Impact of Air Pollution and COVID-19 Infection on Periprocedural Death in Patients with Acute Coronary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Data
2.2. Air Pollution Data
2.3. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
- The clinical factors with the greatest impact on predicting periprocedural death were vascular access, critical LMCA stenosis, and critical LAD stenosis.
- COVID-19 infection had a strong influence on predicting periprocedural death.
- Air pollution influences peri-procedural deaths, however, to a lower degree than the other analyzed factors.
- The neural network that we designed is highly effective in predicting periprocedural death.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legutko, J.; Niewiara, Ł.; Bartuś, S.; Dobrzycki, S.; Gąsior, M.; Gierlotka, M.; Kochman, J.; Lesiak, M.; Matysek, J.; Ochała, A.; et al. Decline in the number of coronary angiography and percutaneous coronary intervention procedures in patients with acute myocardial infarction in Poland during the coronavirus disease 2019 pandemic. Kardiol Pol. 2020, 78, 574–576. [Google Scholar] [CrossRef] [PubMed]
- Siudak, Z.; Grygier, M.; Wojakowski, W.; Malinowski, K.P.; Witkowski, A.; Gąsior, M.; Dudek, D.; Bartuś, S. Clinical and procedural characteristics of COVID-19 patients treated with percutaneous coronary interventions. Catheter. Cardiovasc. Interv. 2020, 96, E568–E575. [Google Scholar] [CrossRef] [PubMed]
- Campo, G.; Fortuna, D.; Berti, E.; De Palma, R.; Pasquale, G.D.; Galvani, M.; Navazio, A.; Piovaccari, G.; Rubboli, A.; Guardigli, G.; et al. In- and out-of-hospital mortality for myocardial infarction during the first wave of the COVID-19 pandemic in Emilia-Romagna, Italy: A population-based observational study. Lancet Reg. Health Eur. 2021, 3, 100055. [Google Scholar] [CrossRef] [PubMed]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Env. Pollut 2020, 261, 114465. [Google Scholar] [CrossRef]
- Niemirycz, E.; Witt, M.; Kobusińska, M. Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans (PCDD/F) Measurements in Ambient Air over the Northern Poland. Int. J. Chem. Eng. Appl. 2016, 7, 32–35. [Google Scholar] [CrossRef] [Green Version]
- Yatin, M.; Tuncel, S.; Aras, N.; Olmez, I.; Aygun, S.; Tuncel, G. Atmospheric trace elements in Ankara, Turkey: 1. factors affecting chemical composition of fine particles. Atmos. Environ. 2013, 34, 1305–1318. [Google Scholar] [CrossRef]
- Benini, L.; Asquith, M. Chapter 16—Understanding Sustainability Challenges. In The European Environment—State and Outlook 2020; Publications Office of the European Union: Luxembourg, Luxembourg, 2019; p. 346. [Google Scholar]
- Sielski, J.; Kaziród-Wolski, K.; Jóźwiak, M.A.; Jóźwiak, M. The influence of air pollution by PM2.5, PM10 and associated heavy metals on the parameters of out-of-hospital cardiac arrest. Sci. Total Env. 2021, 788, 147541. [Google Scholar] [CrossRef]
- Berdowski, J.; Berg, R.A.; Tijssen, J.G.; Koster, R.W. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation 2010, 81, 1479–1487. [Google Scholar] [CrossRef]
- Wichmann, J.; Folke, F.; Torp-Pedersen, C.; Lippert, F.; Ketzel, M.; Ellermann, T.; Loft, S. Out-of-hospital cardiac arrests and outdoor air pollution exposure in Copenhagen, Denmark. PLoS ONE 2013, 8, e53684. [Google Scholar] [CrossRef]
