Adsorption Characteristics of Iron on Different Layered Loess Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Characterization and Analysis
2.3. Adsorption Experiments
3. Results and Discussion
3.1. Effect of Initial Concentration of Fe3+ on Soil Adsorption Capacity
3.2. Effect of Initial pH on Soil Adsorption Capacity
3.3. Analysis of Adsorption Kinetics
3.4. Analysis of Isothermal Adsorption Kinetics
3.5. FTIR Analysis of Soil before and after Adsorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fu, W.; Ji, G.; Chen, H.; Yang, S.; Guo, B.; Yang, H.; Huang, Z. Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater. Sep. Purif. Technol. 2020, 251, 117407. [Google Scholar] [CrossRef]
- Masindi, V.; Foteinis, S.; Chatzisymeon, E. Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants. J. Hazard. Mater. 2022, 421, 126677. [Google Scholar] [CrossRef] [PubMed]
- Pocut, N.A.; Yulianis; Hengki, L.P.; Ryan, A.; Izzan, N.A.; Komala, P. Acid mine wastewater treatment using electrocoagulation method. Mater. Today Proc. 2022, 63, S434–S437. [Google Scholar]
- Li, Y.; Xu, Z.; Wu, J.; Mo, P. Efficiency and mechanisms of antimony removal from wastewater using mixed cultures of iron-oxidizing bacteria and sulfate-reducing bacteria based on scrap iron. Sep. Purif. Technol. 2020, 246, 116756. [Google Scholar] [CrossRef]
- Hu, K.; Xu, D.; Chen, Y. An assessment of sulfate reducing bacteria on treating sulfate-rich metal-laden wastewater from electroplating plant. J. Hazard. Mater. 2020, 393, 122376. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, C.; Hao, H.; Tong, Y.; Chen, W.; Zhao, G.; Liu, Y. Performances of biodegradable polymer composites with functions of nutrient slow-release and water retention in simulating heavy metal contaminated soil: Biodegradability and nutrient release characteristics. J. Clean. Prod. 2021, 294, 126278. [Google Scholar] [CrossRef]
- He, C.; Hu, A.; Wang, F.; Zhang, P.; Zhao, Z.; Zhao, Y.; Liu, X. Effective remediation of cadmium and zinc co-contaminated soil by electrokinetic-permeable reactive barrier with a pretreatment of complexing agent and microorganism. Chem. Eng. J. 2021, 407, 126923. [Google Scholar] [CrossRef]
- Bai, H.C.; Jiang, Z.M.; He, M.J.; Ye, B.Y.; Wei, S.Q. Relating Cd2+ binding by humic acids to molecular weight: A modeling and spectroscopic study. J. Environ. Sci. 2018, 70, 154–165. [Google Scholar] [CrossRef]
- Hu, W.Y.; Huang, B.; Borggaard, O.K.; Ye, M.; Tian, K.; Zhang, H.D.; Holm, P.E. Soil threshold values for cadmium based on paired soil-vegetable content analyses of greenhouse vegetable production systems in China: Implications for safe food production. Environ. Pollut. 2018, 241, 922–929. [Google Scholar] [CrossRef]
- Ren, J.Q.; Fan, W.H.; Wang, X.R.; Ma, Q.Q.; Li, X.M.; Xu, Z.Z.; Wei, C.Y. Influences of size-fractionated humic acids on arsenite and arsenate complexation and toxicity to Daphnia magna. Water Res. 2017, 108, 68–77. [Google Scholar] [CrossRef]
- Yang, K.; Miao, G.F.; Wu, W.H.; Lin, D.H.; Pan, B.; Wu, F.C.; Xing, B.S. Sorption of Cu2+ on humic acids sequentially extracted from a sediment. Chemosphere 2015, 138, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Borggaard, O.K.; Holm, P.E.; Strobel, B.W. Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review. Geoderma 2019, 343, 235–246. [Google Scholar] [CrossRef]
