LCA of Barley Production: A Case Study from Cyprus
Abstract
:1. Introduction
2. Methodology
2.1. Method Description
2.2. Area Description
2.3. Goal and Scope
- Scenario 1: Production of barley in a year with fertilizer N (20%) P (20%) K (10%)—NPK 20-20-10;
- Scenario 2: Production of barley in a year with fertilizer N (20%) P (20%) K (10%)—NPK 20-20-10 and manure;
- Scenario 3: Production of barley in a year with fertilizer N (25%) P (10%) K (0%)—NPK 25-10-0;
- Scenario 4: Production of barley in a year with fertilizer N (25%) P (10%) K (0%)—NPK 25-10-0 and manure.
2.4. Functional Unit
2.5. Software
2.6. Data Collection
2.7. Impact Categories
3. Results and Discussion
3.1. System Modeling
3.2. Life Cycle Inventory (LCI) Analysis
3.3. Data Quality
3.4. Life Cycle Impact Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Environment Agency Agriculture Contributes to Climate Change. Available online: https://www.eea.europa.eu/signals/signals-2015/articles/agriculture-and-climate-change (accessed on 21 January 2023).
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Sec. 2021, 28, 100488. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, M.P.; Charchousi, D.; Spanoudaki, K.; Karali, A.; Varotsos, K.V.; Giannakopoulos, C.; Markou, M.; Loizidou, M. Agricultural Water Vulnerability under Climate Change in Cyprus. Atmos 2020, 11, 648. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Omirou, M.; Stephanou, C.; Oulas, A. Valorization of agricultural wastes could improve soil fertility and mitigate soil direct N2O emissions. J. Environ. Manag. 2019, 250, 109389. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, E.; Agapiou, A.; Anastopoulos, I.; Omirou, M.; Ioannides, I.M. The effects of different soil nutrient management schemes in nitrogen cycling. J. Environ. Manag. 2019, 243, 168–176. [Google Scholar] [CrossRef]
- Agriculture and Horticulture Development Board Understanding Carbon Footprinting for Cereals and Oilseeds. Available online: https://projectblue.blob.core.windows.net/media/Default/ImportedPublicationDocs/Understandingcarbon footprinting for cereals and oilseeds.pdf (accessed on 23 December 2022).
- Litskas, V.D.; Tzortzakis, N.; Stavrinides, M.C. Determining the Carbon Footprint and Emission Hotspots for the Wine Produced in Cyprus. Atmosphere 2020, 11, 463. [Google Scholar] [CrossRef]
- Chang, L.; Herb, C.; Qiang, C.; Yantai, G. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agron. Sustain. Dev. 2016, 36, 69. [Google Scholar] [CrossRef]
- Kavadia, A.; Omirou, M.; Fasoula, D.; Ioannides, I.M. The importance of microbial inoculants in a climate-changing agriculture in eastern mediterranean region. Atmosphere 2020, 11, 1136. [Google Scholar] [CrossRef]
- Pan, S.Y.; He, K.H.; Lin, K.T.; Fan, C.; Chang, C.T. Addressing nitrogenous gases from croplands toward low-emission agriculture. npj Clim. Atmos. Sci. 2022, 5, 43. [Google Scholar] [CrossRef]
- Omirou, M.; Anastopoulos, I.; Fasoula, D.A.; Ioannides, I.M. The effect of chemical and organic N inputs on N2O emission from rain-fed crops in Eastern Mediterranean. J. Environ. Manag. 2020, 270, 110755. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Manschadi, A.M.; Neugschwandtner, R.W.; Eitzinger, J.; Thaler, S.; Kaul, H.P. Assessing the impact of climate change on crop management in winter wheat—A case study for Eastern Austria. J. Agric. Sci. 2016, 154, 1153–1170. [Google Scholar] [CrossRef]
- Bowles, T.M.; Atallah, S.S.; Campbell, E.E.; Gaudin, A.C.M.; Wieder, W.R.; Grandy, A.S. Addressing agricultural nitrogen losses in a changing climate. Nat. Sustain. 2018, 1, 399–408. [Google Scholar] [CrossRef]
- Lassaletta, L.; Sanz-Cobena, A.; Aguilera, E.; Quemada, M.; Billen, G.; Bondeau, A.; Cayuela, M.L.; Cramer, W.; Eekhout, J.P.C.; Garnier, J.; et al. Nitrogen dynamics in cropping systems under Mediterranean climate: A systemic analysis. Environ. Res. Lett. 2021, 16, 073002. [Google Scholar] [CrossRef]
- Kythreotou, N.; Mesimeris, T. 7thNational Communication and 3rd Biennial report under the UNFCCC of Cyprus; Department of Environment Ministry of Agriculture: Nicosia, Cyprus; Rural Development and Environment: Nicosia, Cyprus, 2018.
