pollut. 2021, 276, 116694. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Wu, J.F.; Fu, L.; You, A.J. Effects of ecological water diversion in coastal plain river network considering different control plans. IOP Conf. Ser. Earth Environ. Sci. 2021, 626, 012012. [Google Scholar] [CrossRef]
- Zhang, X.; Rui, Z.; Wang, Y.; Yong, L.; Guo, H. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes? J. Hydrol. 2016, 542, 281–291. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, R.; Ma, T.; Sun, Z. Modeling the effects of water diversion projects on surface water and groundwater interactions in the central Yangtze River basin. Sci. Total Environ. 2022, 830, 154606. [Google Scholar] [CrossRef]
- He, W.; Jiang, A.; Zhang, J.; Xu, H.; Yu, X. Comprehensive Hydrodynamic Fitness of an Estuary Channel and the Effects of a Water Diversion Inflow. Estuaries Coasts 2021, 45, 382–392. [Google Scholar] [CrossRef]
- Gong, R.; Xu, L.; Wang, D.; Li, H.; Xu, J. Water quality modeling for a typical urban lake based on the EFDC model. Environ. Model. Assess. 2016, 21, 643–655. [Google Scholar] [CrossRef]
- Welch, E.B.; Barbiero, R.P.; Bouchard, D.; Jones, C.A. Lake trophic state change and constant algal composition following dilution and diversion. Ecol. Eng. 1992, 1, 173–197. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2016, 182, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Nzihou, A.; Sharrock, P. Role of phosphate in the remediation and reuse of heavy metal polluted wastes and sites. Waste Biomass Valorization 2010, 1, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.W.; Xu, M.G. The progress in phosphate remediation of heavy metal-contaminated soils. Acta Ecol. Sin. 2007, 27, 3043–3050. [Google Scholar]
- Otunola, B.O.; Ololade, O.O. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environ. Technol. Innov. 2020, 18, 100692. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.S.; Tang, C.S.; Gu, K.; Shi, B. Remediation of heavy metal contaminated soils by biochar: A review. J. Environ. Geotech. 2019, 9, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z. A Preliminary Study on the Effect of Biochar on Soil Physical Properties. Master’s Thesis, Zhejiang University, Zhejiang, China, 2014; p. 62. [Google Scholar]
- Chen, J.; Liu, J.; Li, S.; Wang, L.; Wei, S. Effects of several sulfur compounds on stabilization of mercury in purple soil and approproiate stabilizing conditions. Chin. J. Environ. Eng. 2018, 12, 893–903. [Google Scholar] [CrossRef]
- Wolthers, M.; Charlet, L.; Linde, P.R.V.D.; Rickard, D.; Weijden, C.H.V.D. Surface chemistry of disordered mackinawite (FeS). Geochim. Cosmochim. Acta 2005, 69, 3469–3481. [Google Scholar] [CrossRef] [Green Version]
- Patterson, R.R.; Fendorf, S. Reduction of hexavalent chromium by amorphous iron sulfide. Environ. Sci. Technol. 1997, 31, 2039–2044. [Google Scholar] [CrossRef]
- Watson, J.; Ellwood, D.C.; Deng, Q.; Mikhalovsky, S.; Hayter, C.E.; Evans, J. Heavy metal adsorption on bacterially produced FeS. Miner. Eng. 1995, 8, 1097–1108. [Google Scholar] [CrossRef]
- Wharton, M.J.; Atkins, B.; Charnockab, J.M.; Livens, F.R.; Collison, D. An X-ray absorption spectroscopy study of the coprecipitation of Tc and Re with mackinawite (FeS). Appl. Geochem. 2000, 15, 347–354. [Google Scholar] [CrossRef]
