How Well Do Our Adsorbents Actually Perform?—The Case of Dimethoate Removal Using Viscose Fiber-Derived Carbons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Materials Characterization
2.3. Adsorption Performance
2.3.1. Adsorption under Equilibrium Conditions
2.3.2. Filtration Experiments—Adsorption under Dynamic Conditions
2.3.3. Determination of Dimethoate Concentration
2.4. Toxicity Testing
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Adsorption Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. 2016, 21, 65. [Google Scholar] [PubMed]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.who.int/news/item/15-11-2019-what-are-health-consequences-of-air-pollution-on-populations (accessed on 5 January 2023).
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Badawy, M.I.; Ghaly, M.Y.; Gad-Allah, T.A. Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. Desalination 2006, 194, 166–175. [Google Scholar] [CrossRef]
- Eichelberger, J.W.; Lichtenberg, J.J. Persistence of pesticides in river water. Environ. Sci. Technol. 1971, 5, 541–544. [Google Scholar] [CrossRef]
- Keifer, M.C.; Firestone, J. Neurotoxicity of Pesticides. J. Agromed. 2007, 12, 17–25. [Google Scholar] [CrossRef]
- Milankovic, V.; Lazarevic-Pasti, T. The Role of the Cholinergic System in Lung Diseases. In Targeting Cellular Signalling Pathways in Lung Diseases; Dua, K., Ed.; Springer: Singapore, 2021; pp. 625–660. [Google Scholar]
- Dich, J.; Zahm, S.H.; Hanberg, A.; Adami, H.-O. Pesticides and cancer. Cancer Causes Control 1997, 8, 420–443. [Google Scholar] [CrossRef]
- Mitić, M.; Lazarević-Pašti, T. Does the application of acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease lead to depression? Expert Opin. Drug Metab. Toxicol. 2021, 17, 841–856. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.; Tasić, T. Organophosphates and Depression. In Organophosphates: Detection, Exposure and Occurrence. Volume 1: Impact on Health and the Natural Environment; Lazarević-Pašti, T., Ed.; Nova Science Publishers: New York, NY, USA, 2022; pp. 95–116. [Google Scholar]
- Palit, S.; Hussain, C.M. Chapter 1: Innovation in Environmental Remediation Methods. In The Handbook of Environmental Remediation: Classic and Modern Techniques; The Royal Society of Chemistry: London, UK, 2020; pp. 1–23. [Google Scholar]
- Aryee, A.A.; Mpatani, F.M.; Han, R.; Shi, X.; Qu, L. A review on adsorbents for the remediation of wastewater: Antibacterial and adsorption study. J. Environ. Chem. Eng. 2021, 9, 106907. [Google Scholar] [CrossRef]
- Gusain, D.; Bux, F. Batch Adsorption Process of Metals and Anions for Remediation of Contaminated Water; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Abdelrasoul, A.; Doan, H.; Lohi, A. Fouling in Membrane Filtration and Remediation Methods. In Mass Transfer; Hironori, N., Ed.; IntechOpen: Rijeka, Croatia, 2013; p. 8. [Google Scholar]
- O’Shea, K.E.; Dionysiou, D.D. Advanced Oxidation Processes for Water Treatment. J. Phys. Chem. Lett. 2012, 3, 2112–2113. [Google Scholar] [CrossRef]
- Ameta, S.C.; Ameta, R. Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Hodges, B.C.; Cates, E.L.; Kim, J.-H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650. [Google Scholar] [CrossRef]
