N-Source Determines Barley Productivity, Nutrient Accumulation, and Grain Quality in Cyprus Rainfed Agricultural Systems
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Design
2.2. Plant and Soil Analysis
2.3. Statistical Analysis
3. Results
3.1. Seasonal and Nitrogen Fertilization Type Influence Barley Productivity
3.2. Seasonal and Nitrogen Fertilization Type Influence Barley Grain Macro-Nutrient Content
3.3. Barley Productivity Is Associated with Grain Nutrient Content Based on Nutrient Management within the Different Growing Seasons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melillo, J.M.; Frey, S.D.; De Angelis, K.M.; Werner, W.J.; Bernard, M.J.; Bowles, F.P.; Pold, G.; Knorr, M.A.; Grandy, A.S. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 2017, 358, 101–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.; Zhou, X.; Yang, Q.; Li, H.; Luo, Y.; Fang, C.; Chen, J.; Yang, X.; Li, B. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis. Ecology 2013, 94, 726–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najera, F.; Dippold, M.A.; Boy, J.; Seguel, O.; Koester, M.; Stock, S.; Merino, C.; Kuzyakov, Y.; Matus, F. Effects of drying/rewetting on soil aggregate dynamics and implications for organic matter turnover. Biol. Fertil. Soils 2020, 56, 893–905. [Google Scholar] [CrossRef]
- Zhang, B.; He, C.; Burnham, M.; Zhang, L. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 436–449. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Carrillo-López, E.; Boix-Fayos, C.; Almagro, M.; García Franco, N.; Díaz-Pereira, E.; Montoya, I.; de Vente, J. Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. CATENA 2020, 187, 104352. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. In Sustainable Agriculture; Springer: Berlin, Germany, 2011; Volume 2, pp. 761–786. [Google Scholar]
- Ould Ahmed, B.A.; Inoue, M.; Moritani, S. Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat. Agric. Water Manag. 2010, 97, 165–170. [Google Scholar] [CrossRef]
- Nyamangara, J.; Gotosa, J.; Mpofu, S.E. Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe. Soil Tillage Res. 2001, 62, 157–162. [Google Scholar] [CrossRef]
- SchjØNning, P.; Christensen, B.T.; Carstensen, B. Physical and chemical properties of a sandy loam receiving animal manure, mineral fertilizer or no fertilizer for 90 years. Eur. J. Soil Sci. 1994, 45, 257–268. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Yang, B.; Ding, R.; Nie, J.; Wang, J. Impacts of manure application on soil environment, rainfall use efficiency and crop biomass under dryland farming. Sci. Rep. 2016, 6, 20994. [Google Scholar] [CrossRef] [Green Version]
- Hoover, N.L.; Law, J.Y.; Long, L.A.M.; Kanwar, R.S.; Soupir, M.L. Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. J. Environ. Manag. 2019, 252, 109582. [Google Scholar] [CrossRef]
- Gadaleta, A.; Lacolla, G.; Giove, S.L.; Fortunato, S.; Nigro, D.; Mastro, M.A.; De Corato, U.; Caranfa, D.; Cucci, G.; de Pinto, M.C. Durum Wheat Response to Organic and Mineral Fertilization with Application of Different Levels and Types of Phosphorus-Based Fertilizers. Agronomy 2022, 12, 1861. [Google Scholar] [CrossRef]
- van Heerwaarden, J. The theoretical potential for tailored fertilizer application. The case of maize in Sub-Saharan Africa. Field Crops Res. 2022, 288, 108677. [Google Scholar] [CrossRef]