- Skyllberg, U.; Drott, A. Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II)-an EXAFS study. Environ. Sci. Technol. 2010, 44, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Liu, Y.; Xiong, Z. Immobilization of mercury by carboxymethyl cellulose stabilized Iron sulfide nanopartides: Reaction mechanisms and effects of stabilizer and water chemistry. Environ. Sci. Technol. 2014, 48, 3986–3994. [Google Scholar] [CrossRef] [PubMed]
- Padmanaban, I.; Nithila, S. Stabilization of black cotton soil by using ground granulated blast furnace slag and steel slag. Int. J. Eng. Manag. Sci. 2018, 3, 36–39. [Google Scholar]
- Wildt, C.; Gibert, O.; Cortina, J.L.; Coscera, G. On-site remediation of chromium-contaminated sediments by combination of sediment washing and stabilization with magnesium oxide/limestone mixtures. J. Soils Sediments 2004, 4, 184–191. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Akakuru, O.U.; Xu, X.; Wu, A. Research progress and mechanism of nanomaterials-mediated in-situ remediation of cadmium-contaminated soil: A critical review. J. Environ. Sci. 2021, 104, 351–364. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, X.; Wang, X.; Lai, S.; Sun, Y.; Yang, D. Recent advances in metal-organic frameworks for the removal of heavy metal oxoanions from water Chem. Eng. J. 2020, 407, 127221. [Google Scholar] [CrossRef]
- Sheth, Y.; Dharaskar, S.; Chaudhary, V.; Khalid, M.; Walvekar, R. Prospects of titanium carbide-based MXene in heavy metal ion and radionuclide adsorption for wastewater remediation: A review. Chemosphere 2022, 293, 133563. [Google Scholar] [CrossRef]
- Yan, L.; Gao, H.; Chen, Y. Na-doped graphitic carbon nitride for removal of aqueous contaminants via adsorption and photodegradation. ASC Appl. Nano Mater. 2021, 4, 7746–7757. [Google Scholar] [CrossRef]
- Cai, C.; Zhao, M.; Yu, Z.; Rong, H.; Zhang, C. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review. Sci. Total Environ. 2019, 662, 205–217. [Google Scholar] [CrossRef]
- Marques, A.P.G.C.; Rangel, A.O.S.S.; Castro, P.M.L. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Crit. Rev. Environ. Sci. Technol. 2009, 39, 622–654. [Google Scholar] [CrossRef]
- Mani, D.; Kumar, C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 2014, 11, 843–872. [Google Scholar] [CrossRef] [Green Version]
- Tabak, H.H.; Lens, P.; Hullebusch, E.D.V.; Dejonghe, W. Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides-1. Microbial Processes and Mechanisms Affecting Bioremediation of Metal Contamination and Influencing Metal Toxicity and Transport. Rev. Environ. Sci. Bio./Technol. 2005, 4, 115–156. [Google Scholar] [CrossRef]
- Tiwari, J.; Chakravarty, P.; Sharma, P.; Sinha, R.; Bauddh, K. Phytoremediation: A Sustainable Method for Cleaning up the Contaminated Sites. In Phytorestoration of Abandoned Mining and Oil Drilling Sites; Kuldeep Bauddh, J.K.a.P.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–32. [Google Scholar]
- Chang, J.J.; Yan, Z.J.; Dong, J.; Wu, X.N.; Meng, Z.; Shi, Y.; Chen, J.Q. Mechanisms controlling the transformation of and resistance to mercury(II) for a plant-associated Pseudomonas sp. strain, AN-B15. J. Hazard. Mater. 2021, 425, 127948. [Google Scholar] [CrossRef]
- Durnford, D.; Dastoor, A.; Figueras-Nieto, D.; Ryjkov, A. Long range transport of mercury to the Arctic and across Canada. Atmos. Chem. Phys. 2010, 10, 6063–6086. [Google Scholar] [CrossRef] [Green Version]
