Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review
Abstract
:1. Introduction
2. Food Waste Generation
3. Technologies for Food Waste Utilization for Low Carbon Footprints
3.1. Hydrothermal Carbonization (HTC)
3.2. Dendro Liquid Energy (DLE)
3.3. Ultra-Fast Hydrolysis
3.4. Anaerobic Digestion
3.5. Gasification
3.6. Pretreatment
4. Low Carbon Products for Sustainable and Cleaner Environment
4.1. Animal Feed
4.2. Preparation of Carbon Quantum Dots (CQDs)
4.3. Protein Production
4.4. Composting
4.5. Food Waste Biorefinery
4.5.1. Biofuels
Biodiesel
Biohydrogen
Biogas Production
Bioethanol
4.5.2. Bio-Based Enzymes
4.5.3. Bio-Based Compounds and Materials
5. Future Prospective
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allegretti, G.; Montoya, M.A.; Sleimann Bertussi, L.A.; Talamini, E. When being renewable may not be enough: Typologies of trends in energy and carbon footprint towards sustainable development. Renew. Sustain. Energy 2022, 168, 112860. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Umesh, M.; Maitra, S. Emerging challenges for the agro-industrial food waste utilization: A review on food waste biorefinery. Bioresour. Technol. 2022, 362, 127790. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Reducing carbon footprints of agriculture and food systems. Carbon Footpr. 2022, 1, 3. [Google Scholar] [CrossRef]
- Agapios, A.; Andreas, V.; Marinos, S.; Katerina, M.; Zorpas, A.A. Waste aroma profile in the framework of food waste management through household composting. J. Clean. Prod. 2020, 257, 120340. [Google Scholar] [CrossRef]
- Parashar, D.; Sood, G.; Agrawal, N. Modelling the Enablers of Food Supply Chain for Reduction in Carbon Footprint. J. Clean. Prod. 2020, 275, 122932. [Google Scholar] [CrossRef]
- Singh, V.; Wyatt, J.; Zoungrana, A.; Yuan, Q. Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source. Recycling 2022, 7, 10. [Google Scholar] [CrossRef]
- Jones, S.L.; Gibson, K.E.; Ricke, S.C. Critical Factors and Emerging Opportunities in Food Waste Utilization and Treatment Technologies. Front. Sustain. Food Syst. 2021, 5, 781537. [Google Scholar] [CrossRef]
- Badgett, A.; Milbrandt, A. Food waste disposal and utilization in the United States: A spatial cost benefit analysis. J. Clean. Prod. 2021, 314, 128057. [Google Scholar] [CrossRef]
- Tyagi, R.; Agrawal, A.; Ali, S.S. Indian Renewable Energy Act 2015: A Step Towards Reducing Carbon Footprint. Indian J. Power River Val. Dev. 2020, 68, 145–151. [Google Scholar]
- Bennbaia, S.; Wazwaz, A.; Abujarbou, A.; Abdella, G.M.; Musharavati, F. IEOM Society International towards Sustainable Society: Design of Food Waste Recycling Machine. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Bandung, Indonesia, 6–8 March 2018; pp. 6–8. [Google Scholar]
- Fan, H.; Zhang, M.; Bhandari, B.; Yang, C.H. Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection. Trends Food Sci. Technol. 2019, 95, 86–96. [Google Scholar] [CrossRef]
- Carpio-Aguilar, J.C.; Rincon-Moreno, J.A.; Franco-Garcia, L. Potential of Carbon Footprint Reduction within Retailers: Food Waste at Walmart in Mexico. In Sustainable Development Goals and Sustainable Supply Chains in the Post-Global Economy; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Sarkar, N.; Ganguly, A.; Chatterjee, P.K. Valorization of food waste. In Handbook of Advanced Approaches towards Pollution Prevention and Control; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Rathore, S.; Pandey, A.K. Waste Utilization and Minimization in Food Industry. In Waste to Energy: Prospects and Applications; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Gooch, M.; Matsubuchi-Shaw, M.; Bucknell, D. Quantifying the carbon footprint of household food waste and associated GHGs in Oakville, Ontario, and a municipality’s role in reducing both food waste and GHGs. Can. Geogr. Géogr. Can. 2022, 66, 769–782. [Google Scholar] [CrossRef]
