The Relationship between Landscape Construction and Bird Diversity: A Bibliometric Analysis
Abstract
:1. Introduction
- What are the current and growing trends in publishing in the field of landscape construction and bird diversity research?
- What countries/regions and authors have influenced landscape construction and bird diversity research?
- What are the research hotspots and historical and frontier issues in the field of landscape construction and bird diversity research?
- What relationships exist between landscape features, vegetation features and human behavioral activities and bird diversity?
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Basic Situation Analysis
3.1. Trends in the Number of Published Papers
3.2. Country/Region Cooperation Networks
3.3. Author Cooperation Networks
3.4. Academic Development
4. Discussion
4.1. Research Hotspots
4.1.1. Research Hotspots
4.1.2. Research History
4.1.3. Research Frontiers
4.2. The Relationship between Landscape Construction and Bird Diversity
4.2.1. The Relationship between Landscape Features and Bird Diversity
4.2.2. The Relationship between Vegetation Characteristics and Bird Diversity
4.2.3. The Relationship between Human Behavioral Activities and Bird Diversity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ortega-Alvarez, R.; MacGregor-Fors, I. Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landsc. Urban Plan. 2009, 90, 189–195. [Google Scholar] [CrossRef]
- Haedo, J.; Gioia, A.; Araoz, E.; Paolini, L.; Malizia, A. Primary productivity in cities and their influence over subtropical bird assemblages. Urban For. Urban Green. 2017, 26, 57–64. [Google Scholar] [CrossRef]
- Soifer, L.G.; Donovan, S.K.; Brentjens, E.T.; Bratt, A.R. Piecing together cities to support bird diversity: Development and forest edge density affect bird richness in urban environments. Landsc. Urban Plan. 2021, 213, 104122. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, K.C.; Gueneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Chace, J.F.; Walsh, J.J. Urban effects on native avifauna: A review. Landsc. Urban Plan. 2006, 74, 46–69. [Google Scholar] [CrossRef]
- Xie, L.; Bulkeley, H. Nature-based solutions for urban biodiversity governance. Environ. Sci. Policy 2020, 110, 77–87. [Google Scholar] [CrossRef]
- Ikin, K.; Le Roux, D.S.; Rayner, L.; Villasenor, N.R.; Eyles, K.; Gibbons, P.; Manning, A.D.; Lindenmayer, D.B. Key lessons for achieving biodiversity-sensitive cities and towns. Ecol. Manag. Restor. 2015, 16, 206–214. [Google Scholar] [CrossRef]
- Fernandez-Juricic, E.; Jokimäki, J.J.B. A habitat island approach to conserving birds in urban landscapes: Case studies from southern and northern Europe. Biodivers. Conserv. 2001, 10, 2023–2043. [Google Scholar] [CrossRef]
- David Amaya-Espinel, J.; Hostetler, M.; Henriquez, C.; Bonacic, C. The influence of building density on Neotropical bird communities found in small urban parks. Landsc. Urban Plan. 2019, 190, 103578. [Google Scholar] [CrossRef]
- Xie, S.; Lu, F.; Cao, L.; Zhou, W.; Ouyang, Z. Multi-scale factors influencing the characteristics of avian communities in urban parks across Beijing during the breeding season. Sci. Rep. 2016, 6, 29350. [Google Scholar] [CrossRef] [Green Version]
- Villaseñor, N.R.; Escobar, M.A.J.U.E. Cemeteries and biodiversity conservation in cities: How do landscape and patch-level attributes influence bird diversity in urban park cemeteries? Urban Ecosyst. 2019, 22, 1037–1046. [Google Scholar] [CrossRef]
- Machar, I.; Simek, P.; Schlossarek, M.; Pechanec, V.; Petrovic, F.; Brus, J.; Spinlerova, Z.; Sejak, J. Comparison of bird diversity between temperate floodplain forests and urban parks. Urban For. Urban Green. 2022, 67, 127427. [Google Scholar] [CrossRef]
