Spatial Heterogeneity and Regional Clustering of Factors Influencing Chinese Adolescents’ Physical Fitness
Abstract
:1. Introduction and Literature Review
1.1. Current State of Physical Fitness
1.2. Factors Influencing Physical Fitness
1.3. Hypotheses and Objectives
2. Methodology
2.1. Multi-Scale, Geographically Weighted Regression
2.2. K-Means Clustering
3. Data Collection and Analysis Process
3.1. Data Sources
3.2. Model Construction
4. Results and Discussion
4.1. Spatial Patterns of Influence Factors
4.2. Identification and Classification of the Influence Areas
5. Conclusions
Planning Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, Y.H.; Lau, P.W.; Dong, B.; Zou, Z.Y.; Yang, Y.D.; Wen, B.; Ma, Y.H.; Hu, P.J.; Song, Y.; Ma, J. Trends in physical fitness, growth, and nutritional status of Chinese children and adolescents: A retrospective analysis of 1·5 million students from six successive national surveys between 1985 and 2014. Lancet Child Adolesc. Health 2019, 3, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Poon, E.T.-C.; Tomkinson, G.; Huang, W.Y.; Wong, S.H. Temporal trends in the physical fitness of Hong Kong adolescents between 1998 and 2015. Int. J. Sport. Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.H.; Jan, C.; Ma, Y.H.; Dong, B.; Zou, Z.Y.; Yang, Y.D.; Xu, R.B.; Song, Y.; Ma, J.; Sawyer, S.M. Economic development and the nutritional status of Chinese school-aged children and adolescents from 1995 to 2014: An analysis of five successive national surveys. Lancet Diabetes Endocrinol. 2019, 7, 288–299. [Google Scholar] [CrossRef]
- Drenowatz, C.; Hinterkörner, F.; Greier, K. Physical fitness and motor competence in upper Austrian elementary school children—Study protocol and preliminary findings of a state-wide fitness testing program. Front. Sport. Act. Living 2021, 3, 635478. [Google Scholar] [CrossRef]
- Shribman, S. Adolescent health: An opportunity not to be missed. Lancet 2007, 369, 1788–1789. [Google Scholar] [CrossRef]
- Hanssen-Doose, A.; Niessner, C.; Oriwol, D.; Bös, K.; Woll, A.; Worth, A. Population-based trends in physical fitness of children and adolescents in Germany, 2003–2017. Eur. J. Sport Sci. 2021, 21, 1204–1214. [Google Scholar] [CrossRef]
- Chen, P. Physical activity, physical fitness, and body mass index in the Chinese child and adolescent populations: An update from the 2016 Physical Activity and Fitness in China—The Youth Study. J. Sport Health Sci. 2017, 6, 381. [Google Scholar] [CrossRef]
- Ekelund, U.; Luan, J.a.; Sherar, L.B.; Esliger, D.W.; Griew, P.; Cooper, A.; Collaborators, I.C.s.A.D. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA 2012, 307, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Girum, T.; Shumbej, T.; Shewangizaw, M. Burden of malaria in Ethiopia, 2000–2016: Findings from the Global Health Estimates 2016. Trop. Dis. Travel Med. Vaccines 2019, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Bös, K.; Oberger, J.; Lämmle, L.; Opper, E.; Romahn, N.; Tittlbach, S.; Wagner, M.O.; Woll, A.; Worth, A. Motorische Leistungsfähigkeit von Kindern; Hofmann: Schorndorf, Germany, 2008; pp. 137–158. [Google Scholar]
- Schmidt, W.; Hartmann-Tews, I.; Brettschneider, W.-D. Erster Deutscher Kinder-und Jugendsportbericht; Hofmann: Schorndorf, Germany, 2003. [Google Scholar]
- Tomkinson, G.R.; Olds, T.S. Secular changes in pediatric aerobic fitness test performance: The global picture. In Pediatric Fitness; Karger Publishers: Basel, Switzerland, 2007; Volume 50, pp. 46–66. [Google Scholar]