- Jha, S. Progress, Prospects, and Challenges of Genetic Engineering in Phytoremediation. In Bioremediation of Pollutants; Pandey, V.C., Singh, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 57–123. [Google Scholar]
- Gucwa-Przepiora, E.; Malkowski, E.; Sas-Nowosielska, A.; Kucharski, R.; Krzyzak, J.; Kita, A.; Roemkens, P.F.A.M. Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Waryński at different soil depths. Environ. Pollut. 2007, 150, 338–346. [Google Scholar] [CrossRef]
- Visconti, D.; Ma, L.R.; Fiorentino, N.; Fagnano, M.; Clemente, R. Use of Brassica juncea and Dactylis glomerata for the phytostabilization of mine soils amended with compost or biochar. Chemosphere 2020, 260, 127661. [Google Scholar] [CrossRef]
- Trippe, K.M.; Manning, V.A.; Reaedon, C.L.; Klein, A.M.; Weidman, C.; Ducey, T.F.; Novak, J.M.; Watts, D.W.; Rushmiller, H.; Spokas, K.A.; et al. Phytostabilization of acidic mine tailings with biochar, biosolids, lime, and locally-sourced microbial inoculum: Do amendment mixtures influence plant growth, tailing chemistry, and microbial composition? Appl. Soil Ecol. 2021, 165, 103962. [Google Scholar] [CrossRef]
- Bolan, N.S.; Park, J.H.; Robinson, B.; Naidu, R.; Huh, K.Y. Phytostabilization: A green approach to contaminant containment. Adv. Agron. 2011, 112, 145–204. [Google Scholar] [CrossRef]
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Front. Plant Sci. 2018, 9, 1476. [Google Scholar] [CrossRef] [Green Version]
- Krzciuk, K.; Gałuszka, A. Prospecting for hyperaccumulators of trace elements: A review. Crit. Rev. Biotechnol. 2015, 33, 522–532. [Google Scholar] [CrossRef]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Factors affecting phytoextraction: A review. Pedosphere 2016, 26, 148–166. [Google Scholar] [CrossRef]
- Ju, W.; Duan, C.; Liu, L.; Jin, X.; Bravo-Ruiseco, G.; Mei, Y.; Fang, L. Reduction of Cu and nitrate leaching risk associated with EDDS-enhanced phytoextraction process by exogenous inoculation of plant growth promoting rhizobacteria. Chemosphere 2022, 287, 132288. [Google Scholar] [CrossRef]
- Gómez-Garrido, M.; Navarro, M.J.; Navarro, M.J.F.; Cano, F.A. The chelating effect of citric acid, oxalic acid, amino acids and Pseudomonas fluorescens bacteria on phytoremediation of Cu, Zn, and Cr from soil using Suaeda vera. Int. J. Phytorem. 2018, 20, 1033–1042. [Google Scholar] [CrossRef]
- Fei, L.; Xu, P.X.; Dong, Q.; Mo, Q.; Wang, Z.L. Young leaf protection from cadmium accumulation and regulation of nitrilotriacetic acid in tall fescue (Festuca arundinacea) and Kentucky bluegrass (Poa pratensis). Chemosphere 2018, 212, 124–132. [Google Scholar] [CrossRef]
- Beavers, A.; Koether, M.; McElroy, T.; Greipsson, S. Effects of exogenous application of plant growth regulators (SNP and GA3) on phytoextraction by switchgrass (Panicum virgatum L.) grown in lead (Pb) contaminated Soil. Sustainability 2021, 13, 10866. [Google Scholar] [CrossRef]
- Sessitsch, A.; Kuffner, M.; Kidd, P.; Vangronsveld, J.; Wenzel, W.W.; Fallmann, K.; Puschenreiter, M. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol. Biochem. 2013, 60, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Wang, P.; Wang, X.; Hu, B.; Tao, L. Phytoremediation of cadmium-contaminated sediment using Hydrilla verticillata and Elodea canadensis harbor two same keystone rhizobacteria Pedosphaeraceae and Parasegetibacter. Chemosphere 2022, 286, 131648. [Google Scholar] [CrossRef]