- Suéllen, S.; Marco, R.; Francesco, D.N.; Alessandro, E.; Marco, G.; Raffaele, M. Simultaneous removal of heavy metals from field-polluted soils and treatment of soil washing effluents through combined adsorption and artificial sunlight-driven photocatalytic processes. Chem. Eng. J. 2016, 283, 1484–1493. [Google Scholar]
- He, Y.; Hu, G.; Zhang, K.; Xue, S.; Li, B.; Yu, Z.; Jiang, W. Treatment of Acid Mine Wastewater Involves Filling Tank of Neutralization Reaction Section with Reinforced Steel Cage Containing Backfill Soil Including e.g., Red Clay, and Further Processing in Metal Ion Adsorption Section. Germany Patent C02F-009/04, 5 January 2022. [Google Scholar]
- Jiao, J.; Zhou, Z.; Tian, S.; Ren, Z. Facile preparation of molecular-imprinted polymers for selective extraction of theophylline molecular from aqueous solution. J. Mol. Struct. 2021, 1243, 130891. [Google Scholar] [CrossRef]
- Fan, Y.; Zheng, C.; Huo, A.; Wang, Q.; Shen, Z.; Xue, Z.; He, C. Investigating the binding properties between antimony(V) and dissolved organic matter (DOM) under different pH conditions during the soil sorption process using fluorescence and FTIR spectroscopy. Ecotoxicol. Environ. Saf. 2019, 181, 34–42. [Google Scholar] [CrossRef]
- Xu, J.L.; Koopal, L.K.; Fang, L.C.; Xiong, J.; Tan, W.F. Proton and Copper Binding to Humic Acids Analyzed by XAFS Spectroscopy and Isothermal Titration Calorimetry. Environ. Sci. Technol. 2018, 52, 4099–4107. [Google Scholar] [CrossRef]
- Alessandro, G.; Rombolà; Cristian, T.; Ivano, V.; Elisa, V.; Roberto, R.; Daniele, F. Effect of biochar amendment on organic matter and dissolved organic matter composition of agricultural soils from a two-year field experiment. Sci. Total Environ. 2021, 812, 151422. [Google Scholar]
- Glies, C.H.; Smith, D.; Huison, A. A general treatment and classification of the solute sorption isotherms. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 51–55. [Google Scholar]
- Zhang, X.; Li, R.; Liu, Z.; Xiao, C.; Shen, J. Performance of phosphorus removal from wastewater by natural siderite. Acta Sci. Circumstantiae 2017, 37, 219–226. [Google Scholar]
- Xu, J.F.; Li, D.; Dai, F.G. Research on the Characteristics of Migration and Absorption of Iron in the Porous Media. In Proceedings of the International Conference on Civil Engineering, Baoding, China, 19–20 July 2010. [Google Scholar]
- Chen, Y.M.; Wang, Y.Z.; Xie, H.J.; Jiang, Y.S. Adsorption characteristics of loess-modified natural silt towards Pb(II): Equilibrium and kinetic tests. Chin. J. Geotech. Eng. 2014, 36, 1185–1194. (In Chinese) [Google Scholar]
- Zhang, J.; Wang, P.; Li, X.; Li, L.; Che, Y.; Qu, S.; Liang, D.; Xu, D. Equilibrium adsorption and kinetic diffusion mechanism of CH, /N, on coconut shell-based activated carbon. J. China Coal Soc. 2020, 45, 427–435. (In Chinese) [Google Scholar]