- Eberhardt, T.; Niessner, C.; Oriwol, D.; Buchal, L.; Worth, A.; Bös, K. Secular trends in physical fitness of children and adolescents: A review of large-scale epidemiological studies published after 2006. Int. J. Environ. Res. Public Health 2020, 17, 5671. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Macfarlane, D.; Noi, S.; Kim, D.-Y.; Wang, Z.Z.; Hong, R. Temporal changes in long-distance running performance of Asian children between 1964 and 2009. Sport. Med. 2012, 42, 267–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, C.L.; Carroll, M.D.; Flegal, K.M. High body mass index for age among US children and adolescents, 2003–2006. JAMA 2008, 299, 2401–2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjöberg, A.; Lissner, L.; Albertsson-Wikland, K.; Mårild, S. Recent anthropometric trends among Swedish school children: Evidence for decreasing prevalence of overweight in girls. Acta Paediatr. 2008, 97, 118–123. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sport. Med. 2019, 53, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Kaster, T.; Dooley, F.L.; Fitzgerald, J.S.; Walch, T.J.; Annandale, M.; Ferrar, K.; Lang, J.J.; Smith, J.J.; Tomkinson, G.R. Temporal trends in the sit-ups performance of 9,939,289 children and adolescents between 1964 and 2017. J. Sport. Sci. 2020, 38, 1913–1923. [Google Scholar] [CrossRef] [PubMed]
- WHO. Health for the World’s Adolescents: A Second Chance in the Second Decade: Summary; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Đurić, S.; Sember, V.; Starc, G.; Sorić, M.; Kovač, M.; Jurak, G. Secular trends in muscular fitness from 1983 to 2014 among Slovenian children and adolescents. Scand. J. Med. Sci. Sport. 2021, 31, 1853–1861. [Google Scholar] [CrossRef]
- Merino-De Haro, I.; Mora-Gonzalez, J.; Cadenas-Sanchez, C.; Borras, P.A.; Benito, P.J.; Chiva-Bartoll, O.; Torrijos-Niño, C.; Samaniego-Sánchez, C.; Quesada-Granados, J.J.; Sánchez-Delgado, A. Higher socioeconomic status is related to healthier levels of fatness and fitness already at 3 to 5 years of age: The PREFIT project: Relation between socioeconomic status, fatness and fitness in preschoolers. J. Sport. Sci. 2019, 37, 1327–1337. [Google Scholar] [CrossRef]
- Ruedl, G.; Niedermeier, M.; Wimmer, L.; Ploner, V.; Pocecco, E.; Cocca, A.; Greier, K. Impact of Parental Education and Physical Activity on the Long-Term Development of the Physical Fitness of Primary School Children: An Observational Study. Int. J. Environ. Res. Public Health 2021, 18, 8736. [Google Scholar] [CrossRef]
- Wold, B.; Mittelmark, M.B. Health-promotion research over three decades: The social-ecological model and challenges in implementation of interventions. Scand. J. Public Health 2018, 46, 20–26. [Google Scholar] [CrossRef]
- Wang, X.Z.; Guo, Q.; Jin, Y.; Li, Y.Q.; Wu, H.Q.; Ji, L. Theoretical origin and framework construction of adolescent sports and health promotion in China. China Sport Sci. 2014, 34, 3–14. [Google Scholar] [CrossRef]
- Moos, R.H. Conceptualizations of human environments. Am. Psychol. 1973, 28, 652. [Google Scholar] [CrossRef]
- Moos, R.H. Systems for the Assessment and Classification of Human Environments: An Overview. 1973. Available online: https://eric.ed.gov/?id=ED069781 (accessed on 17 February 2023).
- WHO. Estimating Environmental Health Impacts. Available online: https://www.who.int/activities/environmental-health-impacts (accessed on 20 January 2023).