- Singh, R.S.; Singh, R.K.; Tripathi, N. Food Waste Utilization for the Production of Biogas by Anaerobic Digestion: A Case Study in Coal Capital of India. In Environmental Management in India: Waste to Wealth; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Xu, M.; Yang, M.; Sun, H.; Gao, M.; Wang, Q.; Wu, C. Bioconversion of biowaste into renewable energy and resources: A sustainable strategy. Environ. Res. 2022, 214, 113929. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, M.H.; da Silva, A.S.F.; Correia, R.C.; Leite, N.P.; Bueno, C.E.G.; dos Santos Pinheiro, R.L.; de Santana, J.S.; da Silva, J.L.; Sales, A.T.; de Souza, C.C.; et al. Valorizing municipal organic waste to produce biodiesel, biogas, organic fertilizer, and value-added chemicals: An integrated biorefinery approach. Biomass Convers. Biorefin. 2022, 12, 827–841. [Google Scholar] [CrossRef]
- Loizia, P.; Neofytou, N.; Zorpas, A.A. The concept of circular economy strategy in food waste management for the optimization of energy production through anaerobic digestion. Environ. Sci. Pollut. Res. 2019, 26, 14766–14773. [Google Scholar] [CrossRef] [PubMed]
- Tsangas, M.; Gavriel, I.; Doula, M.; Xeni, F.; Zorpas, A.A. Life Cycle Analysis in the Framework of Agricultural Strategic Development Planning in the Balkan Region. Sustainability 2020, 12, 1813. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y. A Critical Review of Challenges Faced by Converting Food Waste to Bioenergy through Anaerobic Digestion and Hydrothermal Liquefaction. Waste Biomass Valoriz. 2022, 13, 781–796. [Google Scholar] [CrossRef]
- Bhatia, L.; Bachetti, R.K.; Ravindra, P.; Chandel, A.K. Third generation biorefineries: A sustainable platform for food, clean energy and nutraceuticals production. Biomass Convers. Biorefin. 2020, 12, 4215–4230. [Google Scholar] [CrossRef]
- Frontuto, D.; Carullo, D.; Harrison, S.M.; Brunton, N.P.; Ferrari, G.; Lyng, J.G.; Pataro, G. Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology. Food Bioprocess Technol. 2019, 12, 1708–1720. [Google Scholar] [CrossRef]
- Borbolla-Gaxiola, J.E.; Ross, A.B.; Dupont, V. Multi-Variate and Multi-Response Analysis of Hydrothermal Carbonization of Food Waste: Hydrochar Composition and Solid Fuel Characteristics. Energies 2022, 15, 5342. [Google Scholar] [CrossRef]
- Yan, M.; Liu, Y.; Song, Y.; Xu, A.; Zhu, G.; Jiang, J.; Hantoko, D. Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification. Energy 2022, 242, 123054. [Google Scholar] [CrossRef]
- He, M.; Zhu, X.; Dutta, S.; Khanal, S.K.; Lee, K.T.; Masek, O.; Tsang, D.C. Catalytic co-hydrothermal carbonization of food waste digestate and yard waste for energy application and nutrient recovery. Bioresour. Technol. 2022, 344, 126395. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.A.; Taglieri, L.; Gallifuoco, A. Hydrothermal carbonization of waste biomass: An experimental comparison between process layouts. Waste Manag. 2020, 114, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.; Bhandari, R.; Gäth, S.A. Life cycle assessment on the treatment of organic waste streams by anaerobic digestion, hydrothermal carbonization and incineration. Waste Manag. 2021, 130, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Kheerthivasan, R.; Siddiqui, N.; Nakkeeran, E.; Divakar, K. Insights into the impact of biorefineries and sustainable green technologies on circular bioeconomy. In Biofuels and Bioenergy: A Techno-Economic Approach; Elsevier: Amsterdam, The Netherlands, 2022; pp. 85–101. [Google Scholar]
- Mallick, D.; Sharma, S.D.; Brahma, H.S.; Nath, R.; Bhowmik, R.; Kushwaha, A. Emerging commercial opportunities for conversion of waste to energy: Aspect of gasification technology. In Waste-to-Energy Approaches Towards Zero Waste: Interdisciplinary Methods of Controlling Waste; Elsevier: Amsterdam, The Netherlands, 2022; pp. 105–127. [Google Scholar]
- Vinayak, V.; Khan, M.J.; Varjani, S.; Saratale, G.D.; Saratale, R.G.; Bhatia, S.K. Microbial fuel cells for remediation of environmental pollutants and value addition: Special focus on coupling diatom microbial fuel cells with photocatalytic and photoelectric fuel cells. J. Biotechnol. 2021, 338, 5–19. [Google Scholar] [CrossRef]
- Savla, N.; Pandit, S.; Mathuriya, A.S.; Gupta, P.K.; Khanna, N.; Babu, R.P.; Kumar, S. Recent advances in bioelectricity generation through the simultaneous valorization of lignocellulosic biomass and wastewater treatment in microbial fuel cell. Sustain. Energy Technol. Assess. 2021, 48, 101572. [Google Scholar]