- Xia, R.; Zhou, G.; Zhu, T.; Li, X.; Wang, G. Ambient Air Pollution and Out-of-Hospital Cardiac Arrest in Beijing, China. Int. J. Environ. Res. Public Health 2017, 14, 423. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155–722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuźma, Ł.; Wańha, W.; Kralisz, P.; Kazmierski, M.; Bachórzewska-Gajewska, H.; Wojakowski, W.; Dobrzycki, S. Impact of short-term air pollution exposure on acute coronary syndrome in two cohorts of industrial and non-industrial areas: A time series regression with 6,000,000 person-years of follow-up (ACS—Air Pollution Study). Environ. Res. 2021, 197, 111154. [Google Scholar] [CrossRef] [PubMed]
- Sielski, J.; Kaziród-Wolski, K.; Siudak, Z. Risk of perioperative death and sudden cardiac arrest: A study of 113,456 cases from the National Registry of Invasive Cardiology Procedures (ORPKI) for estimation of the perioperative prognosis. Kardiol. Pol. 2021, 79, 1328–1334. [Google Scholar] [CrossRef]
- Novelli, E.L.B.; Diniz, Y.S.; Machado, T.; ProenÇa, V.; TibiriÇÁ, T.; Faine, L.; Ribas, B.O.; Almeida, J.A. Toxic mechanism of nickel exposure on cardiac tissue. Toxic Subst. Mech. 2000, 19, 177–187. [Google Scholar] [CrossRef]
- Borné, Y.; Barregard, L.; Persson, M.; Hedblad, B.; Fagerberg, B.; Engström, G. Cadmium exposure and incidence of heart failure and atrial fibrillation: A population-based prospective cohort study. BMJ Open 2015, 5, e007366. [Google Scholar] [CrossRef]
- Karakulak, U.N.; Gunduzoz, M.; Ayturk, M.; Tek Ozturk, M.; Tutkun, E.; Yilmaz, O.H. Assessment of heart rate response to exercise and recovery during treadmill testing in arsenic-exposed workers. Ann. Noninvasive Electrocardiol. 2017, 22, e12437. [Google Scholar] [CrossRef] [Green Version]
- Alissa, E.M.; Ferns, G.A. Heavy metal poisoning and cardiovascular disease. J. Toxicol. 2011, 2011, 870125. [Google Scholar] [CrossRef]
- Kang, S.H.; Heo, J.; Oh, I.Y.; Kim, J.; Lim, W.H.; Cho, Y.; Choi, E.K.; Yi, S.M.; Do Shin, S.; Kim, H.; et al. Ambient air pollution and out-of-hospital cardiac arrest. Int. J. Cardiol. 2016, 203, 1086–1092. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, S.; Wang, W.; Huang, J.; Wang, K.; Liu, L.; Wei, S. The impact of short-term exposure to air pollutants on the onset of out-of-hospital cardiac arrest: A systematic review and meta-analysis. Int. J. Cardiol. 2017, 226, 110–117. [Google Scholar] [CrossRef]
- Bricker, R.S.; Valle, J.A.; Plomondon, M.E.; Armstrong, E.J.; Waldo, S.W. Causes of Mortality After Percutaneous Coronary Intervention. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005355. [Google Scholar] [CrossRef] [PubMed]
- Legutko, J.; Siudak, Z.; Parma, R.; Ochała, A.; Dudek, D. Poland: Coronary and structural heart interventions from 2010 to 2015. EuroIntervention 2017, 13, Z51–Z54. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaziród-Wolski, K.; Zając, P.; Zabojszcz, M.; Kołodziej, A.; Sielski, J.; Siudak, Z. The Effect of COVID-19 on the Perioperative Course of Acute Coronary Syndrome in Poland: The Estimation of Perioperative Prognosis and Neural Network Analysis in 243,515 Cases from 2020 to 2021. J. Clin. Med. 2022, 11, 5394. [Google Scholar] [CrossRef] [PubMed]
- Kaziród-Wolski, K.; Sielski, J.; Sidło, J.; Januszek, R.; Siudak, Z. The Most Relevant Factors Affecting the Perioperative Death Rate in Patients with Acute Coronary Syndrome and COVID-19, Based on Annual Follow-Up in the ORPKI Registry. Biomedicines 2021, 9, 1813. [Google Scholar] [CrossRef]
- Sielski, J.; Kaziród-Wolski, K.; Jurys, K.; Wałek, P.; Siudak, Z. The Effect of Periprocedural Clinical Factors Related to the Course of STEMI in Men and Women Based on the National Registry of Invasive Cardiology Procedures (ORPKI) between 2014 and 2019. J. Clin. Med. 2021, 10, 5716. [Google Scholar] [CrossRef]
- Bernardo, J.F. Aluminum Toxicity. Available online: https://emedicine.medscape.com/article/165315-overview#showall (accessed on 20 March 2022).