- Kocić, J.; Stojanović, D.; Stanković, S.; Petrović, L.; Ignjatović, A.; Savić, Z.; Milenković, V.; Stojanović, T.; Momčilović, Z. Muscle strength test performance changes over time in Serbian children. Acta Med. Median. 2019, 58, 154–160. [Google Scholar] [CrossRef]
- Venckunas, T.; Emeljanovas, A.; Mieziene, B.; Volbekiene, V. Secular trends in physical fitness and body size in Lithuanian children and adolescents between 1992 and 2012. J. Epidemiol. Community Health 2017, 71, 181–187. [Google Scholar] [CrossRef]
- Rivera-Ochoa, M.; Brazo-Sayavera, J.; Vizmanos-Lamotte, B.; Mañas, A.; López-Taylor, J.R.; González-Gross, M.; Guadalupe-Grau, A. Health-related factors in rural and urban Mexican adolescents from the State of Jalisco: The HELENA-MEX study. Int. J. Environ. Res. Public Health 2020, 17, 8959. [Google Scholar] [CrossRef]
- Lee, E.-J.; So, W.-Y.; Youn, H.-S.; Kim, J. Effects of school-based physical activity programs on health-related physical fitness of korean adolescents: A preliminary study. Int. J. Environ. Res. Public Health 2021, 18, 2976. [Google Scholar] [CrossRef]
- Li, W.; Cui, Y.F.; Gong, Q.; Huang, C.; Guo, F. The Association of Smartphone Usage Duration with Physical Fitness among Chinese University Students. Int. J. Environ. Res. Public Health 2022, 19, 572. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, A.M.; Lee, J.A.; Laurson, K.R. Socioeconomic status and physical fitness in youth: Findings from the NHANES National Youth Fitness Survey. J. Sport. Sci. 2020, 38, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Wouters, M.; Evenhuis, H.M.; Hilgenkamp, T.I. Physical fitness of children and adolescents with moderate to severe intellectual disabilities. Disabil. Rehabil. 2020, 42, 2542–2552. [Google Scholar] [CrossRef] [PubMed]
- Evaristo, S.; Moreira, C.; Lopes, L.; Oliveira, A.; Abreu, S.; Agostinis-Sobrinho, C.; Oliveira-Santos, J.; Póvoas, S.; Santos, R.; Mota, J. Muscular fitness and cardiorespiratory fitness are associated with health-related quality of life: Results from labmed physical activity study. J. Exerc. Sci. Fit. 2019, 17, 55–61. [Google Scholar] [CrossRef]
- Ruedl, G.; Ewald, P.; Niedermeier, M.; Kirschner, W.; Kopp, M.; Drenowatz, C.; Greier, K. Long-term effect of migration background on the development of physical fitness among primary school children. Scand. J. Med. Sci. Sport. 2019, 29, 124–131. [Google Scholar] [CrossRef]
- Klein, M.; Fröhlich, M.; Pieter, A.; Emrich, E. Socio-economic status and motor performance of children and adolescents. Eur. J. Sport Sci. 2016, 16, 229–236. [Google Scholar] [CrossRef]
- Hou, B.; Nazroo, J.; Banks, J.; Marshall, A. Are cities good for health? A study of the impacts of planned urbanization in China. Int. J. Epidemiol. 2019, 48, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Ventriglio, A.; Torales, J.; Castaldelli-Maia, J.M.; De Berardis, D.; Bhugra, D. Urbanization and emerging mental health issues. CNS Spectr. 2021, 26, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Wang, W.J.; Wan, W.Y. Regional inequalities of residents’ health level in China: 2003–2013. Acta Geogr. Sin. 2017, 72, 14. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, C.Q.; Rhodes, R.E. The pathways linking objectively-measured greenspace exposure and mental health: A systematic review of observational studies. Environ. Res. 2021, 198, 111233. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Influence of urban and transport planning and the city environment on cardiovascular disease. Nat. Rev. Cardiol. 2018, 15, 432–438. [Google Scholar] [CrossRef]
- Bi, C.J.; Lin, H.N.; Zhang, J.; Gui, X.Y.; Shi, Z. Regional variation in growth status: A cross-sectional survey among Tibetan adolescents living at three different high altitudes in Tibet, China. Am. J. Hum. Biol. 2022, e23856. [Google Scholar] [CrossRef]
- Bustamante, A.; Santos, C.; Pereira, S.; Freitas, D.; Katzmarzyk, P.T.; Maia, J. Regional variation in growth status. The Peruvian health and optimist growth study. Am. J. Hum. Biol. 2022, 34, e23704. [Google Scholar] [CrossRef]