- Suresh, R.; Rajendran, S.; Kumar, P.S.; Dutta, K.; Vo, D.V.N. Current advances in microbial fuel cell technology toward removal of organic contaminants—A review. Chemosphere 2022, 287, 132186. [Google Scholar] [CrossRef]
- Fadzli, F.S.; Rashid, M.; Yaqoob, A.A.; Ibrahim, M.N. Electricity generation and heavy metal remediation by utilizing yam (Dioscorea alata) waste in benthic microbial fuel cells (BMFCs). Biochem. Eng. J. 2021, 172, 108067. [Google Scholar] [CrossRef]
- Kumar, S.D.; Yasasve, M.; Karthigadevi, G.; Aashabharathi, M.; Subbaiya, R.; Karmegam, N.; Govarthanan, M. Efficiency of microbial fuel cells in the treatment and energy recovery from food wastes: Trends and applications—A review. Chemosphere 2022, 287, 132439. [Google Scholar] [CrossRef]
- Asefi, B.; Li, S.L.; Moreno, H.A.; Sanchez-Torres, V.; Hu, A.; Li, J.; Yu, C.P. Characterization of electricity production and microbial community of food waste-fed microbial fuel cells. Process Saf. Environ. Prot. 2019, 125, 83–91. [Google Scholar] [CrossRef]
- Sarma, R.; Tamuly, A.; Kakati, B.K. Recent developments in electricity generation by Microbial Fuel Cell using different substrates. Mater. Today Proc. 2022, 49, 457–463. [Google Scholar] [CrossRef]
- Assis, T.I.; Gonçalves, R.F. Valorization of food waste by anaerobic digestion: A bibliometric and systematic review focusing on optimization. J. Environ. Manag. 2022, 320, 115763. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Su, H.; Hantoko, D.; Kanchanatip, E.; Hamid, F.B.; Zhang, S.; Wang, G.; Xu, Z. Experimental study on the energy conversion of food waste via supercritical water gasification: Improvement of hydrogen production. Int. J. Hydrog. Energy 2019, 44, 4664–4673. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, D.; Tsui, T.H.; Loh, K.C.; Wang, C.H.; Dai, Y.; Tong, Y.W. Plastic-containing food waste conversion to biomethane, syngas, and biochar via anaerobic digestion and gasification: Focusing on reactor performance, microbial community analysis, and energy balance assessment. J. Environ. Manag. 2022, 306, 114471. [Google Scholar] [CrossRef] [PubMed]
- Marinos, S.; Terpsithea, P.; Hamdi, H.; Michail, T.; Zorpas, A.A.; Agapios, A. Biochar production from the pyrolysis of tomato processing residues. In Tomato Processing By-Products; Academic Press: Cambridge, MA, USA, 2022; pp. 171–200. [Google Scholar] [CrossRef]
- Carmona-Cabello, M.; Zorpas, A.A.; Dorado, M.P. Biorefinery concept for the industrial valorization of tomato processing by-products. In Tomato Processing By-Products; Academic Press: Cambridge, MA, USA, 2022; pp. 371–420. [Google Scholar] [CrossRef]
- Bhatia, L.; Johri, S. Optimization of simultaneous saccharification and fermentation parameters for sustainable production of ethanol from wheat straw by Pichia stipitis NCIM 3498. Indian J. Exp. Biol. 2018, 56, 932–941. [Google Scholar]
- Bhatia, L. Potential thermophilic enzymes for Bioethanol production. In Biotechnology for Sustainable Energy and Products; Sarangi, P.K., Nanda, S., Eds.; IK International Publishing House Pvt., Ltd.: New Delhi, India, 2019; pp. 129–148. [Google Scholar]
- Pereira, J.F.B.; Coutinho, J.A.P. Aqueous two-phase systems. In Liquid-Phase Extraction; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 157–182. [Google Scholar] [CrossRef]
- Bhatia, L.; Garlapati, V.K.; Chandel, A.K. Scalable Technologies for Lignocellulosic Biomass Processing into Cellulosic Ethanol. In Horizons in Bioprocess Engineering; Pogaku, R., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 73–90. [Google Scholar] [CrossRef]
- Bhatia, L.; Johri, S.; Ahmad, R. An economic and ecological perspective of ethanol production from renewable agro-waste—A review. Appl. Microbiol. Biotechnol. Express 2012, 2, 65. [Google Scholar] [CrossRef]
- Burd, N.A.; McKenna, C.F.; Salvador, A.F.; Paulussen, K.J.M.; Moore, D.R. Dietary protein quantity, quality, and exercise are key to healthy living: A muscle-centric perspective across the lifespan. Front. Nutr. 2019, 6, 83. [Google Scholar] [CrossRef] [Green Version]
- Evan, T.; Vintimilla, A.; Molina-Alcaide, E.; Ranilla, M.J.; Carro, M.D. Potential of recycling cauliflower and romanesco wastes in ruminant feeding: In vitro studies. Animals 2020, 10, 1247. [Google Scholar] [CrossRef]