- Liang, J.; Xing, W.; Zeng, G.; Li, X.; Peng, Y.; Li, X.; Gao, X.; He, X. Where will threatened migratory birds go under climate change? Implications for China’s national nature reserves. Sci. Total Environ. 2018, 645, 1040–1047. [Google Scholar] [CrossRef]
- Leveau, L.M.; Ruggiero, A.; Matthews, T.J.; Bellocq, M.I. A global consistent positive effect of urban green area size on bird richness. Avian Res. 2019, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhao, Y.; Li, S.; von Gadow, K. The Effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks. Urban For. Urban Green. 2015, 14, 1027–1039. [Google Scholar] [CrossRef]
- Xie, S.; Wang, X.; Zhou, W.; Wu, T.; Qian, Y.; Lu, F.; Gong, C.; Zhao, H.; Ouyang, Z. The effects of residential greenspace on avian Biodiversity in Beijing. Glob. Ecol. Conserv. 2020, 24, e01223. [Google Scholar] [CrossRef]
- Yang, L. Relationship between Vegetation Structure and Bird Diversity in Urban Parks. Rev. Científica De La Fac. De Cienc. Vet. 2020, 30, 2158–2166. [Google Scholar]
- Yang, G.; Xu, J.; Wang, Y.; Wang, X.; Pei, E.; Yuan, X.; Li, H.; Ding, Y.; Wang, Z. Evaluation of microhabitats for wild birds in a Shanghai urban area park. Urban For. Urban Green. 2015, 14, 246–254. [Google Scholar] [CrossRef]
- Suarez-Rubio, M.; Thomlinson, J.R. Landscape and patch-level factors influence bird communities in an urbanized tropical island. Biol. Conserv. 2009, 142, 1311–1321. [Google Scholar] [CrossRef]
- Zhou, D.; Chu, L.J.J.o.O. How would size, age, human disturbance, and vegetation structure affect bird communities of urban parks in different seasons? J. Ornithol. 2012, 153, 1101–1112. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Xue, H.; Wu, L.; Wang, Y.; Wang, C.; Gao, X.; Li, Z.; Zhang, X.; Hasan, M.; et al. Scientometric analysis and scientific trends on microplastics research. Chemosphere 2022, 304, 135337. [Google Scholar] [CrossRef] [PubMed]
- Tho, S.W.; Yeung, Y.Y.; Wei, R.; Chan, K.W.; So, W.W.-m. A Systematic Review of Remote Laboratory Work in Science Education with the Support of Visualizing its Structure through the HistCite and CiteSpace Software. Int. J. Sci. Math. Educ. 2017, 15, 1217–1236. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Z.; Ruan, M.; Yao, H.; Wei, M.; Sun, R.; Yang, X.; Qi, W.; Liang, F. Current status of neuroimaging research on the effects of acupuncture: A bibliometric and visual analyses. Complement. Ther. Med. 2022, 71, 102877. [Google Scholar] [CrossRef]
- Azad, A.K.; Parvin, S. Bibliometric analysis of photovoltaic thermal (PV/T) system: From citation mapping to research agenda. Energy Rep. 2022, 8, 2699–2711. [Google Scholar] [CrossRef]
- Chen, C. Science mapping: A systematic review of the literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.M. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [Green Version]
- De Solla Price, D.J. Science Since Babylon; Yale University Press: New Haven, CT, USA, 1961. [Google Scholar]
- Zhang, Y.; You, X.; Huang, S.; Wang, M.; Dong, J. Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands-A Bibliometric Analysis Based on CiteSpace. Sustainability 2022, 14, 8288. [Google Scholar] [CrossRef]
- Chen, C.; Leydesdorff, L. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. J. Assoc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef] [Green Version]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; La Sorte, F.A.; Nilon, C.H.; Katti, M.; Goddard, M.A.; Lepczyk, C.A.; Warren, P.S.; Williams, N.S.G.; Cilliers, S.; Clarkson, B. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B Biol. Sci. 2014, 281, 20133330. [Google Scholar] [CrossRef]