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Martelletti, L.; Martelletti, P. Air Pollution and the Novel Covid-19 Disease: A Putative Disease Risk Factor. SN Compr. Clin. Med. 2020, 2, 383–387. [Google Scholar] [CrossRef] [Green Version]
- Qu, G.; Li, X.; Hu, L.; Jiang, G. An Imperative Need for Research on the Role of Environmental Factors in Transmission of Novel Coronavirus (COVID-19). Environ. Sci. Technol. 2020, 54, 3730–3732. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef] [PubMed]
- Boskabady, M.; Marefati, N.; Farkhondeh, T.; Shakeri, F.; Farshbaf, A.; Boskabady, M.H. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ. Int. 2018, 120, 404–420. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, K.; Levänen, B.; Palmberg, L.; Åkesson, A.; Lindén, A. Cadmium in tobacco smokers: A neglected link to lung disease? Eur. Respir. Rev. 2018, 27, 147. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Park, H.; Hong, Y.; Park, J.; Hong, S.-H.; Bang, C.; Lim, M.-N.; Kim, W.J. Serum heavy metals and lung function in a chronic obstructive pulmonary disease cohort. Toxicol. Environ. Health Sci. 2017, 9, 30–35. [Google Scholar] [CrossRef]
- Sanchez, T.R.; Powers, M.; Perzanowski, M.; George, C.M.; Graziano, J.H.; Navas-Acien, A. A Meta-analysis of Arsenic Exposure and Lung Function: Is There Evidence of Restrictive or Obstructive Lung Disease? Curr. Environ. Health Rep. 2018, 5, 244–254. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Mafham, M.M.; Spata, E.; Goldacre, R.; Gair, D.; Curnow, P.; Bray, M.; Hollings, S.; Roebuck, C.; Gale, C.P.; Mamas, M.A.; et al. COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England. Lancet 2020, 396, 381–389. [Google Scholar] [CrossRef]
- Arrivi, A.; Dominici, M.; Bier, N.; Truglio, M.; Vaudo, G.; Pucci, G. Association Between Air Pollution and Acute Coronary Syndromes During Lockdown for COVID-19: Results From the Terni Hub Center. Front. Public Health 2021, 9, 683683. [Google Scholar] [CrossRef]
- Moon, K.A.; Oberoi, S.; Barchowsky, A.; Chen, Y.; Guallar, E.; Nachman, K.E.; Rahman, M.; Sohel, N.; D’Ippoliti, D.; Wade, T.J.; et al. A dose-response meta-analysis of chronic arsenic exposure and incident cardiovascular disease. Int. J. Epidemiol. 2018, 47, 1013. [Google Scholar] [CrossRef]
- da Silva, S.H.; Hausen Bdos, S.; da Silva, D.B.; Becker, A.M.; de Campos, M.M.; Duarte, M.M.; Moresco, R.N. Characteristics of a nickel-albumin binding assay for assessment of myocardial ischaemia. Biomarkers 2010, 15, 353–357. [Google Scholar] [CrossRef]
- da Silva, S.H.; Pereira Rda, S.; Hausen Bdos, S.; Signor, C.; Gomes, P.; de Campos, M.M.; Moresco, R.N. Assessment of the nickel-albumin binding assay for diagnosis of acute coronary syndrome. Clin. Chem. Lab. Med. 2011, 49, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Versaci, F.; Gaspardone, A.; Danesi, A.; Ferranti, F.; Mancone, M.; Mariano, E.; Rotolo, F.L.; Musto, C.; Proietti, I.; Berni, A.; et al. Impact of temporary traffic bans on the risk of acute coronary syndromes in a large metropolitan area. Panminerva. Med. 2020, 62, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Jiang, Y.; Hu, J.; Chen, H.; Li, H.; Meng, X.; Ji, J.S.; Gao, Y.; Wang, W.; Liu, C.; et al. Hourly Air Pollutants and Acute Coronary Syndrome Onset in 1.29 Million Patients. Circulation 2022, 145, 1749–1760. [Google Scholar] [CrossRef] [PubMed]
