Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level: A Case Study of Nanjing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.1.1. Study Area
2.1.2. Dataset
2.2. Theoretical Framework
2.3. Methods
2.3.1. Spatial Interpolation
2.3.2. Correlation Analysis
2.3.3. Spatial Zoning
3. Results
3.1. Results for the Optimum Resolution
3.1.1. Spatial Cluster Analysis
3.1.2. Correlation Analysis
3.2. Results for qcn and QCn
3.2.1. Individual Layers
3.2.2. Accumulative Layer
3.3. Results for Spatial Zoning
3.3.1. Variation in CDEI
3.3.2. Spatial Zoning in Nanjing
4. Discussion
5. Conclusions
- (1)
- There are obvious scale issues in the study of carbon sources and carbon sinks in terrestrial ecosystems, and this paper takes Nanjing as a sealed area, without considering the carbon cycle relationship with terrestrial ecosystems in a larger spatial range outside Nanjing.
- (2)
- The resampled data for the spatial zoning division were derived from the 10 km spatial resolution of CHRED, and this study has refined the resolution problem by spatial interpolation in order to achieve spatial scale transformation. Therefore, the resampled data can only reveal the spatial heterogeneity characteristics of Nanjing’s CDEs from the overall spatial pattern; they cannot accurately match the grid cells in the same locations.
- (3)
- With the development of urbanization and industrialization in Nanjing, CDEs are still in the process of dynamic change. Restricted by the difficulty of data collection and matching, this paper obtained only basic data from 2015, because of which it is impossible to carry out an empirical analysis of the annual changes in the spatial zoning of CDEI. However, combined with the increasing population and fossil energy consumption in Nanjing and the slow transformation of the industrial structure, the scale of CDEs and their scope of influence arising from human activities and energy consumption will continue to increase, the CDEI of the interior burgeoning zone, the urban peak zone, and the suburban recessionary zone will also continue to increase, and its coverage will also grow and continue to extend its range.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
CDEs | Carbon dioxide emissions |
CHRED | China high-resolution emission gridded data |
CDEI | Carbon dioxide emissions intensity |
GDP | Gross domestic product |
EDGAR | Emissions Database for Global Atmospheric Research |
IPCC | Intergovernmental Panel on Climate Change |
NTL | Night-time light |
DMSP-OLS | Defense Meteorological Satellite Program-Operational Line scan System |
YRDUA | Yangtze River Delta urban agglomerations |
NPP-VIIRS | National Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer Suite |
NDVI | Normalized Difference Vegetation Index |
YRDSDC | Yangtze River Delta Scientific Data Center |
OLSM | Ordinary least squares model |
SLM | Spatial lag model |
LogL | Log likelihood |
AIC | Akaike information criterion |
SC | Schwartz criterion |
FCD | Four core districts |
EDZ | Economic development zones |
CIP | Nanjing Chemical Industry Park |
References
- World Meteorological Organization (WMO). Greenhouse Gas Bulletin (GHG Bulletin)—No.17: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020. Available online: https://library.wmo.int/doc_num.php?explnum_id=10904.2021 (accessed on 3 December 2022).