- Shochat, E.; Warren, P.S.; Faeth, S.H.; McIntyre, N.E.; Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 2006, 21, 186–191. [Google Scholar] [CrossRef]
- Kleijn, D.; Baquero, R.A.; Clough, Y.; Díaz, M.; De Esteban, J.; Fernández, F.; Gabriel, D.; Herzog, F.; Holzschuh, A.; Jöhl, R. Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol. Lett. 2006, 9, 243–254. [Google Scholar] [CrossRef]
- Kleijn, D.; Sutherland, W.J. How effective are European agri-environment schemes in conserving and promoting biodiversity? J. Appl. Ecol. 2003, 40, 947–969. [Google Scholar] [CrossRef]
- Stoate, C.; Baldi, A.; Beja, P.; Boatman, N.D.; Herzon, I.; Van Doorn, A.; De Snoo, G.R.; Rakosy, L.; Ramwell, C. Ecological impacts of early 21st century agricultural change in Europe—A review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Moonen, A.C. Field margins in northern Europe: Their functions and interactions with agriculture. Agric. Ecosyst. Environ. 2002, 89, 5–21. [Google Scholar] [CrossRef]
- Barlow, J.; Gardner, T.A.; Araujo, I.S.; Ávila-Pires, T.C.; Bonaldo, A.B.; Costa, J.E.; Esposito, M.C.; Ferreira, L.V.; Hawes, J.; Hernandez, M.I.M. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. USA 2007, 104, 18555–18560. [Google Scholar] [CrossRef] [Green Version]
- Dormann, C.F.; Schweiger, O.; Augenstein, I.; Bailey, D.; Billeter, R.; De Blust, G.; DeFilippi, R.; Frenzel, M.; Hendrickx, F.; Herzog, F. Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Glob. Ecol. Biogeogr. 2007, 16, 774–787. [Google Scholar] [CrossRef]
- Paillet, Y.; Bergès, L.; Hjältén, J.; Ódor, P.; Avon, C.; Bernhardt-Römermann, M.; Bijlsma, R.J.; De Bruyn, L.U.C.; Fuhr, M.; Grandin, U.L.F. Biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conserv. Biol. 2010, 24, 101–112. [Google Scholar] [CrossRef]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.D.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B Biol. Sci. 2009, 276, 903–909. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, M.J.; Hahs, A.K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions. Landsc. Ecol. 2008, 23, 1143–1155. [Google Scholar] [CrossRef]
- Thuiller, W.; Lavergne, S.; Roquet, C.; Boulangeat, I.; Lafourcade, B.; Araujo, M. Consequences of climate change on the tree of life in Europe. Nature 2011, 470, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Schleuning, M.; Fruend, J.; Schweiger, O.; Welk, E.; Albrecht, J.; Albrecht, M.; Beil, M.; Benadi, G.; Bluethgen, N.; Bruelheide, H.; et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 2016, 7, 13965. [Google Scholar] [CrossRef]
- Markl, J.S.; Schleuning, M.; Forget, P.M.; Jordano, P.; Lambert, J.E.; Traveset, A.; Wright, S.J.; Boehning-Gaese, K. Meta-Analysis of the Effects of Human Disturbance on Seed Dispersal by Animals. Conserv. Biol. 2012, 26, 1072–1081. [Google Scholar] [CrossRef] [Green Version]
- Tscharntke, T.; Sekercioglu, C.H.; Dietsch, T.V.; Sodhi, N.S.; Hoehn, P.; Tylianakis, J.M. Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 2008, 89, 944–951. [Google Scholar] [CrossRef]
- Flohre, A.; Fischer, C.; Aavik, T.; Bengtsson, J.; Berendse, F.; Bommarco, R.; Ceryngier, P.; Clement, L.W.; Dennis, C.; Eggers, S.; et al. Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol. Appl. 2011, 21, 1772–1781. [Google Scholar] [CrossRef] [Green Version]
- Winqvist, C.; Bengtsson, J.; Aavik, T.; Berendse, F.; Clement, L.W.; Eggers, S.; Fischer, C.; Flohre, A.; Geiger, F.; Liira, J.; et al. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J. Appl. Ecol. 2011, 48, 570–579. [Google Scholar] [CrossRef]
- Clough, Y.; Putra, D.D.; Pitopang, R.; Tscharntke, T. Local and landscape factors determine functional bird diversity in Indonesian cacao agroforestry. Biol. Conserv. 2009, 142, 1032–1041. [Google Scholar] [CrossRef]