- Papadaskalopoulou, C.; Moriondo, M.; Lemesios, I.; Karali, A.; Konsta, A.; Dibari, C.; Brilli, L.; Varotsos, K.V.; Stylianou, A.; Loizidou, M.; et al. Assessment of total climate change impacts on the agricultural sector of Cyprus. Atmosphere 2020, 11, 608. [Google Scholar] [CrossRef]
- Markou, M.; Sylianou, A.; Bruggeman, A.; Zoumides, C.; Pashiardis, S.; Hadjinicolaou, P.; Lange, M.; Zachariadis, T.; Michaelides, A. Economic Impact of Climate Change on the Cypriot Agricultural Sector. 2011. Available online: https://d1wqtxts1xzle7.cloudfront.net/43494499/Economic_impact_of_Climate_Change_on_the20160308-29487-1brwywz-libre.pdf?1457428984=&response-content-disposition=inline%3B+filename%3DEconomic_impact_of_Climate_Change_on_the.pdf&Expires=1675001591&Signature=fyB6hBweC1OiQdmgJkhnwZ-zXWocRrnC0731ilZywf4dlGprAC3JjXKtBF~J-pJBOIYXfJtt8nAVYImJkGNV1U8PQf79m7~ESjvq9qQOO30vE5yws02DHdMYLhB9cfq1uZFh0ByP3gl0dpFk8LUnXYZfWWBTbCY80Cn34mclgn5bEW4BnFHTV4WYGPfjIvhv4YY5tIK5hhjnjSm1p2XMDp~9lViTksV2-AAwxhaIjaTBhoB6R28J073YROe7QoEK8JQfhZ4e7lslMeZNL70CseIqKKvJdR7MgPMalYY~LVF2DE8CBDqH67p3PIJpTZSSofw9B6Da2H8NEbCJw0cPXw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 21 January 2023).
- Kyratzis, A.; Orphanidou, P.; Sykas, K.; Papadopoulos, M.; Pantazi, C.; Koutroukides, D. Country Report on the State of Plant Genetic Resources for Food and Agriculture: Cyprus, Second National Report; Ministry of Agriculture, Natural Resources and Environment: Nicosia, Cyprus, 2009.
- OEC Barley in Cyprus. Available online: https://oec.world/en/profile/bilateral-product/barley/reporter/cyp (accessed on 23 December 2022).
- Zittis, G.; Bruggeman, A.; Lelieveld, J. Revisiting future extreme precipitation trends in the Mediterranean. Weather Clim. Extrem. 2021, 34, 100380. [Google Scholar] [CrossRef]
- Savin, R.; Cossani, C.M.; Dahan, R.; Ayad, J.Y.; Albrizio, R.; Todorovic, M.; Karrou, M.; Slafer, G.A. Intensifying cereal management in dryland Mediterranean agriculture: Rainfed wheat and barley responses to nitrogen fertilisation. Eur. J. Agron. 2022, 137, 126518. [Google Scholar] [CrossRef]
- Michigan. Michigan Wheat 101, A Guide for Soft Winter Wheat Production in Michigan; Michigan State University: Michigan, IN, USA, 2012. [Google Scholar]
- Litskas, V.; Ledo, A.; Lawrence, P.; Chrysargyris, A.; Giannopoulos, G.; Heathcote, R.; Hastings, A.; Tzortzakis, N.; Stavrinides, M. Use of Winery and Animal Waste as Fertilizers to Achieve Climate Neutrality in Non-Irrigated Viticulture. Agronomy 2022, 12, 2375. [Google Scholar] [CrossRef]
- Banti, D.C.; Tsangas, M.; Samaras, P.; Zorpas, A. LCA of a Membrane Bioreactor Compared to Activated Sludge System for Municipal Wastewater Treatment. Membranes 2020, 10, 421. [Google Scholar] [CrossRef]