- Li, F.B.; Li, X.Z.; Ao, C.H.; Lee, S.C.; Hou, M.F. Enhanced photocatalytic degradation of VOCs using Ln3+–TiO2 catalysts for indoor air purification. Chemosphere 2005, 59, 787–800. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, Y.; Tian, Y.; He, X.; Yang, P.; Yuan, M.; Cao, Y.; Lyu, J. Crystallization of microporous TiO2 through photochemical deposition of Pt for photocatalytic degradation of volatile organic compounds. Environ. Sci. Pollut. Res. 2018, 25, 15662–15670. [Google Scholar] [CrossRef] [PubMed]
- Mitrović, T.; Lazović, S.; Nastasijević, B.; Pašti, I.A.; Vasić, V.; Lazarević-Pašti, T. Non-thermal plasma needle as an effective tool in dimethoate removal from water. J. Environ. Manag. 2019, 246, 63–70. [Google Scholar] [CrossRef]
- Lv, J.; Zhu, L. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time. Environ. Technol. 2013, 34, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, H.; Ang, H.M.; Tadé, M.O. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 2013, 226, 336–347. [Google Scholar] [CrossRef]
- Mammadova, S.; Nasibova, A.; Khalilov, R.; Mehraliyeva, S.; Valiyeva, M.; Gojayev, A.S.; Zhdanov, R.I.; Eftekhari, A. Nanomaterials application in air pollution remediation. Eurasian Chem. Commun. 2022, 4, 160–166. [Google Scholar]
- Franco, P.; Cardea, S.; Tabernero, A.; De Marco, I. Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules 2021, 26, 4440. [Google Scholar] [CrossRef]
- Bernal, V.; Giraldo, L.; Moreno-Piraján, J.C. Physicochemical Properties of Activated Carbon: Their Effect on the Adsorption of Pharmaceutical Compounds and Adsorbate–Adsorbent Interactions. C 2018, 4, 62. [Google Scholar] [CrossRef] [Green Version]
- Hoang, N.B.; Ngo, T.C.Q.; Tran, T.K.N.; Lam, V.T. Comprehensive review on synthesis, physicochemical properties, and application of activated carbon from the Arecaceae plants for enhanced wastewater treatment. Open Chem. 2022, 20, 10–22. [Google Scholar] [CrossRef]
- Abegunde, S.M.; Idowu, K.S.; Adejuwon, O.M.; Adeyemi-Adejolu, T. A review on the influence of chemical modification on the performance of adsorbents. Resour. Environ. Sustain. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon based materials: A review of adsorbents for inorganic and organic compounds. Mater. Adv. 2021, 2, 598–627. [Google Scholar] [CrossRef]
- Agarwal, S.; Sadeghi, N.; Tyagi, I.; Gupta, V.K.; Fakhri, A. Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials. J. Colloid Interface Sci. 2016, 478, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.H.; Niasar, Z.S.; Mehrnia, M.R.; Shayeghi, M.; Al-Ghouti, M.A.; Heibati, B.; McKay, G.; Yetilmezsoy, K. Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes. Chem. Eng. J. 2017, 310, 22–32. [Google Scholar] [CrossRef]
- Peng, J.; He, Y.; Zhou, C.; Su, S.; Lai, B. The carbon nanotubes-based materials and their applications for organic pollutant removal: A critical review. Chin. Chem. Lett. 2021, 32, 1626–1636. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.; Anićijević, V.; Baljozović, M.; Anićijević, D.V.; Gutić, S.; Vasić, V.; Skorodumova, N.V.; Pašti, I.A. The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water. Environ. Sci. Nano 2018, 5, 1482–1494. [Google Scholar] [CrossRef]