- Cubley, E.S.; Bateman, H.L.; Riddle, S.B.; Holmquist-Johnson, C.; Merritt, D.M. Predicting bird guilds using vegetation composition and structure on a wild and scenic river in Arizona. Wetlands 2020, 40, 1829–1842. [Google Scholar] [CrossRef]
- Zwolak, R.; Sih, A. Animal personalities and seed dispersal: A conceptual review. Funct. Ecol. 2020, 34, 1294–1310. [Google Scholar] [CrossRef]
- Marjakangas, E.L.; Abrego, N.; Grøtan, V.; de Lima, R.A.F.; Bello, C.; Bovendorp, R.S.; Culot, L.; Hasui, É.; Lima, F.; Muylaert, R.L. Fragmented tropical forests lose mutualistic plant–animal interactions. Divers. Distrib. 2020, 26, 154–168. [Google Scholar] [CrossRef] [Green Version]
- Howe, H.F.; Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 1982, 13, 201–228. [Google Scholar] [CrossRef]
- Cordeiro, N.J.; Howe, H.F. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc. Natl. Acad. Sci. USA 2003, 100, 14052–14056. [Google Scholar] [CrossRef] [Green Version]
- de Assis Bomfim, J.; Guimarães, P.R., Jr.; Peres, C.A.; Carvalho, G.; Cazetta, E. Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography 2018, 41, 1899–1909. [Google Scholar] [CrossRef] [Green Version]
- Doser, J.W.; Weed, A.S.; Zipkin, E.F.; Miller, K.M.; Finley, A.O. Trends in bird abundance differ among protected forests but not bird guilds. Ecol. Appl. 2021, 31, e02377. [Google Scholar] [CrossRef]
- Kačergytė, I.; Arlt, D.; Berg, Å.; Żmihorski, M.; Knape, J.; Rosin, Z.M.; Pärt, T. Evaluating created wetlands for bird diversity and reproductive success. Biol. Conserv. 2021, 257, 109084. [Google Scholar] [CrossRef]
- Buchanan, M.L.; Askins, R.A.; Jones, C.C. Response of bird populations to long-term changes in local vegetation and regional forest cover. Wilson J. Ornithol. 2016, 128, 704–718. [Google Scholar] [CrossRef] [Green Version]
- Kontsiotis, V.J.; Valsamidis, E.; Liordos, V. Organization and differentiation of breeding bird communities across a forested to urban landscape. Urban For. Urban Green. 2019, 38, 242–250. [Google Scholar] [CrossRef]
- Gaüzère, P.; Barbaro, L.; Calatayud, F.; Princé, K.; Devictor, V.; Raison, L.; Sirami, C.; Balent, G. Long-term effects of combined land-use and climate changes on local bird communities in mosaic agricultural landscapes. Agric. Ecosyst. Environ. 2020, 289, 106722. [Google Scholar] [CrossRef]
- Castano-Villa, G.J.; Estevez, J.V.; Guevara, G.; Bohada-Murillo, M.; Fonturbel, F.E. Differential effects of forestry plantations on bird diversity: A global assessment. For. Ecol. Manag. 2019, 440, 202–207. [Google Scholar] [CrossRef]
- Narango, D.L.; Tallamy, D.W.; Marra, P.P. Native plants improve breeding and foraging habitat for an insectivorous bird. Biol. Conserv. 2017, 213, 42–50. [Google Scholar] [CrossRef]
- Hamza, F.; Hanane, S. The effect of microhabitat features, anthropogenic pressure and spatial structure on bird diversity in southern Tunisian agroecosystems. Ann. Appl. Biol. 2021, 179, 195–206. [Google Scholar] [CrossRef]
- Mirski, P. Tree cover density attracts rare bird of prey specialist to nest in urban forest. Urban For. Urban Green. 2020, 55, 126836. [Google Scholar] [CrossRef]
- Coetzee, B.W.T.; Chown, S.L. Land-use change promotes avian diversity at the expense of species with unique traits. Ecol. Evol. 2016, 6, 7610–7622. [Google Scholar] [CrossRef]
- Chapman, P.M.; Tobias, J.A.; Edwards, D.P.; Davies, R.G. Contrasting impacts of land-use change on phylogenetic and functional diversity of tropical forest birds. J. Appl. Ecol. 2018, 55, 1604–1614. [Google Scholar] [CrossRef] [Green Version]