- Al-Solaimani, S.G.; Abohassan, R.A.; Alamri, D.A.; Yang, X.; Rinklebe, J.; Shaheen, S.M. Assessing the risk of toxic metals contamination and phytoremediation potential of mangrove in three coastal sites along the Red Sea. Mar. Pollut. Bull. 2022, 176, 113412. [Google Scholar] [CrossRef]
- Lufthansa, U.M.; Titah, H.S.; Pratikno, H. The Ability of Mangrove Plant on Lead Phytoremediation at Wonorejo Estuary, Surabaya, Indonesia. J. Ecol. Eng. 2021, 22, 253–268. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Al-Sodany, Y.M.; Haroun, S.A.; Kai, J. Temporal Potential of Phragmites australis as a Phytoremediator to Remove Ni and Pb from Water and Sediment in Lake Burullus, Egypt. Bull. Environ. Contam. Toxicol. 2021, 106, 516–527. [Google Scholar] [CrossRef]
- Suttiarporn, P.; Hongsawat, P.; Siripokharattana, K.; Thongboonmee, N.; Dalert, M.; Thongsai, P.; Sombut, W. Residue in the Mangrove Surface Sediment with the Feasibility of Phytoremediation Application. IOP Conf. Ser. Earth Environ. Sci. 2020, 586, 012008. [Google Scholar] [CrossRef]
- Eliseo, R.; Bitacura, J. Heavy metal tolerance of filamentous fungi from the sediments of Visayas State University wastewater pond. Ann. Trop. Res. 2021, 43, 88–101. [Google Scholar] [CrossRef]
- Liaquat, F.; Haroon, U.; Munis, M.F.H.; Arif, S.; Khizar, M.; Ali, W.; Che, S.; Liu, Q. Efficient recovery of metal tolerant fungi from the soil of industrial area and determination of their biosorption capacity. Environ. Technol. Innov. 2021, 21, 101237. [Google Scholar] [CrossRef]
- Arroyo-Herrera, I.; Román-Ponce, B.; Reséndiz-Martínez, A.L.; Santos, P.E.; Wang, E.T.; Vásquez-Murrieta, M.S. Heavy-metal resistance mechanisms developed by bacteria from Lerma–Chapala basin. Arch. Microbiol. 2021, 203, 1807–1823. [Google Scholar] [CrossRef]
- Biglari, Z.; Atigh, Q.; Heidari, A.; Sepehr, A.; Mahbub, K.R. Bioremediation of Heavy Metal Contaminated Soils Originated from Iron Ore Mine by Bio-augmentation with Native Cyanobacteria. Babol Noshirvani Univ. Technol. 2020, 11, 89–96. [Google Scholar]
- Eid, E.M.; Galal, T.M.; Sewelam, N.A.; Talha, N.I.; Abdallah, S.M. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: A comparative assessment. Environ. Sci. Pollut. Res. 2020, 27, 12138–12151. [Google Scholar] [CrossRef]
- Rahman, M.S.; Babu, S.; Rahman, M.; Jolly, Y.N.; Hossain, M.B. Source of metal contamination in sediment, their ecological risk, and phytoremediation ability of the studied mangrove plants in ship breaking area, Bangladesh. Mar. Pollut. Bull. 2019, 141, 137–146. [Google Scholar] [CrossRef]
- Lee, G.; Suonan, Z.; Kim, S.H.; Hwang, D.W.; Lee, K.S. Heavy metal accumulation and phytoremediation potential by transplants of the seagrass Zostera marina in the polluted bay systems. Mar. Pollut. Bull. 2019, 149, 110509. [Google Scholar] [CrossRef] [PubMed]
- Sampanpanish, P.; Pinpa, K. Cadmium Removal from Contaminated Sediment Using EDTA and DTPA with Water Hyacinth. Int. J. Environ. Res. 2018, 12, 543–551. [Google Scholar] [CrossRef]
- Kwon, H.K.; Jeon, J.Y.; Oh, S.J. Potential for heavy metal (copper and zinc) removal from contaminated marine sediments using microalgae and light emitting diodes. Ocean Sci. J. 2017, 52, 57–66. [Google Scholar] [CrossRef]
- Diep, P.; Mahadevan, R.; Yakunin, A.F. Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front. Bioeng. Biotechnol. 2018, 6, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushwah, A.; Srivastav, J.K.; Palsania, J. Biosorption of heavy metal: A review. Eur. J. Biotechnol. Biosci. 2015, 3, 51–55. [Google Scholar]