- Pala, M.; Ryan, J.; Diekmann, J.; Singh, M. Barley and vetch yields from dryland rotations with varying tillage and residue management under mediterranean conditions. Exp. Agric. 2008, 44, 559–570. [Google Scholar] [CrossRef]
- Hernández, D.; Polo, A.; Plaza, C. Long-term effects of pig slurry on barley yield and N use efficiency under semiarid Mediterranean conditions. Eur. J. Agron. 2013, 44, 78–86. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Lampurlanés, J.; Fernández, F.G.; Cantero-Martínez, C. Nitrogen fertilization strategies for improved Mediterranean rainfed wheat and barley performance and water and nitrogen use efficiency. Eur. J. Agron. 2021, 124, 126238. [Google Scholar] [CrossRef]
- Ferreira, P.A.; Ceretta, C.A.; Lourenzi, C.R.; De Conti, L.; Marchezan, C.; Girotto, E.; Tiecher, T.L.; Palermo, N.M.; Parent, L.-É.; Brunetto, G. Long-Term Effects of Animal Manures on Nutrient Recovery and Soil Quality in Acid Typic Hapludalf under No-Till Conditions. Agronomy 2022, 12, 243. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Yield, content and nutrient uptake by winter wheat and spring barley in response to applications of digestate, cattle slurry and NPK mineral fertilizers. Arch. Agron. Soil Sci. 2020, 66, 1481–1496. [Google Scholar] [CrossRef]
- Wiegmann, M.; Thomas, W.T.B.; Bull, H.J.; Flavell, A.J.; Zeyner, A.; Peiter, E.; Pillen, K.; Maurer, A. “Wild barley serves as a source for biofortification of barley grains”. Plant Sci. 2019, 283, 83–94. [Google Scholar] [CrossRef]
- Khan, W.A.; Shabala, S.; Cuin, T.A.; Zhou, M.; Penrose, B. Avenues for biofortification of zinc in barley for human and animal health: A meta-analysis. Plant Soil 2021, 466, 101–119. [Google Scholar] [CrossRef]
- Xue, W.; Gianinetti, A.; Wang, R.; Zhan, Z.; Yan, J.; Jiang, Y.; Fahima, T.; Zhao, G.; Cheng, J. Characterizing barley seed macro-and micro-nutrients under multiple environmental conditions. Cereal Res. Commun. 2016, 44, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Klikocka, H.; Marks, M. Sulphur and Nitrogen Fertilization as a Potential Means of Agronomic Biofortification to Improve the Content and Uptake of Microelements in Spring Wheat Grain DM. J. Chem. 2018, 2018, 9326820. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, Y.; Chen, X.; Sun, Q.; Zhang, F.; Römheld, V.; Zou, C. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J. Cereal Sci. 2010, 51, 165–170. [Google Scholar] [CrossRef]
- Kutman, U.B.; Yildiz, B.; Cakmak, I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J. Cereal Sci. 2011, 53, 118–125. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.á. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Omirou, M.; Anastopoulos, I.; Fasoula, D.A.; Ioannides, I.M. The effect of chemical and organic N inputs on N2O emission from rain-fed crops in Eastern Mediterranean. J. Environ. Manag. 2020, 270, 110755. [Google Scholar] [CrossRef]
- Grace, J.B.; Keeley, J.E. A structural equation model analysis of postfire plant diversity in California shrublands. Ecol. Appl. 2006, 16, 503–514. [Google Scholar] [CrossRef]
- Kline, R.B. Assumptions in structural equation modeling. Handb. Struct. Equ. Model. 2012, 111, 125. [Google Scholar]