- Matuoka, M.A.; Benchimol, M.; de Almeida-Rocha, J.M.; Morante-Filho, J.C. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecol. Indic. 2020, 116, 106471. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, W.; He, X.; Lv, H.; Wei, C.; Zhou, W.; Zhang, B. Urban-rural and temporal differences of woody plants and bird species in Harbin city, northeastern China. Urban For. Urban Green. 2016, 20, 20–31. [Google Scholar] [CrossRef]
- Yang, X.; Tan, X.; Chen, C.; Wang, Y. The influence of urban park characteristics on bird diversity in Nanjing, China. Avian Res. 2020, 11, 45. [Google Scholar] [CrossRef]
- Rico-Silva, J.F.; Cruz-Trujillo, E.J.; Colorado, Z.G.J. Influence of environmental factors on bird diversity in greenspaces in an Amazonian city. Urban Ecosyst. 2021, 24, 365–374. [Google Scholar] [CrossRef]
- Dendup, P.; Wangdi, L.; Jamtsho, Y.; Kuenzang, P.; Gyeltshen, D.; Tashi, T.; Rigzin, U.; Jamtsho, Y.; Dorji, R.; Jamtsho, Y. Bird diversity and conservation threats in Jigme Dorji National Park, Bhutan. Glob. Ecol. Conserv. 2021, 30, e01771. [Google Scholar] [CrossRef]
- Santillán, V.; Quitián, M.; Tinoco, B.A.; Zárate, E.; Schleuning, M.; Böhning-Gaese, K.; Neuschulz, E.L. Direct and indirect effects of elevation, climate and vegetation structure on bird communities on a tropical mountain. Acta Oecologica 2020, 102, 103500. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, C.; Liu, J.; Si, X.; Feng, G. Species richness, phylogenetic and functional structure of bird communities in Chinese university campuses are associated with divergent variables. Urban Ecosyst. 2018, 21, 1213–1225. [Google Scholar] [CrossRef]
- Filloy, J.; Zurita, G.A.; Bellocq, M.I. Bird diversity in urban ecosystems: The role of the biome and land use along urbanization gradients. Ecosystems 2019, 22, 213–227. [Google Scholar] [CrossRef]
- Ortega-Álvarez, R.; Ruiz-Gutiérrez, V.; Robinson, O.J.; Benítez, E.B.; Mena, I.M.; Zúñiga-Vega, J.J. Beyond incidence data: Assessing bird habitat use in indigenous working landscapes through the analysis of behavioral variation among land uses. Landsc. Urban Plan. 2021, 211, 104100. [Google Scholar] [CrossRef]
- Callaghan, C.T.; Major, R.E.; Lyons, M.B.; Martin, J.M.; Kingsford, R.T. The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere 2018, 9, e02347. [Google Scholar] [CrossRef] [Green Version]
- Belaire, J.A.; Westphal, L.M.; Whelan, C.J.; Minor, E.S. Urban residents’ perceptions of birds in the neighborhood: Biodiversity, cultural ecosystem services, and disservices. Condor Ornithol. Appl. 2015, 117, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Gil, D.; Brumm, H. Acoustic communication in the urban environment: Patterns, mechanisms, and potential consequences of avian song adjustments. In Avian Urban Ecology; Oxford University Press: Oxford, UK, 2014; pp. 69–83. [Google Scholar]
- Whelan, C.J.; Wenny, D.G.; Marquis, R.J. Ecosystem services provided by birds. Ann. N. Y. Acad. Sci. 2008, 1134, 25–60. [Google Scholar] [CrossRef]
- Graves, R.A.; Pearson, S.M.; Turner, M.G. Effects of bird community dynamics on the seasonal distribution of cultural ecosystem services. Ambio 2019, 48, 280–292. [Google Scholar] [CrossRef]
- Rolim, A.M.; Pinto, V.C.; Rosa, M.P. Birdwatching and birding by ear.: An accessible and inclusive tourism proposal for the city of Lagos. J. Access. Des. All 2021, 11, 48–85. [Google Scholar]
- Shriver, W.G.; Hodgman, T.P.; Gibbs, J.P.; Vickery, P.D. Landscape context influences salt marsh bird diversity and area requirements in New England. Biol. Conserv. 2004, 119, 545–553. [Google Scholar] [CrossRef]
- Catterall, C.P.; Freeman, A.N.D.; Kanowski, J.; Freebody, K. Can active restoration of tropical rainforest rescue biodiversity? A case with bird community indicators. Biol. Conserv. 2012, 146, 53–61. [Google Scholar] [CrossRef]