- Diaz-Bone, R.A.; Wiele, T.V. Biotransformation of metal(loid)s by intestinal microorganisms. Pure Appl. Chem. 2010, 82, 409–427. [Google Scholar] [CrossRef]
- Han, Z.; Yan, H.; Zhao, H.; Zhou, S.; Han, M.; Meng, X.; Zhang, Y.; Zhao, Y.; Sun, B.; Yao, C. Bio-precipitation of Calcite with Preferential Orientation Induced by Synechocystis sp. PCC6803. Geomicrobiol. J. 2014, 31, 884–899. [Google Scholar] [CrossRef]
- Potysz, A.; Hullebusch, V.; Eric, D.; Kierczak, J. Perspectives regarding the use of metallurgical slags as secondary metal resources—A review of bioleaching approaches. J. Environ. Manag. 2018, 219, 138–152. [Google Scholar] [CrossRef]
- Vera, M.; Schippers, A.; Sand, W. Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation—Part A. Appl. Microbiol. Biotechnol. 2013, 97, 7529–7541. [Google Scholar] [CrossRef]
- Shahi, M.P.; Kumari, P.; Mahobiya, D.; Shahi, S.K. Nano-Bioremediation of Environmental Contaminants: Applications, Challenges, and Future Prospects. In Bioremediation for Environmental Sustainability; Kumar, V., Saxena, G., Shah, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 83–89. [Google Scholar]
- Zhang, M.; Wang, X.; Yang, L.; Chu, Y. Research on progress in combined remediation technologies of heavy metal polluted sediment. Int. J. Environ. Res. Public Health 2019, 16, 5098. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.L.; Tang, C.; Franks, A.E. Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. Soil Biol. Biochem. 2016, 103, 131–137. [Google Scholar] [CrossRef]
Sediment | Adsorbent | Heavy Metal | Appling Method | Findings | Reference |
---|---|---|---|---|---|
The Hyeongsan River estuary, South Korea | Zeolite, AC/zeolite, AC/sand and zeolite/sand | Hg | Capping | Capping with AC/zeolite, AC/sand, and zeolite/sand reduced >90% of the Hg after 2 months. | [48] |
Pudong New District, Shanghai, China | Apatite, apatite/calcite mixture | Cd | Capping | The reduction efficiencies of Cd by the apatite capping and apatite/calcite mixture capping on day 22 were 92.7% and 98.8%, respectively. | [49] |
Lake Kivijärvi, Finland | BFS-GP granules | Fe, Zn, Ni, Cr | Mixing | The amendment effectively reduced the mobility of Fe, Zn, Ni, and Cr by about 50–90%. | [50] |
The Gunneklev fjord, Norway | Lignite AC (A-AC, 5%) and activated BC (A-BC, 5%) | Hg | Mixing | The A-AC and A-BC amendments strongly reduced the available MeHg-concentration in porewater (by 87% for A-AC and by 93% for A-BC after 12 months). | [51] |
A Baltic Sea bay, Sweden | Al, Polonite (calcium-silicate) and AC | Cd, Zn | Mixing | Al injection into anoxic sediments completely reduced the release of Cd (97%) and Zn (95%). Polonite mixed with AC reduced the release of Cd (67%) and Zn (89%). | [52] |
A Former Mining Pit Lake, Arkansas, USA | Limestone, bentonite clay and gravel | Zn | Capping | A three-layer cap consisting of limestone (top) + bentonite clay (middle) + gravel (bottom) was the most effective. | [53] |
Wulong River, China | BC and nano-Fe2O3 modified BC (nFe2O3@BC) | Cd | Capping | Both BC and nFe2O3@BC capping inhibited Cd release from sediment (reduction rates >99%), and nFe2O3@BC capping has better effectiveness. | [54] |
An estuary pond within a former chlor-alkali plant, China | AC/bentonite, AC/kaolin and AC/montmorillonite | Hg | Capping | The caps with AC (3%) + bentonite (3%) and AC (3%) + kaolin (3%) reduced total Hg concentration in overlying water by 75–95% after 75-d operation. | [55] |