- Hashemi, F.; Hashemi, H.; Abbasi, A.; Schreiber, M.E. Life cycle and economic assessments of petroleum refineries wastewater recycling using membrane, resin and on site disinfection (UF-IXMB-MOX) processes. Process. Saf. Environ. Prot. 2022, 162, 419–425. [Google Scholar] [CrossRef]
- Iannone, R.; Miranda, S.; Riemma, S.; De Marco, I. Improving environmental performances in wine production by a life cycle assessment analysis. J. Clean. Prod. 2016, 111, 172–180. [Google Scholar] [CrossRef]
- Christoforou, E.; Fokaides, P.A.; Koroneos, C.J.; Recchia, L. Life Cycle Assessment of first generation energy crops in arid isolated island states: The case of Cyprus. Sustain. Energy Technol. Assess. 2016, 14, 1–8. [Google Scholar] [CrossRef]
- Tsangas, M.; Gavriel, I.; Doula, M.; Xeni, F.; Zorpas, A.A. Life Cycle Analysis in the Framework of Agricultural Strategic Development Planning in the Balkan Region. Sustainability 2020, 12, 1813. [Google Scholar] [CrossRef] [Green Version]
- Zorpas, A.A.; Doula, M.K.; Jeguirim, M. Waste Strategies Development in the Framework of Circular Economy. Sustainability 2021, 13, 13467. [Google Scholar] [CrossRef]
- Kalboussi, N.; Biard, Y.; Pradeleix, L.; Rapaport, A.; Sinfort, C.; Ait-mouheb, N. Life cycle assessment as decision support tool for water reuse in agriculture irrigation. Sci. Total Environ. 2022, 836, 155486. [Google Scholar] [CrossRef] [PubMed]
- ISO 14040; Environmental Management–Life Cycle Assessment—Principles and Framework. International Organization for Standardization. International Organization for Standardization: Geneva, Switzerland, 2006.
- Varotsos, K.V.; Karali, A.; Lemesios, G.; Kitsara, G.; Moriondo, M.; Dibari, C.; Leolini, L.; Giannakopoulos, C. Near future climate change projections with implications for the agricultural sector of three major Mediterranean islands. Reg. Environ. Chang. 2021, 21, 1–15. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M.; Brilli, L.; Costafreda-Aumedes, S.; Dibari, C.; Leolini, L.; Padovan, G.; Trombi, G.; Karali, A.; Varotsos, K.V.; et al. Assessing climate change impacts on crops by adopting a set of crop performance indicators. Euro Mediterr. J. Environ. Integr. 2021, 6, 1–18. [Google Scholar] [CrossRef]
- Kolios, S.; Mitrakos, S.; Stylios, C. Detection of areas susceptible to land degradation in Cyprus using remote sensed data and environmental quality indices. L. Degrad. Dev. 2018, 29, 2338–2350. [Google Scholar] [CrossRef]
- Agricultural Research Institute REVIEW FOR 2018–2019. Available online: http://www.moa.gov.cy/moa/ari/ari.nsf/all/96552EB93EE9E682C2257BB8002E0100/$file/review2018-19.pdf?openelement (accessed on 18 January 2023).
- Water Development Department. Statistical Informaton about the Annual Rainfall in the Free Areas of Cyprus (Hydrological Year Starting on 1st October). Available online: http://www.moa.gov.cy/moa/wdd/wdd.nsf/All/8BDD66D1233F6E2BC2258394002A43AB?OpenDocument (accessed on 18 January 2023).