- Rime, Y.; Luisier, C.; Arlettaz, R.; Jacot, A. Landscape heterogeneity and management practices drive habitat preferences of wintering and breeding birds in intensively-managed fruit-tree plantations. Agric. Ecosyst. Environ. 2020, 295, 106890. [Google Scholar] [CrossRef]
- Puan, C.L.; Yeong, K.L.; Ong, K.W.; Fauzi, M.I.A.; Yahya, M.S.; Khoo, S.S. Influence of landscape matrix on urban bird abundance: Evidence from Malaysian citizen science data. J. Asia-Pac. Biodivers. 2019, 12, 369–375. [Google Scholar] [CrossRef]
- Aida, N.; Sasidhran, S.; Kamarudin, N.; Aziz, N.; Puan, C.L.; Azhar, B. Woody trees, green space and park size improve avian biodiversity in urban landscapes of Peninsular Malaysia. Ecol. Indic. 2016, 69, 176–183. [Google Scholar] [CrossRef]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef]
- Morelli, F.; Benedetti, Y.; Su, T.; Zhou, B.; Moravec, D.; Šímová, P.; Liang, W. Taxonomic diversity, functional diversity and evolutionary uniqueness in bird communities of Beijing’s urban parks: Effects of land use and vegetation structure. Urban For. Urban Green. 2017, 23, 84–92. [Google Scholar] [CrossRef]
- Sasaki, K.; Hotes, S.; Kadoya, T.; Yoshioka, A.; Wolters, V. Landscape associations of farmland bird diversity in Germany and Japan. Glob. Ecol. Conserv. 2020, 21, e00891. [Google Scholar] [CrossRef]
- Morelli, F.; Pruscini, F.; Santolini, R.; Perna, P.; Benedetti, Y.; Sisti, D. Landscape heterogeneity metrics as indicators of bird diversity: Determining the optimal spatial scales in different landscapes. Ecol. Indic. 2013, 34, 372–379. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- de Camargo Barbosa, K.V.; Rodewald, A.D.; Ribeiro, M.C.; Jahn, A.E. Noise level and water distance drive resident and migratory bird species richness within a Neotropical megacity. Landsc. Urban Plan. 2020, 197, 103769. [Google Scholar]
- Wang, X.; Zhu, G.; Ma, H.; Wu, Y.; Zhang, W.; Zhang, Y.; Li, C.; de Boer, W.F. Bird communities’ responses to human-modified landscapes in the southern Anhui Mountainous Area. Avian Res. 2022, 13, 100006. [Google Scholar] [CrossRef]
- Han, J.; Dong, L. The influence of food source plants’ application on bird communities in Beijing Olympic Forest Park. In XXX International Horticultural Congress IHC2018: VII Conference on Landscape and Urban Horticulture, IV Conference on on Turfgrass Management and Science for Sports Fields and II Symposium on Mechanization, Precision Horticulture, and Robotics; ISHS Acta Horticulturae 1279; ISHS: Istanbul, Turkey, 2020; pp. 103–108. [Google Scholar]
- Müller, J.; Pöllath, J.; Moshammer, R.; Schröder, B. Predicting the occurrence of Middle Spotted Woodpecker Dendrocopos medius on a regional scale, using forest inventory data. For. Ecol. Manag. 2009, 257, 502–509. [Google Scholar] [CrossRef]
- Fuller, R.J.; Smith, K.W.; Hinsley, S.A. Temperate Western European Woodland as a Dynamic Environment for Birds: A Resource-Based View; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Ampoorter, E.; Barbaro, L.; Jactel, H.; Baeten, L.; Boberg, J.; Carnol, M.; Castagneyrol, B.; Charbonnier, Y.; Dawud, S.M.; Deconchat, M. Tree diversity is key for promoting the diversity and abundance of forest-associated taxa in Europe. Oikos 2020, 129, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Burns, P.; Clark, M.; Salas, L.; Hancock, S.; Leland, D.; Jantz, P.; Dubayah, R.; Goetz, S.J. Incorporating canopy structure from simulated GEDI lidar into bird species distribution models. Environ. Res. Lett. 2020, 15, 095002. [Google Scholar] [CrossRef]