- Santos, C.; Bustamante, A.; Vasconcelos, O.; Pereira, S.; Garganta, R.; Lightfoot, J.T.; Tani, G.; Hedeker, D.; Katzmarzyk, P.T.; Maia, J. Sibling Resemblances in Physical Fitness in Three Distinct Regions in Peru: The Peruvian Sibling Study on Growth and Health. Behav. Genet. 2022, 52, 195–204. [Google Scholar] [CrossRef]
- Bustamante Valdivia, A.; Maia, J.; Nevill, A. Identifying the ideal body size and shape characteristics associated with children’s physical performance tests in P eru. Scand. J. Med. Sci. Sport. 2015, 25, e155–e165. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Chavez, R.C.; Nam, E.W. Prevalence and correlates of insufficient physical activity in school adolescents in Peru. Rev. Saude Publica 2018, 52, S1518–S8787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratman, G.N.; Anderson, C.B.; Berman, M.G.; Cochran, B.; De Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross, J.J.; Hartig, T. Nature and mental health: An ecosystem service perspective. Sci. Adv. 2019, 5, eaax0903. [Google Scholar] [CrossRef] [Green Version]
- Vanhelst, J.; Béghin, L.; Salleron, J.; Ruiz, J.R.; Ortega, F.B.; De Bourdeaudhuij, I.; Molnar, D.; Manios, Y.; Widhalm, K.; Vicente-Rodriguez, G. A favorable built environment is associated with better physical fitness in European adolescents. Prev. Med. 2013, 57, 844–849. [Google Scholar] [CrossRef]
- Cheah, W.L.; Chang, C.T.; Saimon, R. Environment factors associated with adolescents’ body mass index, physical activity and physical fitness in Kuching South City, Sarawak: A cross-sectional study. Int. J. Adolesc. Med. Health 2012, 24, 331–337. [Google Scholar] [CrossRef]
- Lu, Z.; Li, Z.; Mao, C.; Tan, Y.; Zhang, X.; Zhang, L.; Zhu, W.; Sun, Y. Correlation between Campus-Built Environment and Physical Fitness in College Students in Xi’an—A GIS Approach. Int. J. Environ. Res. Public Health 2022, 19, 7948. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M. Theoretical Foundations of Health Education and Health Promotion; Jones & Bartlett Learning: Burlington, MA, USA, 2021. [Google Scholar]
- Xu, L.; Wang, F.X. Dynamic Variation of the Height of 18-years-old Chinese Students in 20 years—Distribution Characteristics of Different Regions. J. Beijing Sport Univ. 2010, 11, 63–66. [Google Scholar]
- Li, S.; Zhang, Y.F.; Sheng, L. Influence of Body Function Index to Constitution and Geographical Distribution. Sport. Sci. 2016, 37, 102–109. [Google Scholar] [CrossRef]
- Wang, L.; Hu, J.C. Study on the Spatial Distribution Pattern of Physical Health in China. China Sport Sci. 2021, 41, 52–58. [Google Scholar] [CrossRef]
- Ning, Z.Y.; Zhou, W.H.; Wang, Y.T. Research on the Necessity of Establishing the Regional Physical Fitness Evaluation Standards. J. Nanjing Norm. Univ. 2012, 35, 149–152. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Li, S.; Jiang, S.E. Research on Formulation of Measurement Standards for Citizens’ Physical Fitness in Macao. China Sport Sci. Technol. 2019, 55, 12–21. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Jiang, C.M.; Cai, R.; Zhou, J.H.; Wu, D.M. Comparative Study on Public Health of Residents in Macao, Bejing, Shanghai and Tianjin. China Sport Sci. Technol. 2015, 51, 125–133. [Google Scholar] [CrossRef]
- Geddes, A.; Fotheringham, A.S.; Libby, G.; Steele, R.J. Colorectal cancer screening participation: Exploring relationship heterogeneity and scale differences using multiscale geographically weighted regression. Geospat. Health 2021, 16, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Lao, X.; Gu, H.Y. Unveiling various spatial patterns of determinants of hukou transfer intentions in China: A multi-scale geographically weighted regression approach. Growth Chang. 2020, 51, 1860–1876. [Google Scholar] [CrossRef]
- Lao, X.; Gu, H.Y.; Yu, H.C.; Xiao, F. Exploring the spatially-varying effects of human capital on urban innovation in China. Appl. Spat. Anal. Policy 2021, 14, 827–848. [Google Scholar] [CrossRef]