The estuary of Sungai Kuala Perlis, Malaysia | Bentonite, kaolin and sand | Pb | Capping | Bentonite, kaolin, and mixture of bentonite with kaolin effectively reduced the release of Pb. | [56] |
Guangdang River, Yantai, China | BC and BC-nanoscale zero-valent iron (nZVI/BC) | Cd | Mixing | BC and nZVI/BC reduced the released Cd concentrations by 31–69% and 26–73%, respectively. | [57] |
Puhuitang Creek, Shanghai, China | Calcium nitrate and phosphate | Zn, Pb and Cu | Mixing | Over 50% of mobile Zn, Pb, and Cu might be reprecipitated in sediment. | [58] |
The South River in Virginia, USA | Hardwood BC | Hg | Capping | 80% of the Hg was retained on the biochar without promoting Hg methylation. | [59] |
Xiangjiang River, China | Fe3O4, (α + γ)-Fe2O3, and αFe2O3 | Cd | Mixing | (α + γ)-Fe2O3 exhibited better performances than the other iron oxides. | [60] |
Maozhou River, China | CaCO3, Ca(OH)2, zeolite, kaolin, FeCl2 | Cr, Ni, Cu | Mixing | Stabilization effect can be ordered as CaCO3 > zeolite > FeCl2 > kaolin > Ca(OH)2. | [61] |
A mercury-contaminated site, USA | Mn(IV)-oxide phases pyrolusite or birnessite | Hg | Mixing | Reaction of Mn(IV) oxide with pore water should poise sediment oxidation potential at a level higher than favorable for Hg methylation. | [62] |
A polluted reservoir, China. | Natural zeolite (N-zeolite) | Pb, Cd, Mn, Zn | Capping | The inhibition rates of Cd, Pb, Mn, and Zn were 35.7%, 85.7%, 65.6% and 57.8%, respectively. | [63] |
Lake Pyhäjärvi and Lake Kivijärvi, Finland | BFS-GP, MK-GP, exfoliated vermiculite | Al, Cu, Fe, Cr, Zn, Ni | Capping | BFS-GP was suitable for Al, Cu, Fe and Ni; MK-GP for Cu, Cr and Fe; and vermiculite for Al and Zn. | [46] |
The Yellow Sea, Korea | Dredged materials | Cr, Hg, Ni, Cu, Zn, Cd, Pb | Capping | The largest decreases were detected in Cr and Hg (≥ 80%), followed by Cd (74%), Cu and Zn (68%), Ni and Pb (10%). | [64] |
Nanfei River, Hefei, China | Rice husk biochar (RHB) | Cu | Capping | RHB can maintain the concentrations of Cu below the national criterion at pH = 5 and 7. | [65] |
Sediment/Soil | Biosorbent Type | Heavy Metals | Findings | Reference |
---|---|---|---|---|
Wangyu River, Jiangsu Province, China | Hydrilla verticillata and Elodea canadensis | Cd | The bio-concentration factors (BCFs) of both macrophytes exceeded 1.0. Two keystone bacteria (Pedosphaeraceae and genus Parasegetibacter) posed significant potential for promoting plant growth and tolerating Cd bio-toxicity. | [128] |
Coastal sites along the Red Sea, Saudi Arabia | Mangrove plant | Cd, Cr, Cu, Ni, Pb, Zn | Sediment-to-plant transfer coefficient values were >1. | [129] |
Wonorejo Estuary, Surabaya, Indonesia | Mangrove plant | Pb | The most effective mangrove involved in the accumulation of Pb was Avicennia. alba (BCFs: 1.13–90). | [130] |
Lake Burullus, Egypt | Phragmites australis | Ni, Pb | The highest monthly Ni and Pb standing stock were 18.2 and 18.4 g/m2, respectively. The translocation factor of Ni and Pb was >1. | [131] |
The coast of Rayong province, Thailand | Mangrove plant | Mn, Pb, Cr, Cu, Zn | The removal efficiency of heavy metals contaminated in sediment occurred in descending order of Mn > Pb > Cr > Cu > Zn (93.11%, 80.42%, 70.03%, 67.09% and 52.50%, respectively). | [132] |