- Mo, W.Y.; Cheng, Z.; Choi, W.M.; Man, Y.B.; Liu, Y.; Wong, M.H. Application of food waste based diets in polyculture of low trophic level fish: Effects on fish growth, water quality and plankton density. Mar. Pollut. Bull. 2014, 85, 803–809. [Google Scholar] [CrossRef]
- Soomro, A.H.; Shaikh, N.; Miano, T.F.; Marri, A.; Khaskheli, S.G.; Kumar, D. Food waste management strategies in food supply chain. Int. J. Ecosyst. Ecol. Sci. 2021, 11, 759–766. [Google Scholar] [CrossRef]
- Martin, D.S.; Ramos, S.; Zufía, J. Valorisation of food waste to produce new raw materials for animal feed. Food Chem. 2016, 198, 68–74. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Sarsaiya, S.; Awasthi, M.K.; Liu, T.; Zhao, J.; Kumar, S.; Zhang, Z. Changes in global trends in food waste composting: Research challenges and opportunities. Bioresour. Technol. 2020, 299, 122555. [Google Scholar] [CrossRef] [PubMed]
- Nadathur, S.R.; Wanasundara, J.P.D.; Scanlin, L. Proteins in the Diet: Challenges in Feeding the Global Population. In Sustainable Protein Sources; Academic Press: Cambridge, MA, USA, 2017; pp. 1–19. [Google Scholar] [CrossRef]
- Kamal, H.; Le, C.F.; Salter, A.M.; Ali, A. Extraction of protein from food waste: An overview of current status and opportunities. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2455–2475. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.W.; Charlton, A. A comparison in protein extraction from four major crop residues in Europe using chemical and enzymatic processes-a review. Innov. Food Sci. Emerg. Technol. 2020, 59, 102239. [Google Scholar] [CrossRef]
- Munshi, M.; Arya, P.; Kumar, P. Recovery and Utilization of Protein from Food Industry Waste. In Food Processing Waste and Utilization; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Zepka, L.Q.; Jacob-Lopes, E.; Goldbeck, R.; Queiroz, M.I. Production and biochemical profile of the microalgae Aphanothece microscopica Nägeli submitted to different drying conditions. Chem. Eng. Process. 2008, 47, 1305–1310. [Google Scholar] [CrossRef]
- Kadim, I.T.; Mahgoub, O.; Baqir, S.; Faye, B.; Purchas, R. Cultured meat from muscle stem cells: A review of challenges and prospects. J. Integr. Agric. 2015, 14, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Zafar, M.H.; Aqib, A.I.; Saeed, M.; Farag, M.R.; Alagawany, M. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 2021, 531, 735885. [Google Scholar] [CrossRef]
- Aggelopoulos, T.; Katsieris, K.; Bekatorou, A.; Pandey, A.; Banat, I.M.; Koutinas, A.A. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem. 2014, 145, 710–716. [Google Scholar] [CrossRef]
- Yunus, F.U.N.; Nadeem, M.; Rashid, F. Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. J. Inst. Brew. 2015, 121, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Aruna, T.E.; Aworh, O.C.; Raji, A.O.; Olagunju, A.I. Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Ann. Agric. Sci. 2017, 62, 33–37. [Google Scholar] [CrossRef]
- Hasnine, M.T.; Anand, N.; Zoungrana, A.; Palani, S.G.; Yuan, Q. An Overview of Physicochemical and Biological Treatment of Landfill Leachate. In Circular Economy in Municipal Solid Waste Landfilling: Biomining & Leachate Treatment: Radionuclides and Heavy Metals in the Environment; Springer: Cham, Switzerland, 2022; pp. 115–152. [Google Scholar]
- Al-Obadi, M.; Ayad, H.; Pokharel, S.; Ayari, M.A. Perspectives on Food Waste Management: Prevention and Social Innovations. Sustain. Prod. Consum. 2022, 31, 190–208. [Google Scholar] [CrossRef]
- Othman, K.I.; Lim, J.S.; Ho, W.S.; Hashim, H.; Hafizan, A.M. Carbon Emission and Landfill Footprint Constrained for Waste Management Using Cascade Analysis. Chem. Eng. Trans. 2018, 63, 145–150. [Google Scholar]
- Thapa, P.; Hasnine, M.T.; Zoungrana, A.; Thakur, S.; Yuan, Q. Food Waste Treatments and the Impact of Composting on Carbon Footprint in Canada. Fermentation 2022, 8, 566. [Google Scholar] [CrossRef]
- Soto, M.D.S.; Zorpas, A.A.; Pedreño, J.N.; Lucas, I.G. Vermicomposting of tomato wastes. In Tomato Processing By-Products; Academic Press: Cambridge, MA, USA, 2022; pp. 201–230. [Google Scholar] [CrossRef]