- Maliyekkal, S.M.; Sreeprasad, T.S.; Krishnan, D.; Kouser, S.; Mishra, A.K.; Waghmare, U.V.; Pradeep, T. Graphene: A Reusable Substrate for Unprecedented Adsorption of Pesticides. Small 2013, 9, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Parekh, S.H. Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate. Commun. Chem. 2020, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paton-Carrero, A.; Sanchez, P.; Sánchez-Silva, L.; Romero, A. Graphene-based materials behaviour for dyes adsorption. Mater. Today Commun. 2022, 30, 103033. [Google Scholar] [CrossRef]
- Verma, S.; Kim, K.-H. Graphene-based materials for the adsorptive removal of uranium in aqueous solutions. Environ. Int. 2022, 158, 106944. [Google Scholar] [CrossRef]
- Jocić, A.; Breitenbach, S.; Pašti, I.A.; Unterweger, C.; Fürst, C.; Lazarević-Pašti, T. Viscose-derived activated carbons as adsorbents for malathion, dimethoate, and chlorpyrifos—Screening, trends, and analysis. Environ. Sci. Pollut. Res. 2022, 29, 35138–35149. [Google Scholar] [CrossRef] [PubMed]
- Jocić, A.; Breitenbach, S.; Bajuk-Bogdanović, D.; Pašti, I.A.; Unterweger, C.; Fürst, C.; Lazarević-Pašti, T. Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water. Molecules 2022, 27, 1477. [Google Scholar] [CrossRef]
- Mozaffari Majd, M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption isotherm models: A comprehensive and systematic review (2010–2020). Sci. Total Environ. 2022, 812, 151334. [Google Scholar] [CrossRef]
- Breitenbach, S.; Unterweger, C.; Lumetzberger, A.; Duchoslav, J.; Stifter, D.; Hassel, A.W.; Fürst, C. Viscose-based porous carbon fibers: Improving yield and porosity through optimization of the carbonization process by design of experiment. J. Porous Mater. 2021, 28, 727–739. [Google Scholar] [CrossRef]
- Breitenbach, S.; Lumetzberger, A.; Hobisch, M.A.; Unterweger, C.; Spirk, S.; Stifter, D.; Fürst, C.; Hassel, A.W. Supercapacitor Electrodes from Viscose-Based Activated Carbon Fibers: Significant Yield and Performance Improvement Using Diammonium Hydrogen Phosphate as Impregnating Agent. C 2020, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Da, T.; Ma, Y. Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant. J. Mol. Liq. 2021, 322, 114980. [Google Scholar] [CrossRef]
- Anićijević, V.J.; Petković, M.; Pašti, I.A.; Lazarević-Pašti, T.D. Decomposition of Dimethoate and Omethoate in Aqueous Solutions—Half-Life, Eco-Neurotoxicity Benchmarking, and Mechanism of Hydrolysis. Water Air Soil Pollut. 2022, 233, 390. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.D.; Pašti, I.A.; Jokić, B.; Babić, B.M.; Vasić, V.M. Heteroatom-doped mesoporous carbons as efficient adsorbents for removal of dimethoate and omethoate from water. RSC Adv. 2016, 6, 62128–62139. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Claramunt, S.; Varea, A.; Lopez-Diaz, D.; Velázquez, M.M.; Cornet, A.; Cirera, A. The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. J. Phys. Chem. C 2015, 119, 10123–10129. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [Green Version]