- Savin, R.; Cossani, C.M.; Dahan, R.; Ayad, J.Y.; Albrizio, R.; Todorovic, M.; Karrou, M.; Slafer, G.A. Intensifying cereal management in dryland Mediterranean agriculture: Rainfed wheat and barley responses to nitrogen fertilisation. Eur. J. Agron. 2022, 137, 126518. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmad, R.; Ashraf, M. Role of mineral nutrition in alleviation of drought stress in plants. Aust. J. Crop Sci. 2011, 5, 764–777. [Google Scholar]
- Norton, R.M.; Wachsmann, N.G. Nitrogen use and crop type affect the water use of annual crops in south-eastern Australia. Aust. J. Agric. Res. 2006, 57, 257–267. [Google Scholar] [CrossRef]
- Celestina, C.; Hunt, J.R.; Sale, P.W.G.; Franks, A.E. Attribution of crop yield responses to application of organic amendments: A critical review. Soil Tillage Res. 2019, 186, 135–145. [Google Scholar] [CrossRef]
- Qian, P.; Schoenau, J.J. Availability of nitrogen in solid manure amendments with different C:N ratios. Can. J. Soil Sci. 2002, 82, 219–225. [Google Scholar] [CrossRef]
- Aleandri, M.P.; Chilosi, G.; Muganu, M.; Vettraino, A.; Marinari, S.; Paolocci, M.; Luccioli, E.; Vannini, A. On farm production of compost from nursery green residues and its use to reduce peat for the production of olive pot plants. Sci. Hortic. 2015, 193, 301–307. [Google Scholar] [CrossRef]
- Zmora-Nahum, S.; Hadar, Y.; Chen, Y. Physico-chemical properties of commercial composts varying in their source materials and country of origin. Soil Biol. Biochem. 2007, 39, 1263–1276. [Google Scholar] [CrossRef]
- Pane, C.; Celano, G.; Piccolo, A.; Villecco, D.; Spaccini, R.; Palese, A.M.; Zaccardelli, M. Effects of on-farm composted tomato residues on soil biological activity and yields in a tomato cropping system. Chem. Biol. Technol. Agric. 2015, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Celano, G.; Alluvione, F.; Abdel Aziz, M.; Spaccini, R. The carbon dynamics in the experimental plots. Use of 13C-and 15N-labelled compounds for the soil-plant balance in carbon sequestration. In Carbon Sequestration in Agricultural Soils; A multidisciplinary approach to innovative methods; Springer: Düsseldorf, Germany, 2012; pp. 107–144. [Google Scholar]
- Pane, C.; Spaccini, R.; Piccolo, A.; Scala, F.; Bonanomi, G. Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biol. Control 2011, 56, 115–124. [Google Scholar] [CrossRef]
- Omirou, M.; Rousidou, C.; Bekris, F.; Papadopoulou, K.K.; Menkissoglou-Spiroudi, U.; Ehaliotis, C.; Karpouzas, D.G. The Impact of Biofumigation and Chemical Fumigation Methods on the Structure and Function of the Soil Microbial Community. Microb. Ecol. 2011, 61, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-P.; Zhang, Y.-Q.; Tong, Y.-P.; Xue, Y.-F.; Liu, D.-Y.; Zhang, W.; Deng, Y.; Meng, Q.-F.; Yue, S.-C.; Yan, P. Harvesting more grain zinc of wheat for human health. Sci. Rep. 2017, 7, 7016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutman, U.B.; Yildiz, B.; Ozturk, L.; Cakmak, I. Biofortification of Durum Wheat with Zinc Through Soil and Foliar Applications of Nitrogen. Cereal Chem. 2010, 87, 1–9. [Google Scholar] [CrossRef]
- Aghili, F.; Gamper, H.A.; Eikenberg, J.; Khoshgoftarmanesh, A.H.; Afyuni, M.; Schulin, R.; Jansa, J.; Frossard, E. Green manure addition to soil increases grain zinc concentration in bread wheat. PLoS ONE 2014, 9, e101487. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, S.A.; Seitz, B.; Van Der Heijden, M.G.; Schulin, R.; Tandy, S. Impact of organic and conventional farming systems on wheat grain uptake and soil bioavailability of zinc and cadmium. Sci. Total Environ. 2018, 639, 608–616. [Google Scholar] [CrossRef] [PubMed]