- Saleh, F.; Hussain, A.; Younis, T.; Ali, S.; Rashid, M.; Ali, A.; Mustafa, G.; Jabeen, F.; Al-surhanee, A.A.; Alnoman, M.M.; et al. Comparative growth potential of thermophilic amylolytic Bacillus sp. on unconventional media food wastes and its industrial application. Saudi J. Biol. Sci. 2020, 27, 3499–3504. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, L.; Singh, A.; Chandel, A.K.; Singh, O.M. Biotechnological Advancements in cellulosic ethanol production. In Sustainable Biotechnology: Enzymatic Resources of Renewable Energy; Singh, O.V., Chandel, A.K., Eds.; Springer: Cham, Switzerland, 2018; pp. 57–82. [Google Scholar]
- Srivastava, R.K.; Sarangi, P.K.; Bhatia, L.; Singh, A.K.; Shadangi, K.P. Conversion of methane to methanol: Technologies and Future Challenges. Biomass Convers. Biorefin. 2021, 12, 1851–1875. [Google Scholar] [CrossRef]
- Bhatia, L.; Sharma, A.; Bachetti, R.K.; Chandel, A.J. Lignocellulose derived functional oligosaccharides: Production, properties and health benefits—A Review. Prep. Biochem. Biotechnol. 2019, 49, 744–758. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lee, J.H.; Yoo, H.Y.; Shin, H.Y.; Thapa, L.P.; Park, C.; Kim, S.W. Production of bioethanol and biodiesel using instant noodle waste. Bioprocess Biosyst. Eng. 2014, 37, 1627–1635. [Google Scholar] [CrossRef]
- Karmee, S.; Patria, R.; Lin, C. Techno-economic evaluation of biodiesel production from waste cooking oil—A case study of Hong Kong. Int. J. Mol. Sci. 2015, 16, 4362–4371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Show, K.Y.; Lee, D.J. Biohydrogen production: Status and Perspectives. In Biofuels: Alternative Feedstocks and Conversion Process for the Production of Liquid and Gaseous Biofuels; Pandey, A., Larroche, C., Dussap, C.-G., Gnansounou, E., Khanal, S.K., Ricke, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 693–713. [Google Scholar] [CrossRef]
- Jagadevan, S.; Banerjee, A.; Banerjee, C.; Guria, C.; Tiwari, R.; Baweja, M.; Shukla, P. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol. Biofuels 2018, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Singla, S.; Shetti, N.P.; Basu, S.; Mondal, K.; Aminabhavi, T.M. Hydrogen production technologies—Membrane based separation, storage and challenges. J. Environ. Manag. 2022, 302, 113963. [Google Scholar] [CrossRef] [PubMed]
- Yahmed, N.B.; Dauptain, K.; Lajnef, I.; Carrere, H.; Trably, E.; Smaali, I. New sustainable bioconversion concept of date by-products (Phoenix dactylifera L.) to biohydrogen, biogas and date-syrup. Int. J. Hydrog. Energy 2021, 46, 297–305. [Google Scholar] [CrossRef]
- Sravan, J.S.; Butti, S.K.; Sarkar, O.; Krishna, K.V.; Mohan, S.V. Electrofermentation of food waste—Regulating acidogenesis towards enhanced volatile fatty acids production. Chem. Eng. J. 2018, 334, 1709–1718. [Google Scholar] [CrossRef]
- Yan, B.H.; Selvam, A.; Wong, J.W.C. Bio-hydrogen and methane production from two-phase anaerobic digestion of food waste under the scheme of acidogenic off-gas reuse. Bioresour. Technol. 2020, 297, 122400. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.M.; Ramos-Suárez, J.L.; Vouzela, C.; Madruga, J.; Borba, A.E.S. Reducing carbon footprint in the Azorean meat industry. In Proceedings of the EAAP—73rd Annual Meeting, Porto, Portugal, 5–9 September 2022. [Google Scholar]
- Bhatia, L.; Johri, S. Fourier transform infrared mapping of peels of Citrus sinensis var mosambi after physiochemical pretreatment and its SSF for ethanol production by Saccharomyces cerevisiae MTCC 3821—An economic & ecological venture. Int. J. Sci. Res. 2014, 3, 1653–1664. [Google Scholar]
- Bhatia, L.; Johri, S. Biovalorization potential of peels of Ananas cosmosus (L.) Merr. For ethanol production by Pichia stipitis NCIM 3498 & Pachysolentannophilus MTCC 1077. Indian J. Exp. Biol. 2015, 53, 819–827. [Google Scholar] [PubMed]
- Bhatia, L.; Johri, S. FTIR analysis & optimization of simultaneous saccharification and fermentation parameters for sustainable production of ethanol from peels of Ananas cosmosus by Mucor indicus MTCC 4349. Waste Biomass Valoriz. 2015, 7, 427–438. [Google Scholar] [CrossRef]
- Bhatia, L.; Johri, S. Optimization of simultaneous saccharification and fermentation parameters for sustainable production of ethanol from sugarcane bagasse by Pachysolen tannophilus MTCC 1077. Sugar Tech 2016, 18, 457–467. [Google Scholar] [CrossRef]