- Bondžić, A.M.; Lazarević Pašti, T.D.; Pašti, I.A.; Bondžić, B.P.; Momčilović, M.D.; Loosen, A.; Parac-Vogt, T.N. Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos. ACS Appl. Nano Mater. 2022, 5, 3312–3324. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Ma, Y.; Wu, X.; Meng, L.; Guo, Y.; Yu, G.; Liu, Y. Graphene-coated silica as a highly efficient sorbent for residual organophosphorus pesticides in water. J. Mater. Chem. A 2013, 1, 1875–1884. [Google Scholar] [CrossRef]
- Suo, F.; Xie, G.; Zhang, J.; Li, J.; Li, C.; Liu, X.; Zhang, Y.; Ma, Y.; Ji, M. A carbonised sieve-like corn straw cellulose–graphene oxide composite for organophosphorus pesticide removal. RSC Adv. 2018, 8, 7735–7743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Zhang, Q.; Liu, G.; Luo, X.; Li, F.; Zhang, Y.; Wang, Z. Characteristics and mechanisms of chlorpyrifos and chlorpyrifos-methyl adsorption onto biochars: Influence of deashing and low molecular weight organic acid (LMWOA) aging and co-existence. Sci. Total Environ. 2019, 657, 953–962. [Google Scholar] [CrossRef]
- Vukčević, M.; Kalijadis, A.; Babić, B.; Laušević, Z.; Laušević, M. Influence of different carbon monolith preparation parameters on pesticide adsorption. J. Serb. Chem. Soc. 2013, 78, 1617–1632. [Google Scholar] [CrossRef] [Green Version]
- Bayat, M.; Alighardashi, A.; Sadeghasadi, A. Fixed-bed column and batch reactors performance in removal of diazinon pesticide from aqueous solutions by using walnut shell-modified activated carbon. Environ. Technol. Innov. 2018, 12, 148–159. [Google Scholar] [CrossRef]
- Moussavi, G.; Hosseini, H.; Alahabadi, A. The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chem. Eng. J. 2013, 214, 172–179. [Google Scholar] [CrossRef]
- Jusoh, A.; Hartini, W.; Endut, A. Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresour. Technol. 2011, 102, 5312–5318. [Google Scholar] [CrossRef] [PubMed]
- Lazarević-Pašti, T.; Jocić, A.; Milanković, V.; Tasić, T.; Potkonjak, N.; Breitenbach, S.; Unterweger, C.; Fürst, C.; Pašti, I.A. Kinetics of Dimethoate, Malathion, and Chlorpyrifos Adsorption on Cellulose-derived Activated Carbons–Linking Performance to the Physicochemical Properties. Preprints 2022, 2022110449. [Google Scholar] [CrossRef]
- Hamed, M.M.; Rizk, H.; Ahmed, I. Adsorption behavior of zirconium and molybdenum from nitric acid medium using low-cost adsorbent. J. Mol. Liq. 2018, 249, 361–370. [Google Scholar] [CrossRef]
Sample | Impregnation | Carbonization | Activation |
---|---|---|---|
CF | None | 850 °C; 10 °C/min | - |
CF_AS | 12.2 wt.% AS | 850 °C; 10 °C/min | - |
CF_AS_600 | 10 wt.% AS | 600 °C; 1.0 °C/min | - |
ACF | None | 850 °C; 5.5 °C/min | 870 °C; 165 min; 55 L/h (CO2) |
ACF_CO2low | None | 850 °C; 10 °C/min | 870 °C; 150 min; 22.5 L/h (CO2) |
ACF_AS_600 | 10 wt.% AS | 600 °C; 1.0 °C/min | 600 °C; 300 min; 94 L/h (CO2) |
ACF_AS_H2O | 12.2 wt.% AS solution | 850 °C; 10 °C/min | 870 °C; 150 min; 0.02 mL/min (H2O) |
ACF_AS | 12.2 wt.% AS | 850 °C; 10 °C/min | 870 °C; 300 min; 22.5 L/h (CO2) |
ACF_DAHP | 5 wt.% DAHP | 850 °C; 5.5 °C/min | 870 °C; 165 min; 55 L/h (CO2) |