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Walia, M.K.; Gupta, R.K.; Singh, R.; Dhaliwal, M.K. Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: A review. J. Plant Nutr. 2019, 42, 2873–2900. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.; Man, J.; Zhou, J. Effect of Large Inputs of Manure and Fertilizer on Nitrogen Mineralization in the Newly Built Solar Greenhouse Soils. HortScience Horts 2019, 54, 1600–1604. [Google Scholar] [CrossRef]
- Ashraf, M.N.; Hu, C.; Xu, X.; Aziz, T.; Wu, L.; Waqas, M.A.; Farooq, M.; Hu, X.; Zhang, W.; Xu, M. Long-term manure application increased soil organic carbon and nitrogen mineralization through the accumulation of unprotected and physically protected carbon fractions. Pedosphere 2022. [Google Scholar] [CrossRef]
- Oenema, O.; Liere, L.; Plette, S.; Prins, T.; Zeijts, H.; Schoumans, O. Environmental effects of manure policy options in The Netherlands. Water Sci. Technol. 2004, 49, 101–108. [Google Scholar] [CrossRef]
- Fan, J.; Liu, C.; Xie, J.; Han, L.; Zhang, C.; Guo, D.; Niu, J.; Jin, H.; McConkey, B.G. Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. Int. J. Environ. Res. Public Health 2022, 19, 9817. [Google Scholar] [CrossRef]
- Viana, L.R.; Dessureault, P.-L.; Marty, C.; Loubet, P.; Levasseur, A.; Boucher, J.-F.; Paré, M.C. Would transitioning from conventional to organic oat grains production reduce environmental impacts? A LCA case study in North-East Canada. J. Clean. Prod. 2022, 349, 131344. [Google Scholar] [CrossRef]
- Li, X.; Mupondwa, E.; Panigrahi, S.; Tabil, L.; Adapa, P. Life cycle assessment of densified wheat straw pellets in the Canadian Prairies. Int. J. Life Cycle Assess. 2012, 17, 420–431. [Google Scholar] [CrossRef]
- Verdi, L.; Marta, A.D.; Falconi, F.; Orlandini, S.; Mancini, M. Comparison between organic and conventional farming systems using Life Cycle Assessment (LCA): A case study with an ancient wheat variety. Eur. J. Agron. 2022, 141, 126638. [Google Scholar] [CrossRef]
- Leon, A.; Guntur, V.S.; Kishii, M.; Matsumoto, N.; Kruseman, G. An ex ante life cycle assessment of wheat with high biological nitrification inhibition capacity. Environ. Sci. Pollut. Res. 2022, 29, 7153–7169. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Luo, Y.; Zhang, Y.; Wang, H.; Shen, Y.; Liu, Y.; Shang, S. Comparison on environmental impacts of cereal and forage production in the Loess Plateau of China: Using life cycle assessment with uncertainty and variability analysis. J. Clean. Prod. 2022, 380, 135094. [Google Scholar] [CrossRef]
- Bortolini, M.; Cascini, A.; Gamberi, M.; Mora, C.; Regattieri, A. Sustainable design and life cycle assessment of an innovative multi-functional haymaking agricultural machinery. J. Clean. Prod. 2014, 82, 23–36. [Google Scholar] [CrossRef]
- GreenDelta Software. Available online: https://www.greendelta.com/software/ (accessed on 13 December 2022).
- Lechon, Y.; Cabal, H.; Saez, R. Life cycle analysis of wheat and barley crops for bioethanol production in Spain. Int. J. Agric. Resour. Gov. Ecol. 2005, 4, 113–122. [Google Scholar] [CrossRef]
- Biswas, W.K.; Barton, L.; Carter, D. Global warming potential of wheat production in Western Australia: A life cycle assessment. Water Environ. J. 2008, 22, 206–216. [Google Scholar] [CrossRef]
- Fallahpour, F.; Aminghafouri, A.; Ghalegolab Behbahani, A.; Bannayan, M. The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environ. Dev. Sustain. 2012, 14, 979–992. [Google Scholar] [CrossRef]
- Narayanaswamy, V.; Altham, J.; Berkel, R.; McGregor, M. A Primer on Environmental Life Cycle Assessment (LCA) for Australian Grains; Curtin University of Technology: Perth, Australia, 2002. [Google Scholar]
- Roer, A.-G.; Korsaeth, A.; Henriksen, T.M.; Michelsen, O.; Strømman, A.H. The influence of system boundaries on life cycle assessment of grain production in central southeast Norway. Agric. Syst. 2012, 111, 75–84. [Google Scholar] [CrossRef]
- Weidema, B.; Bauer, C.; Hischier, R.; Mutel, C.; Nemecek, T.; Reinhard, J.; Vadenbo, C.O.; Wernet, G. Overview and Methodology. Data Quality Guideline for the Ecoinvent Database Version 3. Available online: https://lca-net.com/files/Overview_and_methodology.pdf (accessed on 18 December 2022).