A wastewater pond, Philippines | Fugi (Rhizopus sp., Mucor sp. and Trichoderma sp.) | Cd, Cu, Fe, Zn | Rhizopus sp. was the most tolerant to all the heavy metals tested with the minimum inhibitory concentrations (MIC) of 5 mM < Cd ≤ 6.5 mM, 10 mM < Cu ≤ 15 mM, 30 mM < Fe ≤ 35 mM and 25 mM < Zn ≤ 30 mM. | [133] |
Yuepu industrial area, Shanghai, China | Fugi (Fusarium fujikuroi, Fusarium solani, Trichoderma citronoviridae and Trichoderma reese) | Cd, Cr, Cu, Pb, Hg, Ni | The highest biosorption capacity of Pb was exhibited by Trichoderma citronoviridae, while Trichoderma reesei showed the best absorption capacity of Cu, followed by Fusarium solani. | [134] |
The Lerma-Chapala Basin, Mexico | Bacteria (mainly including Delftia and Pseudomonas) | Zn, As, Ni | The bacteria showed high heavy metal resistance, especially to Zn, As and Ni, which could be employed in the bioremediation process. | [135] |
Sangan iron ore mine, Iran | Cyanobacteria (Oscillatoria sp. and Leptolyngbya sp.) | Cr, Fe, Ni, As, Pb, Cu | Cyanobacteria inoculation decreased the available concentration of Pb and Ni. The maximum metal removal efficiency was 32%. | [136] |
Kitchener Drain, Nile Delta | Eichhornia crassipes, Ludwigia stolonifera, Echinochloa stagnina, Phragmites australis | Cd, Pb, Ni | Phragmites australis accumulated the highest concentrations of Cd (57.5 mg/kg) and (109.0 mg/kg), while Eichhornia crassipes accumulated the highest concentration of Pb (277.4 mg/kg). | [137] |
Shipbreaking area, Bangladesh | Mangrove plant | Zn, Pb, Cu, Cr | Acanthus ilicifolius showed hypermetabolizing capabilities for most metals, and Avicennia alba showed hypermetabolizing capabilities for Cu, Zn, and Fe. | [138] |
Jaran Bay and Onsan Bay, Korea | Seagrass Zostera marina | Cd, Zn, Hg | Zostera marina transplants accumulated a great amount of heavy metals in their tissues, which have the phytoremediation potential for the heavy metal-contaminated sediments. | [139] |
The western watershed, Thailand | EDTA and diethylenetriamine pentaacetic acid (DTPA) combined with Water Hyacinth | Cd | Water hyacinth accumulated Cd of 112.73 mg/kg in root within 3 months. | [140] |
Suyeong Bay, Korea | Phaeodactylum tricornutum, Nitzschia sp., Skeletonema sp., and Chlorella vulgaris | Cu, Zn | Chlorella vulgaris grew under red LED and exhibited the highest Cu and Zn removal capacities with values of 17.5 × 10−15 g Cu/cell and 38.3 × 10−15 g Zn/cell, respectively. | [141] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Wu, B.; Chai, X. In Situ Remediation Technology for Heavy Metal Contaminated Sediment: A Review. Int. J. Environ. Res. Public Health 2022, 19, 16767. https://doi.org/10.3390/ijerph192416767
Xu Q, Wu B, Chai X. In Situ Remediation Technology for Heavy Metal Contaminated Sediment: A Review. International Journal of Environmental Research and Public Health. 2022; 19(24):16767. https://doi.org/10.3390/ijerph192416767
Chicago/Turabian StyleXu, Qinqin, Boran Wu, and Xiaoli Chai. 2022. "In Situ Remediation Technology for Heavy Metal Contaminated Sediment: A Review" International Journal of Environmental Research and Public Health 19, no. 24: 16767. https://doi.org/10.3390/ijerph192416767
APA StyleXu, Q., Wu, B., & Chai, X. (2022). In Situ Remediation Technology for Heavy Metal Contaminated Sediment: A Review. International Journal of Environmental Research and Public Health, 19(24), 16767. https://doi.org/10.3390/ijerph192416767