Sample | SBET /m2 g−1 | ΔV0–1 nm /cm3 g−1 | ΔV1–2 nm /cm3 g−1 | ΔV2–4 nm /cm3 g−1 | Vpore /cm3 g−1 | dmean /nm |
---|---|---|---|---|---|---|
CF | 264 | 0.085 | 0.008 | 0.005 | 0.116 | 0.785 |
CF_AS | 380 | 0.115 | 0.015 | 0.018 | 0.184 | 0.666 |
CF_AS_600 | 430 | 0.135 | 0.011 | 0.016 | 0.212 | 0.822 |
ACF | 1568 | 0.318 | 0.255 | 0.020 | 0.603 | 1.04 |
ACF_CO2low | 1488 | 0.310 | 0.225 | 0.024 | 0.570 | 0.718 |
ACF_AS_600 | 473 | 0.162 | 0.013 | 0.003 | 0.186 | 0.524 |
ACF_AS_H2O | 1272 | 0.295 | 0.170 | 0.026 | 0.518 | 0.524 |
ACF_AS | 535 | 0.172 | 0.028 | 0.008 | 0.217 | 1.49 |
ACF_DAHP | 2833 | 0.135 | 0.465 | 0.950 | 1.590 | 2.40 |
Atomic Concentration/at.% | ||||||
---|---|---|---|---|---|---|
Sample | Carbon | Oxygen | Nitrogen | Sulfur | Phosphorus | Sodium |
CF | 90.87 | 6.36 | 2.73 | 0.02 | 0.02 | |
2.44 | 2.40 | 0.62 | 0.02 | 0.01 | ||
CF_AS | 82.83 | 9.76 | 7.33 | 0.06 | 0.03 | |
6.44 | 3.78 | 3.09 | 0.06 | 0.03 | ||
CF_AS_600 | 86.57 | 7.17 | 6.25 | 0.01 | 0.01 | |
4.52 | 2.52 | 2.04 | 0.01 | 0.00 | ||
ACF | 89.36 | 8.21 | 1.62 | 0.15 | 0.00 | 0.67 |
1.11 | 1.12 | 0.18 | 0.12 | 0.00 | 0.02 | |
ACF_CO2low | 85.24 | 11.07 | 2.29 | 0.13 | 0.02 | 1.25 |
2.46 | 2.27 | 0.75 | 0.04 | 0.01 | 0.28 | |
ACF_AS_600 | 86.39 | 8.05 | 5.54 | 0.01 | 0.01 | |
1.37 | 0.89 | 0.89 | 0.00 | 0.00 | ||
ACF_AS_H2O | 89.08 | 8.85 | 2.03 | 0.03 | 0.02 | |
3.39 | 2.90 | 0.61 | 0.01 | 0.01 | ||
ACF_AS | 86.76 | 6.87 | 6.33 | 0.04 | 0.01 | |
1.67 | 1.22 | 0.66 | 0.01 | 0.01 | ||
ACF_DAHP | 80.14 | 14.61 | 3.49 | 0.15 | 1.61 | |
1.99 | 2.49 | 0.26 | 0.10 | 0.24 |
Function Type | Voigt | Gauss | Gauss | Voigt | Voigt | ||
---|---|---|---|---|---|---|---|
Peak Notation | D (D4) | D (D1) | D″ (D3) | G | D′ (D2) | ||
Sample | Peak Center/Peak Area (a.u.) | ID/IG | ID/ID′ | ||||
CF | 1209/50 | 1338/104 | 1497/87 | 1594/69 | 1616/9 | 1.51 | 11.6 |
CF_AS | 1203/44 | 1338/111 | 1499/105 | 1594/65 | 1621/11 | 1.71 | 10.1 |
CF_AS_600 | 1207/35 | 1353/103 | 1509/42 | 1589/71 | 1615/16 | 1.45 | 6.4 |
ACF | 1208/38 | 1340/117 | 1489/51 | 1591/74 | 1615/16 | 1.58 | 7.3 |
ACF_CO2low | 1211/41 | 1340/117 | 1485/41 | 1591/74 | 1616/18 | 1.58 | 6.5 |
ACF_AS_600 | 1204/41 | 1349/116 | 1509/53 | 1588/67 | 1619/27 | 1.73 | 4.3 |
ACF_AS_H2O | 1207/33 | 1340/117 | 1487/38 | 1591/74 | 1614/16 | 1.58 | 7.3 |
ACF_AS | 1209/45 | 1344/107 | 1497/87 | 1596/66 | 1616/9 | 1.62 | 11.9 |
ACF_DAHP | 1210/39 | 1340/117 | 1485/37 | 1591/74 | 1618/13 | 1.58 | 9.0 |
Adsorbent Dose/mg mL−1 | |||||||
---|---|---|---|---|---|---|---|
Sample | 10 | 5.00 | 2.50 | 1.00 | 0.10 | 0.01 | 10 * |
CF | 27.3 | 12.6 | 9.4 | 6.4 | 3.6 | 4.5 | 15.5 |
CF_AS | 24.1 | 11.0 | 9.2 | 9.6 | 9.1 | 3.2 | 11.0 |
CF_AS_600 | 34.8 | 22.0 | 9.1 | 9.0 | 9.0 | 6.5 | 11.3 |
ACF | 99.8 | 99.7 | 99.5 | 93.1 | 25.5 | 11.2 | 99.5 |
ACF_CO2low | 99.7 | 99.4 | 99.4 | 85.6 | 20.5 | 9.1 | 98.6 |
ACF_AS_600 | 24.7 | 11.4 | 7.3 | 7.7 | 7.2 | 3.8 | 11.7 |
ACF_AS_H2O | 99.9 | 99.8 | 99.8 | 96.0 | 29.4 | 6.7 | 99.9 |
ACF_AS | 95.4 | 97.5 | 78.2 | 35.9 | 9.9 | 3.2 | 27.6 |
ACF_DAHP | 99.6 | 99.1 | 97.4 | 71.9 | 15.6 | 3.9 | 99.6 |
Pesticide | Adsorbent * | Adsorption Capacity | Reference |
---|---|---|---|
Chlorfenvinphos | Graphene-coated silica | 4.9 mg g−1 | [52] |