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- European Commission Resolution of the European Committee of the Regions—The Green Deal in partnership with local and regional authorities. In Proceedings of the Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions the European Green Deal, Brussels, Belgium, 4–5 December 2019; p. 24. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019XR4351&from=EN (accessed on 21 January 2023).
- European Environment Agency. Greenhouse Gas Emissions from Agriculture in Europe. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-agriculture (accessed on 18 December 2022).
- Masuda, K. Measuring eco-efficiency of wheat production in Japan: A combined application of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 126, 373–381. [Google Scholar] [CrossRef]
- Cellura, M.; Longo, S.; Mistretta, M. Life Cycle Assessment (LCA) of protected crops: An Italian case study. J. Clean. Prod. 2012, 28, 56–62. [Google Scholar] [CrossRef]
- Longo, S.; Mistretta, M.; Guarino, F.; Cellura, M. Life Cycle Assessment of organic and conventional apple supply chains in the North of Italy. J. Clean. Prod. 2017, 140, 654–663. [Google Scholar] [CrossRef]
- Bartzas, G.; Vamvuka, D.; Komnitsas, K. Comparative life cycle assessment of pistachio, almond and apple production. Inf. Process. Agric. 2017, 4, 188–198. [Google Scholar] [CrossRef]
- Statista Cyprus: Distribution of Gross Domestic Product (GDP) across Economic Sectors from 2011 to 2021. Available online: https://www.statista.com/statistics/382070/cyprus-gdp-distribution-across-economic-sectors/ (accessed on 18 December 2022).
- Eurostat Archive: Agricultural Census in Cyprus. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Agricultural_census_in_Cyprus&#Agricultural_holdings (accessed on 18 December 2022).
- Statista Annual Greenhouse Gas Emissions from Agriculture in Cyprus from 2011 to 2020. Available online: https://www.statista.com/statistics/412251/annual-greenhouse-gas-emissions-from-agriculture-in-cyprus/ (accessed on 18 December 2022).
- Parajuli, R.; Matlock, M.D.; Thoma, G. Cradle to grave environmental impact evaluation of the consumption of potato and tomato products. Sci. Total Environ. 2021, 758, 143662. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, J.; Zhang, F.; Li, Y.; Zhang, W. Carbon footprint of grain production in China. Sci. Rep. 2017, 7, 4126. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, D.; Agarwal, T. Carbon footprint and water footprint of rice and wheat production in Punjab, India. Agric. Syst. 2021, 186, 102959. [Google Scholar] [CrossRef]
- Meisterling, K.; Samaras, C.; Schweizer, V. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. J. Clean. Prod. 2009, 17, 222–230. [Google Scholar] [CrossRef]
- Venterea, R.T.; Halvorson, A.D.; Kitchen, N.; Liebig, M.A.; Cavigelli, M.A.; Grosso, S.J.D.; Motavalli, P.P.; Nelson, K.A.; Spokas, K.A.; Singh, B.P.; et al. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Front. Ecol. Environ. 2012, 10, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Verdi, L.; Kuikman, P.J.; Orlandini, S.; Mancini, M.; Napoli, M.; Dalla Marta, A. Does the use of digestate to replace mineral fertilizers have less emissions of N2O and NH3? Agric. For. Meteorol. 2019, 269–270, 112–118. [Google Scholar] [CrossRef]
Impact Category | Results | FU Used | Source |
---|---|---|---|
AP (kg SO2-Eq∙FU−1) | 54.02 | 1 ha | [49] |
GWP (t CO2-Eq∙FU−1) | 136 | 1 ha | [49] |