- Bhatia, L.; Johri, S. Fourier transform infrared mapping of peels of Litchi chinensis after acid treatment and its SSF for ethanol production by Pachysolen tannophilus MTCC 1077—An economic & ecological venture. Indian J. Biotechnol. 2017, 16, 444–456. [Google Scholar]
- Maeda, Y.; Yoshino, T.; Matsunaga, T.; Matsumoto, M.; Tanaka, T. Marine microalgae for production of biofuels and chemicals. Curr. Opin. Biotechnol. 2018, 50, 111–120. [Google Scholar] [CrossRef]
- Tsegaye, B.; Jaiswal, S.; Jaiswal, A.K. Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods 2021, 10, 1174. [Google Scholar] [CrossRef]
- Oliveira, V.; Dias-Ferreira, C.; González-García, I.; Labrincha, J.; Horta, C. A novel approach for nutrients recovery from municipal waste as biofertilizers by combining electrodialytic and gas permeable membrane technologies. Waste Manag. 2021, 125, 293–302. [Google Scholar] [CrossRef]
- Hathi, Z.J.; Haque, M.A.; Priya, A.; Qin, Z.H.; Huang, S.; Lam, C.H.; Ladakis, D.; Pateraki, C.; Mettu, S.; Koutinas, A.; et al. Fermentative bioconversion of food waste into biopolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) using Cupriavidus necator. Environ. Res. 2022, 215, 114323. [Google Scholar] [CrossRef] [PubMed]
- Noor, Z.Z.; Yusuf, R.O.; Abba, A.H.; Hassan, M.A.; Din, M.F. An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renew. Sustain. Energy Rev. 2013, 20, 378–384. [Google Scholar] [CrossRef]
- Tsai, W.-T. Turning Food Waste into Value-Added Resources: Current Status and Regulatory Promotion in Taiwan. Resources 2020, 9, 53. [Google Scholar] [CrossRef]
- Anagnostopoulou, C.; Kontogiannopoulos, K.N.; Gaspari, M.; Morlino, M.S.; Assimopoulou, A.N.; Kougias, P.G. Valorization of household food wastes to lactic acid production: A response surface methodology approach to optimize fermentation process. Chemosphere 2022, 296, 133871. [Google Scholar] [CrossRef]
- Benaissa, K.; Belkhir, D.; Abdelaziz, B.; Saliha, B. Valorization of Household Waste via Biogas Production in Algeria since 1938: Inventory and Perspectives. Int. J. Innov. Approaches Agric. Res. 2019, 3, 148–161. [Google Scholar] [CrossRef]
- Suhartini, S.; Rohma, N.A.; Santoso, I.; Paul, R.; Listiningrum, P.; Melville, L. Food waste to bioenergy: Current status and role in future circular economies in Indonesia. Energy Ecol. Environ. 2022, 7, 297–339. [Google Scholar] [CrossRef]
- Dou, Z.; Toth, J.D. Global primary data on consumer food waste: Rate and characteristics—A review. Resour. Conserv. Recycl. 2021, 168, 105332. [Google Scholar] [CrossRef]
- Okamoto, M.; Miyahara, T.; Mizuno, O.; Noike, T. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci. Technol. 2000, 41, 25–32. [Google Scholar] [CrossRef]
- Duerkop, M.; Berger, E.; Dürauer, A.; Jungbauer, A. Impact of Cavitation, High Shear Stress and Air/Liquid Interfaces on Protein Aggregation. Biotechnol. J. 2018, 13, 1800062. [Google Scholar] [CrossRef] [Green Version]
- Thi, N.B.D.; Kumar, G.; Lin, C.Y. An overview of food waste management in developing countries: Current status and future perspective. J. Environ. Manag. 2015, 157, 220–229. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Z.; Hu, W.; Zhang, H. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrog. Energy 2002, 11–12, 1359–1365. [Google Scholar] [CrossRef]
- O’Connor, J.; Hoang, S.A.; Bradney, L.; Dutta, S.; Xiong, X.; Tsang, D.C.; Ramadass, K.; Vinu, A.; Kirkham, M.B.; Bolan, N.S. A review on the valorisation of food waste as a nutrient source and soil amendment. Environ. Pollut. 2021, 272, 115985. [Google Scholar] [CrossRef] [PubMed]
- Gautam, K.; Vishvakarma, R.; Sharma, P.; Singh, A.; Gaur, V.K.; Varjani, S.; Srivastava, J.K. Production of biopolymers from food waste: Constrains and perspectives. Bioresour. Technol. 2022, 361, 127650. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Kim, S.H.; Pandey, A. Microbial strategies for bio-transforming food waste into resources. Bioresour. Technol. 2020, 299, 122580. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, P.; ul Haq, S.; Abbas, A.; Samie, A.; Boz, I.; Bagadeem, S.; Yu, Z.; Li, Z. Food, Energy, and Water Nexus at Household Level: Do Sustainable Household Consumption Practices Promote Cleaner Environment. Int. J. Environ. Res. Public Health 2022, 19, 12945. [Google Scholar] [CrossRef] [PubMed]