- Zhou, C.S.; Wang, S.J.; Wang, J.Y. Examining the influences of urbanization on carbon dioxide emissions in the Yangtze River Delta, China: Kuznets curve relationship. Sci. Total Environ. 2019, 675, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Sarkodie, S.A.; Owusu, P.A.; Leirvik, T. Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions. Environ. Res. Lett. 2020, 15, 034049. [Google Scholar] [CrossRef]
- Muneer, T.; Celik, A.N.; Caliskan, N. Sustainable transport solution for a medium-sized town in Turkey—A case study. Sustain. Cities Soc. 2011, 1, 29–37. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, K.R.; Chen, Z.F. How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy 2017, 107, 678–687. [Google Scholar] [CrossRef]
- Shafiei, S.; Salim, R.A. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Li, A.J.; Zhang, A.Z.; Zhou, Y.X.; Yao, X. Decomposition analysis of factors affecting carbon dioxide emissions across provinces in China. J. Clean. Prod. 2017, 141, 1428–1444. [Google Scholar] [CrossRef]
- Liu, X.Z.; Gao, C.C.; Song, Y.; Zhang, Y.; Su, Q.; Tian, Y.L. Temporal spatial carbon emission patterns caused by fossil energy consumption at the city level in Hunan Province, China and the factors driving their composition. Acta Ecol. Sin. 2017, 37, 2476–2487. [Google Scholar]
- Shan, Y.L.; Liu, J.H.; Liu, Z.; Xu, X.W.H.; Shao, S.; Wang, P.; Guan, D.B. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, X.Y.; Lin, J.Y.; Cui, S.H.; Zhao, S.G. Factor decomposition of carbon intensity in Xiamen City based on LMDI method. Acta Ecol. Sin. 2014, 34, 2378–2387. [Google Scholar]
- Makido, Y.; Dhakal, S.; Yamagata, Y. Relationship between urban form and CO2 emissions: Evidence from fifty Japanese cities. Urban Clim. 2012, 2, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Geng, Y.; Lindner, S.; Zhao, H.Y.; Fujita, T.; Guan, D.B. Embodied energy use in China’s industrial sectors. Energy Policy 2012, 49, 751–758. [Google Scholar] [CrossRef]
- Wang, S.J.; Wang, J.Y.; Fang, C.L.; Li, S. Estimating the impacts of urban form on CO2 emission efficiency in the Pearl River Delta, China. Cities 2019, 85, 117–129. [Google Scholar] [CrossRef]
- Lu, T.Y.; Zeng, C.; Liu, Z.J.; Yang, J. Driving factors and spillover effects of CO2 emissions from the perspective of spatial interaction: A case study of 98 countries worldwide. Acta Ecol. Sin. 2020, 40, 8974–8987. [Google Scholar]
- Shi, K.F.; Xu, T.; Li, Y.Q.; Chen, Z.Q.; Gong, W.K.; Wu, J.P.; Yu, B.L. Effects of urban forms on CO2 emissions in China from a multi-perspective analysis. J. Environ. Manag. 2020, 262, 110300.1–110300.14. [Google Scholar] [CrossRef] [PubMed]
- Bereitschaft, B.; Debbage, K. Urban Form, Air Pollution, and CO2 Emissions in Large, U.S. Metropolitan Areas. Prof. Geogr. 2013, 65, 612–635. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Lu, Q.L.; Zhang, M.; Zhao, R.Q.; Lu, J.Y. Spatiotemporal changes of built-up land expansion and carbon emissions caused by the Chinese construction industry. Environ. Sci. Technol. 2015, 49, 13021–13030. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.L.; Li, R.R. Renewable energy and economic growth revisited: The dual roles of resource dependence and anticorruption regulation. J. Clean. Prod. 2022, 337, 130514. [Google Scholar] [CrossRef]
- Al-Mulali, U. Factors affecting CO2 emission in the Middle East: A panel data analysis. Energy 2012, 44, 564–569. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and IMPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Henderson, J.V.; Nigmatulina, D.; Kriticos, S. Measuring urban economic density. J. Urban Econ. 2018, 125, 103188. [Google Scholar] [CrossRef]
- Ouyang, X.; Lin, B.Q. Carbon dioxide (CO2) emissions during urbanization: A comparative study between China and Japan. J. Clean. Prod. 2017, 143, 356–368. [Google Scholar] [CrossRef]
- Han, X.Y.; Cao, T.Y.; Sun, T. Analysis on the variation rule and influencing factors of energy consumption carbon emission intensity in China’s urbanization construction. J. Clean. Prod. 2019, 238, 117958. [Google Scholar] [CrossRef]