- Fuller, R.J. Bird Life of Woodland and Forest; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Ellis, T.M.; Betts, M.G. Bird abundance and diversity across a hardwood gradient within early seral plantation forest. For. Ecol. Manag. 2011, 261, 1372–1381. [Google Scholar] [CrossRef]
- Dagan, U.; Izhaki, I. Understory vegetation in planted pine forests governs bird community composition and diversity in the eastern Mediterranean region. For. Ecosyst. 2019, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Garabedian, J.E.; Moorman, C.E.; Peterson, M.N.; Kilgo, J.C. Use of LiDAR to define habitat thresholds for forest bird conservation. For. Ecol. Manag. 2017, 399, 24–36. [Google Scholar] [CrossRef]
- Bae, S.; Müller, J.; Lee, D.; Vierling, K.T.; Vogeler, J.C.; Vierling, L.A.; Hudak, A.T.; Latifi, H.; Thorn, S. Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests. Remote Sens. Environ. 2018, 215, 145–156. [Google Scholar] [CrossRef]
- Schiller, G.; Ne’eman, G.; Korol, L. Post-fire vegetation dynamics in a native Pinus halepensis Mill. forest on Mt. Carmel, Israel. Isr. J. Plant Sci. 1997, 45, 297–308. [Google Scholar] [CrossRef]
- Barth, B.J.; FitzGibbon, S.I.; Wilson, R.S. New urban developments that retain more remnant trees have greater bird diversity. Landsc. Urban Plan. 2015, 136, 122–129. [Google Scholar] [CrossRef]
- Bötsch, Y.; Tablado, Z.; Jenni, L. Experimental evidence of human recreational disturbance effects on bird-territory establishment. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tablado, Z.; Jenni, L. Determinants of uncertainty in wildlife responses to human disturbance. Biol. Rev. 2017, 92, 216–233. [Google Scholar] [CrossRef] [PubMed]
- Buckley, R. Next steps in recreation ecology. Front. Ecol. Environ. 2013, 11, 399. [Google Scholar] [CrossRef] [Green Version]
- Livezey, K.B.; Fernandez-Juricic, E.; Blumstein, D.T. Database of bird flight initiation distances to assist in estimating effects from human disturbance and delineating buffer areas. J. Fish Wildl. Manag. 2016, 7, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, B.F.; Pena, J.C.; Viana-Junior, A.B.; Vergne, M.; Pizo, M.A. Noise and tree species richness modulate the bird community inhabiting small public urban green spaces of a Neotropical city. Urban Ecosyst. 2021, 24, 71–81. [Google Scholar] [CrossRef]
- Morelli, F.; Mikula, P.; Benedetti, Y.; Bussière, R.; Jerzak, L.; Tryjanowski, P. Escape behaviour of birds in urban parks and cemeteries across Europe: Evidence of behavioural adaptation to human activity. Sci. Total Environ. 2018, 631, 803–810. [Google Scholar] [CrossRef]
- Perillo, A.; Mazzoni, L.G.; Passos, L.F.; Goulart, V.D.L.R.; Duca, C.; Young, R.J. Anthropogenic noise reduces bird species richness and diversity in urban parks. Ibis 2017, 159, 638–646. [Google Scholar] [CrossRef]
- Narango, D.L.; Rodewald, A.D. Signal information of bird song changes in human-dominated landscapes. Urban Ecosyst. 2018, 21, 41–50. [Google Scholar] [CrossRef]
Rank | Countries | Count | Centrality | Year | Countries | Count | Centrality | Year |
---|---|---|---|---|---|---|---|---|
1 | USA | 1311 | 0.08 | 2002 | England | 488 | 0.28 | 2002 |
2 | England | 488 | 0.28 | 2002 | Australia | 387 | 0.1 | 2002 |
3 | Germany | 410 | 0.06 | 2002 | France | 253 | 0.1 | 2002 |
4 | Australia | 387 | 0.1 | 2002 | USA | 1311 | 0.08 | 2002 |
5 | Spain | 306 | 0.03 | 2002 | Belgium | 76 | 0.08 | 2004 |
6 | Peoples R China | 290 | 0.01 | 2003 | Germany | 410 | 0.06 | 2002 |
7 | Brazil | 285 | 0.03 | 2002 | Cameroon | 13 | 0.06 | 2005 |
8 | Canada | 261 | 0.03 | 2002 | Portugal | 102 | 0.05 | 2003 |
9 | France | 253 | 0.1 | 2002 | Scotland | 96 | 0.05 | 2002 |
10 | Switzerland | 172 | 0.02 | 2002 | South Africa | 158 | 0.04 | 2002 |