- Yang, W. An Extension of Geographically Weighted Regression with Flexible Bandwidths; University of St Andrews: St Andrews, UK, 2014. [Google Scholar]
- Gu, H.Y.; Yu, H.C.; Sachdeva, M.; Liu, Y. Analyzing the distribution of researchers in China: An approach using multiscale geographically weighted regression. Growth Chang. 2021, 52, 443–459. [Google Scholar] [CrossRef]
- Yu, H.C.; Fotheringham, A.S.; Li, Z.Q.; Oshan, T.; Kang, W.; Wolf, L.J. Inference in multiscale geographically weighted regression. Geogr. Anal. 2020, 52, 87–106. [Google Scholar] [CrossRef]
- Frades, I.; Matthiesen, R. Overview on techniques in cluster analysis. Bioinform. Methods Clin. Res. 2010, 593, 81–107. [Google Scholar] [CrossRef]
- Grubesic, T.H.; Wei, R.; Murray, A.T. Spatial clustering overview and comparison: Accuracy, sensitivity, and computational expense. Ann. Assoc. Am. Geogr. 2014, 104, 1134–1156. [Google Scholar] [CrossRef]
- Gorunescu, F. Data Mining: Concepts, Models and Techniques; Springer Science & Business Media: Berlin, Germany, 2011; Volume 12. [Google Scholar]
- Tong, Z.H.; Kong, Z.X.; Jia, X.; Zhang, H.Y.; Zhang, Y.M. Multiscale Impact of Environmental and Socio-Economic Factors on Low Physical Fitness among Chinese Adolescents and Regionalized Coping Strategies. Int. J. Environ. Res. Public Health 2022, 19, 13504. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, Y.; Kong, Z.; Zhang, Y.; Zhuang, J. Prevalence of physical fitness in Chinese school-aged children: Findings from the 2016 Physical Activity and Fitness in China—The Youth Study. J. Sport Health Sci. 2017, 6, 395–403. [Google Scholar] [CrossRef]
- Ministry of Education of the People’s Republic of China. Notice of the Ministry of Education on the National Student Physical Fitness Standard (Revised 2014). Available online: http://www.moe.gov.cn/s78/A17/twys_left/moe_938/moe_792/s3273/201407/t20140708_171692.html (accessed on 15 February 2023).
- Chen, L.; Zhang, Z.X.; Long, Y. Association between leisure-time physical activity and the built environment in China: Empirical evidence from an accelerometer and GPS-based fitness app. PLoS ONE 2021, 16, e0260570. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Liu, H.; Luo, K.; Xiaohua, Y.U. Comprehensive regionalization of human geography in China. Acta Geogr. Sin. 2017, 72, 179–196. [Google Scholar] [CrossRef]
- Ernst, A.F.; Albers, C.J. Regression assumptions in clinical psychology research practice—A systematic review of common misconceptions. PeerJ 2017, 5, e3323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.J.; Cai, W.B. The Impact of Education on the Employment Quality of Migrant Population in Ethnic Minority Areas: An Analysis Based on the Data of the 2018 China Migrant Population Dynamic Monitoring Survey. J. Southwest Univ. Natl. 2021, 42, 41–52. [Google Scholar] [CrossRef]
- Niermeyer, S.; Andrade Mollinedo, P.; Huicho, L. Child health and living at high altitude. Arch. Dis. Child. 2009, 94, 806–811. [Google Scholar] [CrossRef]
- Naeije, R. Physiological adaptation of the cardiovascular system to high altitude. Prog. Cardiovasc. Dis. 2010, 52, 456–466. [Google Scholar] [CrossRef]
Name | Description | Data Source |
---|---|---|
Dependent variables | ||
EGR | Percentage of youth with a physical fitness score ≥80 per province (%) | CNSPFS |
PR | Percentage of youth with a physical fitness score ≥60 and <79.9 per province (%) | |
FR | Percentage of youth with a physical fitness score <60 per province (%) | |
Explanatory variables | ||
Altitude | Average altitude per province (m) | Chinese altitude barometer |
Rain | Annual total precipitation per province (mm) | China Environment Statistics Yearbook 2018 |
Forest | Percentage of forest area per province (%) | |
Temperature | Average air temperature (0.1 °C) | |
Green space | Area of green space in parks per province (km3) | China Statistical Yearbook 2018 |