- Iacovidou, E.; Zorpas, A.A. Exploratory research on the adoption of composting for the management of biowaste in the Mediterranean island of Cyprus. Clean. Circ. Bioecon. 2022, 1, 100007. [Google Scholar] [CrossRef]
- Lasaridi, K.; Hatzi, O.; Batistatos, G.; Abeliotis, K.; Chroni, C.; Kalogeropoulos, N.; Chatzieleftheriou, C.; Gargoulas, N.; Mavropolous, A.; Zorpas, A.; et al. Waste Prevention Scenarios Using a Web-Based Tool for Local Authorities. Waste Biomass Valoriz. 2015, 6, 625–636. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Voukkali, I.; Loizia, P. A prevention strategy plan concerning the waste framework directive in Cyprus. Fresenius Environ. Bull. 2017, 26, 1310–1317. [Google Scholar]
- Zorpas, A.A.; Lasaridi, K.; Voukkali, I.; Loizia, P.; Chroni, C. Promoting Sustainable Waste Prevention Strategy Activities and Planning in Relation to the Waste Framework Directive in Insular Communities. Environ. Process. 2015, 2, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Papamichael, I.; Pappas, G.; Siegel, J.E.; Zorpas, A.A. Unified waste metrics: A gamified tool in next-generation strategic planning. Sci. Total Environ. 2022, 833, 154835. [Google Scholar] [CrossRef]
- Adelodun, B.; Kareem, K.Y.; Kumar, P.; Kumar, V.; Choi, K.S.; Yadav, K.K.; Yadav, A.; El-Denglawey, A.; Cabral-Pinto, M.; Son, C.T.; et al. Understanding the impacts of the COVID-19 pandemic on sustainable agri-food system and agroecosystem decarbonization nexus: A review. J. Clean. Prod. 2021, 318, 128451. [Google Scholar] [CrossRef] [PubMed]
- Almendro-Candel, M.B.; Navarro-Pedreño, J.; Lucas, I.G.; Zorpas, A.A.; Voukkali, I.; Loizia, P. The Use of Composted Municipal Solid Waste under the Concept of Circular Economy and as a Source of Plant Nutrients and Pollutants. In Municipal Solid Waste Management; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Almendro-Candel, M.B.; Lucas, I.G.; Navarro-Pedreño, J.; Zorpas, A.A. Physical Properties of Soils Affected by the Use of Agricultural Waste. In Agricultural Waste and Residues; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, N.A.; Zorpas, A.A. Quality protocol and procedure development to define end-of-waste criteria for tire pyrolysis oil in the framework of circular economy strategy. Waste Manag. 2019, 95, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Mabrouki, J.; Abbassi, M.A.; Khiari, B.; Jellali, S.; Zorpas, A.A.; Jeguirim, M. The dairy biorefinery: Integrating treatment process for Tunisian cheese whey valorization. Chemosphere 2022, 293, 133567. [Google Scholar] [CrossRef]
- Papamichael, I.; Chatziparaskeva, G.; Pedreño, J.N.; Voukkali, I.; Candel, M.B.A.; Zorpas, A.A. Building a new mind set in tomorrow fashion development through circular strategy models in the framework of waste management. Curr. Opin. Green Sustain. Chem. 2022, 36, 100638. [Google Scholar] [CrossRef]
- Papamichael, I.; Zorpas, A.A. End-of-waste criteria in the framework of end-of-life PV panels concerning circular economy strategy. Waste Manag. Res. 2022, 40, 1677–1679. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Subudhi, S.; Bhatia, L.; Saha, K.; Mudgil, D.; Prasad, K.; Shadangi; Srivastava, R.K.; Pattnaik, B.; Arya, R.K. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environ. Sci. Pollut. Res. 2022, 29, 1–14. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, P.K.; Mohanty, P.; Adhya, T.K.; Sarangi, P.K.; Srivastava, R.K.; Jena, J.; Das, T.; Hota, P.K. Green synthesis of biomethanol—Managing food waste for carbon footprint and bioeconomy. Biomass Convers. Biorefin. 2022, 12, 1889–1909. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Nanda, S. Biohydrogen production through dark fermentation. Chem. Eng. Technol. 2020, 43, 601–612. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Nayak, M.M. Agro-waste for Second Generation Biofuels. In Liquid Biofuels: Fundamentals, Characterization, and Applications; Shadangi, K.P., Ed.; Wiley-Scrivener, Scrivener Publishing LLC: Beverly, MA, USA, 2021; pp. 697–706. [Google Scholar]
- Sarangi, P.K.; Nanda, S.; Vo, D.-V.N. Technological Advancements in the Production and Application of Biomethanol. In Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals; Nanda, S., Vo, D.V.N., Sarangi, P.K., Eds.; Springer Nature: Boston, MA, USA, 2020; pp. 127–140. [Google Scholar]