Rank | Authors | Count | Centrality | Year | Authors | Count | Centrality | Year |
---|---|---|---|---|---|---|---|---|
1 | Matthias Schleuning | 32 | 0.02 | 2012 | Teja Tscharntke | 18 | 0.04 | 2008 |
2 | Katrin Boehninggaese | 32 | 0.02 | 2008 | Jiri Reif | 10 | 0.04 | 2015 |
3 | David B Lindenmayer | 26 | 0.00 | 2009 | Petr Pysek | 4 | 0.04 | 2017 |
4 | Ian Macgregorfors | 21 | 0.01 | 2010 | Holger Kreft | 4 | 0.04 | 2017 |
5 | David P Edwards | 20 | 0.01 | 2013 | Matthias Schleuning | 32 | 0.02 | 2012 |
6 | Teja Tscharntke | 18 | 0.04 | 2008 | Katrin Boehninggaese | 32 | 0.02 | 2008 |
7 | Federico Morelli | 14 | 0.01 | 2015 | Yann Clough | 8 | 0.02 | 2009 |
8 | Nina Farwig | 12 | 0.01 | 2008 | Frederic Jiguet | 6 | 0.02 | 2007 |
9 | D Matthias Dehling | 12 | 0.01 | 2014 | Nico Bluethgen | 4 | 0.02 | 2016 |
10 | John O’halloran | 11 | 0.00 | 2010 | Ben Collen | 4 | 0.02 | 2014 |
Citing Region | Cited Region | z-Score |
---|---|---|
Ecology, earth, marine | Plant, ecology, zoology | 8.853 |
Rank | Keywords | Count | Centrality | Year | Keywords | Count | Centrality | Year |
---|---|---|---|---|---|---|---|---|
1 | Diversity | 1675 | 0.01 | 2002 | Farmland | 57 | 0.16 | 2003 |
2 | Biodiversity | 1338 | 0 | 2002 | Butterfly | 76 | 0.14 | 2002 |
3 | Conservation | 1111 | 0 | 2002 | Farmland bird | 135 | 0.13 | 2003 |
4 | Bird | 1099 | 0.01 | 2002 | Biogeography | 101 | 0.13 | 2002 |
5 | Species richness | 682 | 0 | 2002 | Agriculture | 122 | 0.11 | 2002 |
6 | Community | 624 | 0.01 | 2002 | Index | 10 | 0.1 | 2018 |
7 | Habitat | 598 | 0 | 2002 | Consequence | 136 | 0.1 | 2002 |
8 | Pattern | 588 | 0.01 | 2002 | Bird species richness | 33 | 0.1 | 2004 |
9 | Landscape | 520 | 0 | 2002 | Rain forest | 190 | 0.09 | 2002 |
10 | Abundance | 495 | 0 | 2002 | Environment | 28 | 0.09 | 2003 |
11 | Forest | 444 | 0 | 2002 | Competition | 34 | 0.09 | 2002 |
12 | Management | 420 | 0.01 | 2002 | Hotspot | 40 | 0.08 | 2002 |
13 | Plant | 416 | 0 | 2002 | Atlantic forest | 87 | 0.08 | 2006 |
14 | Vegetation | 349 | 0.01 | 2002 | Vertebrate | 8 | 0.07 | 2013 |
15 | Land use | 346 | 0.05 | 2002 | Tree | 110 | 0.07 | 2004 |
16 | Ecology | 294 | 0 | 2002 | History | 24 | 0.07 | 2003 |
17 | Population | 271 | 0.01 | 2002 | Evolution | 168 | 0.07 | 2003 |
18 | Impact | 264 | 0.05 | 2002 | Diversification | 53 | 0.07 | 2004 |
19 | Urbanization | 262 | 0.02 | 2005 | Diet | 56 | 0.07 | 2002 |
20 | Fragmentation | 252 | 0 | 2002 | Conservation planning | 50 | 0.07 | 2004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ye, E.; Liu, F.; Lai, N.; You, X.; Dong, J.; Dong, J. The Relationship between Landscape Construction and Bird Diversity: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2023, 20, 4551. https://doi.org/10.3390/ijerph20054551
Zhang Y, Ye E, Liu F, Lai N, You X, Dong J, Dong J. The Relationship between Landscape Construction and Bird Diversity: A Bibliometric Analysis. International Journal of Environmental Research and Public Health. 2023; 20(5):4551. https://doi.org/10.3390/ijerph20054551
Chicago/Turabian StyleZhang, Yanqin, Enming Ye, Fan Liu, Ningjing Lai, Xianli You, Jianwen Dong, and Jiaying Dong. 2023. "The Relationship between Landscape Construction and Bird Diversity: A Bibliometric Analysis" International Journal of Environmental Research and Public Health 20, no. 5: 4551. https://doi.org/10.3390/ijerph20054551
APA StyleZhang, Y., Ye, E., Liu, F., Lai, N., You, X., Dong, J., & Dong, J. (2023). The Relationship between Landscape Construction and Bird Diversity: A Bibliometric Analysis. International Journal of Environmental Research and Public Health, 20(5), 4551. https://doi.org/10.3390/ijerph20054551