- Yao, X.L.; Kou, D.; Shao, S.; Li, X.Y.; Wang, W.X.; Zhang, C.T. Can urbanization process and carbon emission abatement be harmonious? New evidence from China. Environ. Impact Assess. Rev. 2018, 71, 70–83. [Google Scholar] [CrossRef]
- Envelope, A.; Envelope, M.; Envelope, A.; Envelope, J. Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector? Technol. Soc. 2022, 71, 102128. [Google Scholar]
- Yang, T.L.; Dong, Q.Y.; Du, Q.Y.; Du, M.; Dong, R.; Chen, M. Carbon dioxide emissions and Chinese OFDI: From the perspective of carbon neutrality targets and environmental management of home country. J. Environ. Manag. 2021, 295, 113120. [Google Scholar] [CrossRef] [PubMed]
- Algieri, B.; Fug, O.; Lombardo, R. The Italian Journey: Carbon dioxide emissions, the role of tourism and other economic and climate drivers. J. Clean. Prod. 2022, 375, 134144. [Google Scholar] [CrossRef]
- Liu, H.L.; Nie, J.X.; Cai, B.F.; Cao, L.B.; Wu, P.C.; Pang, L.Y.; Wang, X.Q. CO2 emissions patterns of 26 cities in the Yangtze River Delta in 2015: Evidence and implications. Environ. Pollut. 2019, 252, 1678–1686. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Zhao, R.Q.; Zhang, M.; Wu, C.Y. Land use, total carbon emissions change and low carbon land management in Coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- Cui, Y.F.; Li, L.; Chen, L.Q.; Zhang, Y.; Chen, L.; Zhou, X.S.; Yang, X.Y. Land-use carbon emissions estimation for the Yangtze River Delta urban agglomeration using 1994–2016 landsat image data. Remote Sens. 2018, 10, 1334. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Chen, M.X.; Tang, Z.P.; Zhao, M. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- European Commission Joint Research Centre (JRC); (PBL) Netherlands Environmental Assessment Agency. Emission Database for Global Atmospheric Research (EDGAR); European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IPCC: Geneva, Switzerland, 2016; Available online: http://www.ipcc.ch/ipccreports/methodology-reports.htm (accessed on 8 January 2023).
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Muntean, M.; Petrescu, A. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 2019, 11, 959–1002. [Google Scholar] [CrossRef] [Green Version]
- Oreggioni, G.D.; Ferraio, F.M.; Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Guizzardi, D.; Solazzo, E.; Duerr, M.; Perry, M.; et al. Climate change in a changing world: Socio-economic and technological transitions, regulatory frameworks and trends on global greenhouse gas emissions from EDGAR v.5.0. Glob. Environ. Change 2021, 70, 102350. [Google Scholar] [CrossRef]
- Alonso, M.F.; Longo, K.M.; Freitas, S.R.; Fonseca, R.M.D.; Marecal, V.; Pirre, M.; Klenner, L.G. An urban emissions inventory for South America and its application in numerical modeling of atmospheric chemical composition at local and regional scales. Atmos. Environ. 2010, 44, 5072–5083. [Google Scholar] [CrossRef] [Green Version]
- Gurney, K.R.; Mendoza, D.L.; Zhou, Y.; Fischer, M.L.; Miller, C.C.; Geethakumar, S. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol. 2009, 43, 5535–5541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, B.F.; Liang, S.; Zhou, J.; Wang, J.N.; Cao, L.B.; Qu, S.; Xu, M.; Yang, Z.F. China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data. Resour. Conserv. Recycl. 2018, 129, 232–239. [Google Scholar] [CrossRef]
- GOSAT. GOSAT: Greenhouse Gases Observing Satellite; National Institute for Environmental Studies: Tsukuba-shi, Japan, 2017; Available online: http://www.gosat.nies.go.jp/en (accessed on 9 January 2023).
- NASA. Orbiting Carbon Observatory 2. National Aeronautics and Space Administration. 2017. Available online: https://www.nasa.gov/mission_pages/oco2/index.html (accessed on 11 January 2023).
- eoPortal. TanSat (Chinese Carbon Dioxide Observation Satellite Mission). eoPortal. 2017. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/t/tansat (accessed on 11 January 2023).