- Sarangi, P.K.; Nanda, S. Recent advances in consolidated bioprocessing for microbe-assisted biofuel production. In Fuel Processing and Energy Utilization; Nanda, S., Sarangi, P.K., Vo, D.V.N., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 141–157. [Google Scholar]
- Sarangi, P.K.; Singh, T.A.; Singh, N.J.; Shadangi, K.P.; Srivastava, R.K.; Singh, A.K.; Chandel, A.K.; Pareek, N.; Vivekanand, V. Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. Bioresour. Technol. 2022, 351, 127085. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Singh, D.; Mohanty, P.; Sarangi, P.K. Biochemical and Thermochemical Routes of H2 Production from Food Waste: A Comparative Review. Chem. Eng. Technol. 2021, 46, 191–203. [Google Scholar] [CrossRef]
For Rearing | Food Waste Used | Characteristic Studied | Observations | Conclusion Drawn | Remarks | Reference |
---|---|---|---|---|---|---|
Livestock | Cauliflower and Romanesco waste (e.g., leaves, stems, and sprouts) | Ruminal fermentation and intestinal digestibility | All fractions of food waste were highly degradable and resulted in high digestibility for a protein source. | Up to 24% of dried cauliflower in concentrate can be included in feed for dairy sheep without negative ruminal fermentation effects. | Use of food waste in ruminant nutrition is promising | [49] |
Polyculture of low trophic level fish (grass carp, bighead, and mud carp). | Diet A fruits and vegetables—10%, cereal—53%, bone meal—8%, fish meal—10%, corn starch—15%, and other food waste—4% | Presence of plankton, water quality, and fish growth. | Density of planktons was the highest in the Diet A body of water, but not significantly different. | The water quality did not appear to be significantly impacted by the various feeds. | Diet A was devoid of meat waste and was 53% cereal-based | [50] |
Polyculture of low trophic level fish (grass carp, bighead, and mud carp). | Diet B 10% fruits and vegetables, 25% meat products, 28% cereal, 8% bone meal, 10% fish meal, 15% corn starch and 4% other food waste. | Presence of plankton, water quality, and fish growth. | This proved to be a better formulation in terms of the complete performance on fish growth factors. | The improved diversification in generation of feedstuff could permit more food waste to be employed for many fishery species. | Diet B was 25% meat and 28% cereal. | [50] |
Microorganism | Food Waste (Substrate) | Growth Parameters | Product | Reference |
---|---|---|---|---|
K. marxianus IMB3 (thermotolerant), | Whey, orange and potato residues, molasses, brewer’s | 30 °C and pH 7 | Aroma compound pinene, protein, and lipid. | [61] |
Kefir culture | 30 °C and pH 5.5 | Aroma compound pinene 4 kg ton−1 of the food waste | ||
S. cerevisiae AXAZ-1 (alcohol resistant and psychrotolerant) | 30 °C and pH 5.5 | 38.5% protein | ||
Candida utilis and Rhizopus oligosporus | Wheat bran | 30 °C and 48 h | Protein yield 41.02% | [62] |
Aphanothece microscopca Nageli | Rice effluent | 30 °C and 72 h | Significant yield of SCP and high ratio of PUFA (mainly gamma linolenic acid) | [58] |
Saccharomyces cerevisiae BY4743 | Yam peel | 96 h | Protein having threonine, lysine, valine, and leucine (essential amino acids) | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. Int. J. Environ. Res. Public Health 2023, 20, 2318. https://doi.org/10.3390/ijerph20032318
Bhatia L, Jha H, Sarkar T, Sarangi PK. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. International Journal of Environmental Research and Public Health. 2023; 20(3):2318. https://doi.org/10.3390/ijerph20032318
Chicago/Turabian StyleBhatia, Latika, Harit Jha, Tanushree Sarkar, and Prakash Kumar Sarangi. 2023. "Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review" International Journal of Environmental Research and Public Health 20, no. 3: 2318. https://doi.org/10.3390/ijerph20032318
APA StyleBhatia, L., Jha, H., Sarkar, T., & Sarangi, P. K. (2023). Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. International Journal of Environmental Research and Public Health, 20(3), 2318. https://doi.org/10.3390/ijerph20032318