Playground | Sum of playground area of junior high schools (m2) | |
Healthcare | Health care spending per province (yuan) | China Social Statistics Yearbook 2018 |
Non-farm output | The ratio of provincial non-farm output to GDP (%) | National Bureau of Statistics |
Road density | Length of primary and secondary roads per sq. km. (%) | |
Urban | The ratio of urban population to total population (%) | China Statistical Yearbook 2018 |
Education | Average number of years of education (year) | Bulletin of the National Population Census 2020 |
Athletes | Number of athletes above Level 2 per province | China Education Statistics Yearbook 2018 |
Variable Name | Shapiro–Wilk | p | Tolerance | VIF |
---|---|---|---|---|
Frost | 0.937 | 0.070 | –0.110 | –0.109 |
Non–farm output | 0.940 | 0.081 | 0.543 | 0.544 |
Road density | 0.976 | 0.698 | 0.015 | 0.016 |
Altitude 1 | 0.967 | 0.438 | –0.072 | –0.069 |
Rain 2 | 0.935 | 0.062 | 0.525 | 0.554 |
Playground 3 | 0.944 | 0.106 | 0.145 | 0.149 |
OLS | Model 1: EGR | Model 2: PR | Model 3: FR | |||
---|---|---|---|---|---|---|
β | |t| | β | |t| | β | |t| | |
Frost | −0.127 | 0.696 | 0.047 | 0.258 | 0.159 | 0.821 |
Non-farm output | 0.528 | 3.069 | −0.279 | 1.624 | −0.574 | 3.145 |
Road density | −0.019 | 0.083 | 0.102 | 0.458 | −0.075 | 0.318 |
Altitude | −0.106 | 0.535 | 0.667 | 3.377 | −0.519 | 2.471 |
Rain | 0.470 | 2.250 | −0.005 | 0.022 | −0.764 | 3.445 |
Playground | 0.154 | 1.068 | −0.134 | 0.929 | −0.113 | 0.739 |
F-statistic | 5.900 | 5.921 | 4.778 | |||
P-F statistic | 0.001 | 0.001 | 0.002 | |||
R2 | 0.596 | 0.597 | 0.544 | |||
AICc | 82.427 | 82.359 | 86.156 | |||
RSS | 12.525 | 12.498 | 14.126 | |||
Durbin-Watson | 2.155 | 2.327 | 2.294 |
MGWR | Model 1: EGR | Model 2: PR | Model 3: FR | |||
---|---|---|---|---|---|---|
|t| | |t| | |t| | ||||
Intercept | −0.042 | 0.336 | 0.005 | 0.036 | 0.074 | 0.609 |
Frost | −0.110 | 0.621 | 0.043 | 0.241 | 0.075 | 0.442 |
Non-farm output | 0.542 | 3.263 | −0.339 | 1.946 | −0.530 | 3.091 |
Road density | 0.014 | 0.067 | 0.112 | 0.511 | −0.119 | 0.577 |
Altitude | −0.072 | 0.376 | 0.641 | 3.321 | −0.552 | 3.024 |
Rain | 0.503 | 2.401 | −0.042 | 0.207 | −0.724 | 3.748 |
Playground | 0.146 | 1.048 | −0.122 | 0.865 | −0.126 | 0.931 |
tr(S) | 7.664 | 7.607 | 8.754 | |||
Degree of freedom | 23.336 | 23.393 | 22.246 | |||
R2 | 0.636 | 0.626 | 0.690 | |||
AICc | 81.813 | 82.394 | 81.548 | |||
RSS | 11.281 | 11.581 | 9.614 |
Variables | Region (I) | Region (II) | Region (III) |
---|---|---|---|
Frost | 31.90 | 12.76 | 48.19 |
Non-farm output | 95.24 | 90.55 | 88.09 |
Road density | 1.66 | 0.34 | 0.86 |
Altitude | 1.31 | 3.13 | 2.19 |
Rain | 3.02 | 2.62 | 2.98 |
Playground | 7.14 | 6.71 | 7.15 |
Number of Provinces | 11 | 7 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Z.; Kong, Z.; Jia, X.; Yu, J.; Sun, T.; Zhang, Y. Spatial Heterogeneity and Regional Clustering of Factors Influencing Chinese Adolescents’ Physical Fitness. Int. J. Environ. Res. Public Health 2023, 20, 3836. https://doi.org/10.3390/ijerph20053836
Tong Z, Kong Z, Jia X, Yu J, Sun T, Zhang Y. Spatial Heterogeneity and Regional Clustering of Factors Influencing Chinese Adolescents’ Physical Fitness. International Journal of Environmental Research and Public Health. 2023; 20(5):3836. https://doi.org/10.3390/ijerph20053836
Chicago/Turabian StyleTong, Zihan, Zhenxing Kong, Xiao Jia, Jingjing Yu, Tingting Sun, and Yimin Zhang. 2023. "Spatial Heterogeneity and Regional Clustering of Factors Influencing Chinese Adolescents’ Physical Fitness" International Journal of Environmental Research and Public Health 20, no. 5: 3836. https://doi.org/10.3390/ijerph20053836
APA StyleTong, Z., Kong, Z., Jia, X., Yu, J., Sun, T., & Zhang, Y. (2023). Spatial Heterogeneity and Regional Clustering of Factors Influencing Chinese Adolescents’ Physical Fitness. International Journal of Environmental Research and Public Health, 20(5), 3836. https://doi.org/10.3390/ijerph20053836