- Liu, S.R.; Shi, K.F.; Wu, Y.Z.; Chang, Z.J. Remotely sensed nighttime lights reveal China’s urbanization process restricted by haze pollution. Build. Environ. 2021, 206, 108350. [Google Scholar] [CrossRef]
- Mi, Z.F.; Meng, J.; Guan, D.B.; Shan, Y.; Song, M.; Wei, Y.M.; Liu, Z.; Hubacek, K. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Communations 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.J.; Huang, Y.Y.; Zhou, Y.Q. Spatial spillover effect and driving forces of carbon emission intensity at city level in China. J. Geogr. Sci. 2019, 29, 231–252. [Google Scholar] [CrossRef] [Green Version]
- EDGAR. EDGAR—Emissions Database for Global Atmospheric Research. Joint Research Centre, European Commission. 2016. Available online: http://edgar.jrc.ec.europa.eu (accessed on 14 January 2023).
- ORNL. Fossil-Fuel CO2 Emissions. Oak Ridge National Laboratory, U.S. Department of Energy. 2017. Available online: http://cdiac.ornl.gov/trends/emis/meth_reg.html (accessed on 16 January 2023).
- Wang, R.; Tao, S.; Ciais, P.; Shen, H.Z.; Huang, Y.; Chen, H.; Shen, G.F.; Wang, B.; Li, W.; Zhang, Y.Y.; et al. High-resolution mapping of combustion processes and implications for CO2 emissions. Atmos. Chem. Phys. 2012, 12, 21211–21239. [Google Scholar]
- Zhao, Y.; Nielsen, C.P.; McElroy, M.B. China’s CO2 emissions estimated from the bottom up: Recent trends, spatial distributions, and quantification of uncertainties. Atmos. Environ. 2012, 49, 103–113. [Google Scholar] [CrossRef]
- Bi, J.; Zhang, R.R.; Wang, H.K.; Liu, M.M.; Wu, Y. The benchmarks of carbon emissions and policy implications for China’s cities: Case of Nanjing. Energy Policy 2011, 39, 4785–4794. [Google Scholar] [CrossRef]
- Wang, J.N.; Cai, B.F.; Zhang, L.X.; Cao, D.; Liu, L.C.; Zhou, Y.; Zhang, Z.S.; Xue, W.B. High resolution carbon dioxide emission gridded data for China derived from point sources. Environ. Sci. Technol. 2014, 48, 7085–7093. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.F.; Wang, J.N.; He, J.; Geng, Y. Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective. Appl. Energy 2016, 166, 191–200. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Wang, S.J.; Zhang, W.Z.; Li, J.M.; Kong, Y.L. Examining the effects of income inequality on CO2 emissions: Evidence from nonspatial and spatial perspectives. Appl. Energy 2019, 236, 163–171. [Google Scholar] [CrossRef]
- Zuo, S.D.; Dai, S.Q.; Ren, Y. More fragmentized urban form more CO2 emissions? A comprehensive relationship from the combination analysis across different scales. J. Clean. Prod. 2020, 244, 118659. [Google Scholar] [CrossRef]
- Ai, T.H.; Zhang, X. An interpretation and representation of scale concept in geo-information sciences. Acta Geod. Et Cartogr. Sin. 2022, 51, 1640–1652. [Google Scholar]
- Yuan, Y.; Zhao, W.T.; Li, H.Q.; Mu, H. Analyzing the Driving Mechanism of Rural Transition from the Perspective of Rural–Urban Continuum: A Case Study of Suzhou, China. Land 2022, 11, 1146. [Google Scholar] [CrossRef]
- Zhu, E.Y.; Deng, J.S.; Zhou, M.M.; Gan, M.; Jiang, R.W.; Wang, K.; Shahtahmassebi, A. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2019, 646, 930–939. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Gu, Z.H.; Sun, Q.; Wennersten, R. Impact of urban residences on energy consumption and carbon emissions: An investigation in Nanjing, China. Sustain. Cities Soc. 2013, 7, 52–61. [Google Scholar] [CrossRef]