- Kaluzna-Oleksy, M.; Aunan, K.; Rao-Skirbekk, S.; Kjellstrom, T.; Ezekowitz, J.A.; Agewall, S.; Atar, D. Impact of climate and air pollution on acute coronary syndromes: An update from the European Society of Cardiology Congress 2017. Scand. Cardiovasc. J. 2018, 52, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Picano, E. Where have all the myocardial infarctions gone during lockdown? The answer is blowing in the less-polluted wind. Eur. Heart J. 2020, 41, 2146–2147. [Google Scholar] [CrossRef]
- Versaci, F.; Gaspardone, A.; Danesi, A.; Ferranti, F.; Mancone, M.; Mariano, E.; Rotolo, F.L.; Musto, C.; Proietti, I.; Berni, A.; et al. Interplay between COVID-19, pollution, and weather features on changes in the incidence of acute coronary syndromes in early 2020. Int. J. Cardiol. 2021, 329, 251–259. [Google Scholar] [CrossRef]
- Niedziela, J.T.; Cieśla, D.; Wojakowski, W.; Gierlotka, M.; Dudek, D.; Witkowski, A.; Zdrojewski, T.; Lesiak, M.; Buszman, P.; Gąsior, M. Is neural network better than logistic regression in death prediction in patients after ST-segment elevation myocardial infarction? Kardiol. Pol. 2021, 79, 1353–1361. [Google Scholar] [CrossRef]
- Li, H.; Dai, Q.; Yang, M.; Li, F.; Liu, X.; Zhou, M.; Qian, X. Heavy metals in submicronic particulate matter (PM(1)) from a Chinese metropolitan city predicted by machine learning models. Chemosphere 2020, 261, 127571. [Google Scholar] [CrossRef]
As (PM10) | Cd (PM10) | Ni (PM10) | Pb (PM10) | PM10 | PM2.5 | |
---|---|---|---|---|---|---|
ng·m−3 | ng·m−3 | µg·m−3 | µg·m−3 | µg·m−3 | ng·m−3 | |
records | 50,002 | 50,066 | 49,808 | 51,156 | 52,898 | 52,607 |
mean | 1.15 | 0.34 | 1.76 | 0.01 | 24.46 | 16.05 |
SD | 1.92 | 0.46 | 3.16 | 0.01 | 14.86 | 11.25 |
min | 0.10 | 0.01 | 0.14 | 0.0002 | 2.31 | 1.00 |
25% | 0.50 | 0.13 | 0.50 | 0.004 | 14.92 | 8.90 |
50% | 0.50 | 0.24 | 1.12 | 0.01 | 20.10 | 12.68 |
75% | 1.14 | 0.40 | 1.97 | 0.01 | 29.75 | 19.53 |
max | 23.20 | 5.39 | 91.95 | 0.27 | 256.30 | 166.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sielski, J.; Jóźwiak, M.A.; Kaziród-Wolski, K.; Siudak, Z.; Jóźwiak, M. Impact of Air Pollution and COVID-19 Infection on Periprocedural Death in Patients with Acute Coronary Syndrome. Int. J. Environ. Res. Public Health 2022, 19, 16654. https://doi.org/10.3390/ijerph192416654
Sielski J, Jóźwiak MA, Kaziród-Wolski K, Siudak Z, Jóźwiak M. Impact of Air Pollution and COVID-19 Infection on Periprocedural Death in Patients with Acute Coronary Syndrome. International Journal of Environmental Research and Public Health. 2022; 19(24):16654. https://doi.org/10.3390/ijerph192416654
Chicago/Turabian StyleSielski, Janusz, Małgorzata Anna Jóźwiak, Karol Kaziród-Wolski, Zbigniew Siudak, and Marek Jóźwiak. 2022. "Impact of Air Pollution and COVID-19 Infection on Periprocedural Death in Patients with Acute Coronary Syndrome" International Journal of Environmental Research and Public Health 19, no. 24: 16654. https://doi.org/10.3390/ijerph192416654
APA StyleSielski, J., Jóźwiak, M. A., Kaziród-Wolski, K., Siudak, Z., & Jóźwiak, M. (2022). Impact of Air Pollution and COVID-19 Infection on Periprocedural Death in Patients with Acute Coronary Syndrome. International Journal of Environmental Research and Public Health, 19(24), 16654. https://doi.org/10.3390/ijerph192416654