Growing Season | Nitrogen Management | Total N | Ca | Mg | Zn | Mn | Cu | Fe |
---|---|---|---|---|---|---|---|---|
(%) | (μg/g dry weight) | |||||||
2016–2017 | Control | 1.3 ± 0.3 a | 400.5 ± 29.2 a | 711.4 ± 75.5 a | 17.7 ± 1.9 a | 16.8 ± 1.5 a | 9.6 ± 2.1 a | 41 ± 8.6 a |
Compost | 2.3 ± 1.1 b | 420.0 ± 62.2 ab | 759.2 ± 56.8 a | 37.3 ± 5.2 c | 18.6 ± 3.4 ab | 13.6 ± 1.5 b | 53.6 ± 2.1 b | |
NH4NO3 | 2.4 ± 0.5 b | 466.2 ± 35.7 b | 768 ± 113.9 ab | 26.3 ± 5.0 b | 19.7 ± 1.9 b | 16.4 ± 2.1 c | 53.6 ± 7.2 b | |
Manure | 2.3 ± 0.1 b | 562.7 ± 74.5 c | 896.6 ± 86.5 b | 29.4 ± 1.9 b | 17.7 ± 0.6 b | 14.2 ± 1.9 bc | 50.7 ± 5.6 ab | |
2017–2018 | Control | 1.4 ± 0.4 a | 383.0 ± 47.1 b | 678.9 ± 69.8 a | 18.7 ± 3.9 a | 19.0 ± 1.7 a | 10.5 ± 2.6 ab | 51.4 ± 8.9 a |
Compost | 1.8 ± 0.3 a | 336.5 ± 18.6 a | 757.9 ± 89 ab | 41.4 ± 4.0 c | 22.8 ± 2.6 b | 12.7 ± 1.2 bc | 49 ± 4.8 a | |
NH4NO3 | 2.7 ± 0.2 b | 555.5 ± 43.7 c | 716.3 ± 99.6 a | 22.3 ± 9.4 ab | 18.9 ± 2.2 a | 9.3 ± 0.4 a | 51.7 ± 2.7 a | |
Manure | 2.2 ± 0.4 b | 583.1 ± 34.4 c | 875.7 ± 118.1 b | 29.1 ± 3.2 b | 20.8 ± 4.6 ab | 14 ± 1.4 c | 66.6 ± 3.3 b | |
2018–2019 | Control | 1.7 ± 0.6 a | 354.0 ± 87.3 a | 724.1 ± 140.8 ab | 16 ± 11.4 a | 15.4 ± 5.0 a | 10.7 ± 1.8 b | 42.1 ± 10.9 a |
Compost | 2.5 ± 0.5 ab | 499.9 ± 44.3 b | 783.4 ± 156.6 ab | 46.7 ± 2.0 c | 27.5 ± 6.3 b | 17.3 ± 3.1 d | 53.5 ± 11.4 a | |
NH4NO3 | 2.5 ± 0.2 b | 457.1 ± 39.8 b | 904 ± 170.8 b | 27.9 ± 3.4 b | 18.5 ± 1.0 a | 14.1 ± 2.1 c | 53.2 ± 2.6 a | |
Manure | 2.1 ± 0.7 ab | 418.1 ± 93.4 a | 669.2 ± 74.4 a | 27.1 ± 1.9 b | 18.4 ± 2.9 a | 5.9 ± 2.7 a | 52.1 ± 3.3 a | |
Source of Variance | ||||||||
Growing season | ns | * | * | * | * | * | * | |
N-management | * | * | * | * | * | * | * | |
Interaction | * | * | * | * | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omirou, M.; Fasoula, D.; Stylianou, M.; Zorpas, A.A.; Ioannides, I.M. N-Source Determines Barley Productivity, Nutrient Accumulation, and Grain Quality in Cyprus Rainfed Agricultural Systems. Int. J. Environ. Res. Public Health 2023, 20, 3943. https://doi.org/10.3390/ijerph20053943
Omirou M, Fasoula D, Stylianou M, Zorpas AA, Ioannides IM. N-Source Determines Barley Productivity, Nutrient Accumulation, and Grain Quality in Cyprus Rainfed Agricultural Systems. International Journal of Environmental Research and Public Health. 2023; 20(5):3943. https://doi.org/10.3390/ijerph20053943
Chicago/Turabian StyleOmirou, Michalis, Dionysia Fasoula, Marinos Stylianou, Antonis A. Zorpas, and Ioannis M. Ioannides. 2023. "N-Source Determines Barley Productivity, Nutrient Accumulation, and Grain Quality in Cyprus Rainfed Agricultural Systems" International Journal of Environmental Research and Public Health 20, no. 5: 3943. https://doi.org/10.3390/ijerph20053943
APA StyleOmirou, M., Fasoula, D., Stylianou, M., Zorpas, A. A., & Ioannides, I. M. (2023). N-Source Determines Barley Productivity, Nutrient Accumulation, and Grain Quality in Cyprus Rainfed Agricultural Systems. International Journal of Environmental Research and Public Health, 20(5), 3943. https://doi.org/10.3390/ijerph20053943