- Chen, Q.R.; Xie, H.L. Temporal-Spatial Differentiation and Optimization Analysis of Cultivated Land Green Utilization Efficiency in China. Land 2019, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.C.; Xie, H.; Zhang, J.B.; Wang, X.Y.; Wei, J.Y.; Quan, X.B. Prediction and Trend Analysis of Regional Industrial Carbon Emission in China: A Study of Nanjing City. Int. J. Environ. Res. Public Health 2022, 19, 7165. [Google Scholar] [CrossRef] [PubMed]
- Li, K.Q.; Lu, R.; Chu, R.W.; Ma, D.D.; Zhu, L.Q. Trends and Driving Forces of Carbon Emissions from Energy Consumption: A Case Study of Nanjing, China. Sustainability 2018, 10, 4348. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Lin, B.Q. How industrialization and urbanization process impacts on CO2 emissions in china: Evidence from nonparametric additive regression models. Energy Econ. 2015, 48, 188–202. [Google Scholar] [CrossRef]
- Cirilli, A.; Veneri, P. Spatial Structure and Carbon Dioxide (CO2) Emissions Due to Commuting: An Analysis of Italian Urban Areas. Reg. Stud. 2013, 48, 1993–2005. [Google Scholar] [CrossRef]
- Christen, A.; Coops, N.C.; Crawford, B.R.; Kellett, R.; Liss, K.N.; Olchovski, L.; Tooke, T.R.; van der Lann, M.; Voogt, J.A. Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements. Atmos. Environ. 2011, 45, 6057–6069. [Google Scholar] [CrossRef]
- Liu, S.R.; Shen, J.W.; Liu, G.F.; Wu, Y.Z.; Shi, K.F. Exploring the effect of urban spatial development pattern on carbon dioxide emissions in China: A socioeconomic density distribution approach based on remotely sensed nighttime light data. Comput. Environ. Urban Syst. 2022, 96, 101847. [Google Scholar] [CrossRef]
- Liang, C.Y.; Liu, X.Y.; Li, S.L. Urban spatial development mode and smog pollution—Based on the perspective of population density distribution. Econ. Perspect. 2021, 2, 80–94. [Google Scholar]
- Zhou, K. Spatial-temporal differences and cluster features of environmental pollution in China. Sci. Geogr. Sin. 2016, 36, 989–997. [Google Scholar]
- Qu, Y.B.; Wang, S.L.; Tian, Y.Y.; Jiang, G.H.; Zhou, T.; Meng, L. Territorial spatial planning for regional high-quality development—An analytical framework for the identification, mediation and transmission of potential land utilization conflicts in the Yellow River Delta. Land Use Policy 2023, 125, 106462. [Google Scholar]
- Sapkota, Y.; White, J.R. Carbon offset market methodologies applicable for coastal wetland restoration and conservation in the United States: A review. Sci. Total Environ. 2020, 701, 134497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Sun, Y.F. The dynamic volatility spillover between European carbon trading market and fossil energy market. J. Clean. Prod. 2016, 112, 2654–2663. [Google Scholar] [CrossRef]
- Cai, B.F.; Wang, J.N. CO2 emissions of Tianjin based on 1 km grid dataset. Acta Sci. Circumstantiae 2013, 33, 1655–1664. [Google Scholar]
- Glaeser, E.L.; Kahn, M.E. The greenness of cities: Carbon dioxide emissions and urban development. J. Urban Econ. 2010, 67, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Vande Weghe, J.R.; Kennedy, C.A. Spatial analysis of residential greenhouse gas emissions in the Toronto census metropolitan area. J. Ind. Ecol. 2017, 11, 133–144. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Huang, J.J.; Peng, B.Z. Carbon cycle and carbon balance analysis of urban system in Nanjing. Geography 2012, 67, 758–770. [Google Scholar]