37.1–44.3 | 1 MJ of crop product | [27] | |
270 | 1 t of crop product | [50] | |
EP (kg PO4-Eq∙FU−1) | 2.358 | 1 ha | [49] |
3.0 | 1 t of grain yield | [51] | |
0.0098–0.010 | 1 kg of starch | [52] | |
POCP (kg ethylene-Eq∙FU−1) | 8.86 | 1 ha | [49] |
ODP (kg CFC-11-Eq∙FU−1) | 0.004 | 1 ha | [49] |
2.84 × 10−8 | 1 kg grain produced | [53] | |
989.84 × 10−6 DALY * | 98,700 hay bales | [47] | |
TAETP (kg 1,4-DCB-Eq∙FU−1) | 0.00145 | 1 kg grain produced | [53] |
5539 Specied per year ** | 98,700 hay bales | [47] |
Unit (per FU) | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |
---|---|---|---|---|---|
Harrow | h | 0.027 | 0.027 | 0.027 | 0.027 |
Land use | ha/yr | 0.169 | 0.169 | 0.169 | 0.169 |
Manure | t | 0 | 5.653 | 0 | 5.653 |
Average mineral fertilizer, as K2O | Kg | 1.699 | 0.906 | 0 | 0 |
Average mineral fertilizer, as N | kg | 3.398 | 1.811 | 3.4225 | 2.264 |
Average mineral fertilizer, as P2O5 | Kg | 3.398 | 1.811 | 1.369 | 0.905 |
Lorry | items | 2 | 2 | 2 | 2 |
Barley Seeds | kg | 18.216 | 18.216 | 18.216 | 18.216 |
Pneumatic seeder | h | 0.0268 | 0.0268 | 0.0268 | 0.0268 |
Emissions from herbicides | kg | 641.026 | 641.026 | 641.026 | 641.026 |
Baler | ha | 0.169 | 0.169 | 0.169 | 0.169 |
Diesel | L | 0.0214 | 0.0214 | 0.0214 | 0.0214 |
Electricity | kWh | 1.290 | 1.290 | 1.290 | 1.290 |
Harvester | h | 0.0214 | 0.0214 | 0.0214 | 0.0214 |
Tractor | items | 1 | 1 | 1 | 1 |
Barley grains produced | t | 0.641 | 0.641 | 0.641 | 0.641 |
Fertilizer packaging waste | gr | 33.979 | 18.111 | 33.979 | 18.111 |
Herbicide packaging waste | gr | 0.0342 | 0.0342 | 0.0342 | 0.0342 |
Bale | items | 1 | 1 | 1 | 1 |
Quality Indicator | Primary Data | Secondary Data |
---|---|---|
Reliability | 2 | 5 |
Completeness | 1 | 3 |
Temporal correlation | 1 | 4 |
Geographical correlation | 1 | 4 |
Further technological correlation | 1 | 3 |
Impact Category | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
---|---|---|---|---|
AP (kg SO2-Eq∙FU−1) | 125 | 242 | 124 | 242 |
GWP (kg CO2-Eq∙FU−1) | 24,000 | 46,100 | 24,000 | 46,100 |
EP (kg NOx-Eq∙FU−1) | 41.93 | 100.7 | 41.92 | 100.7 |
POCP (kg ethylene-Eq∙FU−1) | 8.86 | 19.21 | 8.86 | 19.21 |
ODP (kg CFC-11-Eq∙FU−1) | 0.0035 | 0.0051 | 0.0035 | 0.0051 |
TAETP (kg 1,4-DCB-Eq∙FU−1) | 8.48 | 46.74 | 8.47 | 46.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stylianou, M.; Papamichael, I.; Voukkali, I.; Tsangas, M.; Omirou, M.; Ioannides, I.M.; Zorpas, A.A. LCA of Barley Production: A Case Study from Cyprus. Int. J. Environ. Res. Public Health 2023, 20, 2417. https://doi.org/10.3390/ijerph20032417
Stylianou M, Papamichael I, Voukkali I, Tsangas M, Omirou M, Ioannides IM, Zorpas AA. LCA of Barley Production: A Case Study from Cyprus. International Journal of Environmental Research and Public Health. 2023; 20(3):2417. https://doi.org/10.3390/ijerph20032417
Chicago/Turabian StyleStylianou, Marinos, Iliana Papamichael, Irene Voukkali, Michail Tsangas, Michalis Omirou, Ioannis M. Ioannides, and Antonis A. Zorpas. 2023. "LCA of Barley Production: A Case Study from Cyprus" International Journal of Environmental Research and Public Health 20, no. 3: 2417. https://doi.org/10.3390/ijerph20032417
APA StyleStylianou, M., Papamichael, I., Voukkali, I., Tsangas, M., Omirou, M., Ioannides, I. M., & Zorpas, A. A. (2023). LCA of Barley Production: A Case Study from Cyprus. International Journal of Environmental Research and Public Health, 20(3), 2417. https://doi.org/10.3390/ijerph20032417