- Zhang, Z.; Li, H.; Chi, R.; Long, F.; Chi, X.; Chen, W.; Chen, Z. Inhibition on the swelling of clay minerals in the leaching process of weathered crust elution-deposited rare earth ores. Appl. Clay Sci. 2022, 216, 106362. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Z.; Zhang, R.; Liu, J.; Liu, J.; Dai, Y.; Zhang, C.; Jia, H. Interfacial reaction between organic acids and iron-containing clay minerals: Hydroxyl radical generation and phenolic compounds degradation. Sci. Total Environ. 2021, 783, 147025. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, W.; Li, C.; Hu, E. Effects of Fe(III) and Cu(II) on the sorption of s-triazine herbicides on clay minerals. J. Hazard. Mater. 2021, 418, 126232. [Google Scholar] [CrossRef]
- Chen, H.; Li, Q.; Wang, M.; Jia, D.; Tan, W. XPS and two-dimensional FTIR correlation analysis on the binding characteristics of humic acid onto kaolinite surface. Sci. Total Environ. 2020, 724, 138154. [Google Scholar] [CrossRef] [PubMed]
Soil Sample | pH | Organic Matter (%) | CEC (cmol·kg−1) | Background Value of Iron (mg·kg−1) | Background Value of Manganese (mg·kg−1) | Granulometric Composition (%) | ||
---|---|---|---|---|---|---|---|---|
Clay | Particle | Sand | ||||||
Top layer | 5.88 | 5.7 | 12.16 | 38.21 | 2.52 | 35.534 | 33.542 | 30.924 |
Core layer | 3.86 | 4.6 | 9.97 | 38.6 | 8.87 | 37.439 | 32.769 | 29.792 |
Subsoil layer | 6.24 | 6.14 | 13.47 | 42.79 | 23.76 | 39.646 | 31.690 | 28.664 |
Soil | Elovich Equation q = b + klnt | First-Order Kinetic Equation ln(qm − q) = lnqm − kt | Second-Order Kinetic Equation t/q = 1/k qm2 + t/qm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
b | k | R2 | k | qm (mg·g−1) | Qm (mg·g−1) | R2 | k | qm (mg·g−1) | Qm (mg·g−1) | R2 | |
Top layer, | −1.1147 | 1.2185 | 0.9196 | 0.0538 | 5.6644 | 4.5981 | 0.9931 | 0.01129 | 5.3447 | 4.5981 | 0.9836 |
Core layer | −0.7135 | 1.1079 | 0.9288 | 0.0839 | 6.7524 | 4.4406 | 0.8261 | 0.01503 | 4.9900 | 4.4406 | 0.9914 |
Subsoil layer | 0.6375 | 0.8327 | 0.8725 | 0.0729 | 3.9484 | 4.3838 | 0.9718 | 0.03627 | 4.5998 | 4.3838 | 0.9983 |
Soil | Langmuir Equation Ce/qe = Ce/qm + 1/(b × qm) | Freundlich Equation lnqe = lnK + (1/n) × lnCe | ||||
---|---|---|---|---|---|---|
qm | b | R2 | K | 1/n | R2 | |
Top layer | 0.4138 | 0.5519 | 0.8885 | 10.0232 | 1.5761 | 0.4722 |
Core layer | 0.5230 | 5.1787 | 0.9142 | 0.2437 | 1.7919 | 0.489 |
Subsoil layer | 6.3980 | 0.5543 | 0.9798 | 2.2739 | 0.3555 | 0.4468 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Huang, Y.; Xie, Z.; Guan, W.; Zeng, Y. Adsorption Characteristics of Iron on Different Layered Loess Soils. Int. J. Environ. Res. Public Health 2022, 19, 16653. https://doi.org/10.3390/ijerph192416653
He L, Huang Y, Xie Z, Guan W, Zeng Y. Adsorption Characteristics of Iron on Different Layered Loess Soils. International Journal of Environmental Research and Public Health. 2022; 19(24):16653. https://doi.org/10.3390/ijerph192416653
Chicago/Turabian StyleHe, Li, Yonghui Huang, Zhigang Xie, Wei Guan, and Yao Zeng. 2022. "Adsorption Characteristics of Iron on Different Layered Loess Soils" International Journal of Environmental Research and Public Health 19, no. 24: 16653. https://doi.org/10.3390/ijerph192416653
APA StyleHe, L., Huang, Y., Xie, Z., Guan, W., & Zeng, Y. (2022). Adsorption Characteristics of Iron on Different Layered Loess Soils. International Journal of Environmental Research and Public Health, 19(24), 16653. https://doi.org/10.3390/ijerph192416653