- Xia, S.U.; Yang, Y. Spatial-temporal differentiation and carbon compensation zoning of carbon budget in Beijing-Tianjin-Hebei urban agglomeration based on main functional areas. J. Nat. Resour. 2022, 77, 679–696. [Google Scholar]
- He, K.; Li, F.L.; Wang, H.; Ming, R.Y.; Zhang, J.B.; Affiliations, A.I. A low-carbon future for China’s tech industry. Science 2022, 377, 1498–1499. [Google Scholar] [CrossRef]
Data Type | Name | Source |
---|---|---|
Carbon emissions data | China High-Resolution Emission Gridded Data | CHRED |
Night-time light (NTL) data | National NPP-VIIRS satellite night-time light remote sensing image | RESDC |
Land-use data | NDVI gridded data of YRDUA | |
Land-use vector data for Jiangsu Province | YRDSDC | |
Socioeconomic data | Population gridded data for Nanjing City |
Test Item | 1 km Resolution | 5 km Resolution | 10 km Resolution | |||
---|---|---|---|---|---|---|
OLSM | SLM | OLSM | SLM | OLSM | SLM | |
R2 | 0.120 | 0.786 | 0.214 | 0.978 | 0.156 | 0.963 |
LogL | −124,185 | −117,005 | −108,645 | −91,716 | −110,645 | −94,928 |
AIC | 248,378 | 234,020 | 217,297 | 183,442 | 221,299 | 189,866 |
SC | 248,407 | 234,057 | 217,326 | 183,478 | 221,327 | 189,902 |
Variable | 1 km Resolution | 5 km Resolution | 10 km Resolution | |||
---|---|---|---|---|---|---|
Coef. | Prob. | Coef. | Prob. | Coef. | Prob. | |
CONSTANT | 11,625.600 | 0.000 | 17,939.000 | 0.000 | 5827.590 | 0.000 |
POP | −1.474 | 0.000 | −1.235 | 0.000 | −0.280 | 0.000 |
NDVI | −19,863.200 | 0.000 | −21,359.700 | 0.000 | 2090.850 | 0.013 |
NTL | 643.268 | 0.000 | 461.596 | 0.000 | 290.865 | 0.000 |
Variable | 1 km Resolution | 5 km Resolution | 10 km Resolution | |||
---|---|---|---|---|---|---|
Coef. | Prob. | Coef. | Prob. | Coef. | Prob. | |
W_grid | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 |
CONSTANT | 1696.590 | 0.081 | 392.377 | 0.168 | −201.468 | 0.152 |
POP | −0.072 | 0.362 | −0.103 | 0.000 | −0.039 | 0.001 |
NDVI | −4259.420 | 0.001 | −1336.320 | 0.000 | 125.088 | 0.483 |
NTL | 40.881 | 0.000 | 21.014 | 0.000 | 5.680 | 0.000 |
Distance (km) | Value and Trend | Rate of Change | Spatial Zoning |
---|---|---|---|
0–7 | low value, increasing | slow growth | central budding zone |
7–16 | middle value, increasing | rapid growth | interior burgeoning zone |
16–21 | high value, stable | steady | urban peak zone |
21–31 | middle to high value, decreasing | intermediate reduction | suburban recessionary zone |
>31 | middle value, decreasing | very slow reduction | exterior balanced zone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Xu, P.; Zhang, H. Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level: A Case Study of Nanjing, China. Int. J. Environ. Res. Public Health 2023, 20, 4023. https://doi.org/10.3390/ijerph20054023
Yuan Y, Xu P, Zhang H. Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level: A Case Study of Nanjing, China. International Journal of Environmental Research and Public Health. 2023; 20(5):4023. https://doi.org/10.3390/ijerph20054023
Chicago/Turabian StyleYuan, Yuan, Ping Xu, and Hui Zhang. 2023. "Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level: A Case Study of Nanjing, China" International Journal of Environmental Research and Public Health 20, no. 5: 4023. https://doi.org/10.3390/ijerph20054023
APA StyleYuan, Y., Xu, P., & Zhang, H. (2023). Spatial Zoning of Carbon Dioxide Emissions at the Intra-City Level: A Case Study of Nanjing, China. International Journal of Environmental Research and Public Health, 20(5), 4023. https://doi.org/10.3390/ijerph20054023