Chlorpyrifos | Cellulose/GO | 150 mg g−1 | [53] |
Chlorpyrifos | GO and rGO | Up to 1200 mg g−1 | [34] |
Chlorpyrifos | Biochars | 4.32 to 14.8 mg g−1 | [54] |
Chlorpyrifos-methyl | 15.0 to 50.5 mg g−1 | ||
Chlorpyrifos | Graphene nanoplatelets | 140 mg g−1 | [33] |
Chlorpyrifos | Near-single-layer graphene | 79 mg g−1 | |
Dimethoate | GO | 5.2 mg g−1 | |
Dimethoate | Near-single-layer graphene | 37 mg g−1 | |
Dimethoate | Viscose-derived activated carbon fibers | Up to 400 mg g−1 | [38] |
Dimethoate | Activated carbon monoliths | 0–46 μg g−1 | [55] |
Diazinon | Walnut shell-modified activated carbon | 4.9 to 156 mg g−1 | [56] |
Diazinon | NH4Cl-induced activated carbon | Up to 250 mg g−1 | [57] |
Malathion | Granular activated carbon | Up to 900 mg g−1 | [58] |
Dimethoate | Viscose-derived activated carbon fibers | Up to 1280 mg g−1 | This work |
Kθ/Dimensionless | ΔGθ/kJ mol−1 | |||||
---|---|---|---|---|---|---|
Sample | 10 mg mL−1 | 1 mg mL−1 | 0.01 mg mL−1 | 10 mg mL−1 | 1 mg mL−1 | 0.01 mg mL−1 |
CF | 3.76 × 101 | 6.83 × 101 | 4.73 × 103 | −9.0 | −10.5 | −21.0 |
CF_AS | 3.18 × 101 | 7.02 × 101 | 3.34 × 103 | −8.6 | −10.5 | −20.1 |
CF_AS_600 | 7.42 × 101 | 8.17 × 101 | 9.22 × 103 | −10.7 | −10.9 | −22.6 |
ACF | 4.34 × 104 | 1.35 × 104 | 1.26 × 104 | −26.5 | −23.6 | −23.4 |
ACF_CO2low | 3.56 × 104 | 5.95 × 103 | 1.00 × 104 | −26.0 | −21.5 | −22.8 |
ACF_AS_600 | 5.34 × 101 | 9.89 × 101 | 6.89 × 103 | −9.9 | −11.4 | −21.9 |
ACF_AS_H2O | 7.13 × 104 | 2.38 × 104 | 7.18 × 103 | −27.7 | −25.0 | −22.0 |
ACF_AS | 2.08 × 103 | 5.61 × 102 | 3.28 × 103 | −18.9 | −15.7 | −20.1 |
ACF_DAHP | 2.37 × 104 | 2.56 × 103 | 4.04 × 103 | −25.0 | −19.4 | −20.6 |
Adsorbent Dose | |||
---|---|---|---|
Sample | 10 mg mL−1 | 1 mg mL−1 | 0.01 mg mL−1 |
CF | 75.0 ± 6.2 | 81.2 ± 5.8 | 81.9 ± 5.7 |
CF_AS | 76.2 ± 6.1 | 81.2 ± 5.8 | 80.6 ± 5.9 |
CF_AS_600 | 68.2 ± 6.2 | 80.9 ± 5.8 | 81.5 ± 5.8 |
ACF | 0 | 10.4 ± 2.1 | 75.7 ± 6.2 |
ACF_CO2low | 0 | 24.1 ± 1.9 | 77.3 ± 6.1 |
ACF_AS_600 | 72.0 ± 6.2 | 80.6 ± 5.9 | 80.6 ± 5.9 |
ACF_AS_H2O | 0 | 5.3 ± 1.8 | 74.2 ± 6.2 |
ACF_AS | 6.3 ± 1.8 | 71.5 ± 6.2 | 80.3 ± 5.9 |
ACF_DAHP | 0 | 44.3 ± 3.6 | 78.8 ± 6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anićijević, V.; Tasić, T.; Milanković, V.; Breitenbach, S.; Unterweger, C.; Fürst, C.; Bajuk-Bogdanović, D.; Pašti, I.A.; Lazarević-Pašti, T. How Well Do Our Adsorbents Actually Perform?—The Case of Dimethoate Removal Using Viscose Fiber-Derived Carbons. Int. J. Environ. Res. Public Health 2023, 20, 4553. https://doi.org/10.3390/ijerph20054553
Anićijević V, Tasić T, Milanković V, Breitenbach S, Unterweger C, Fürst C, Bajuk-Bogdanović D, Pašti IA, Lazarević-Pašti T. How Well Do Our Adsorbents Actually Perform?—The Case of Dimethoate Removal Using Viscose Fiber-Derived Carbons. International Journal of Environmental Research and Public Health. 2023; 20(5):4553. https://doi.org/10.3390/ijerph20054553
Chicago/Turabian StyleAnićijević, Vladan, Tamara Tasić, Vedran Milanković, Stefan Breitenbach, Christoph Unterweger, Christian Fürst, Danica Bajuk-Bogdanović, Igor A. Pašti, and Tamara Lazarević-Pašti. 2023. "How Well Do Our Adsorbents Actually Perform?—The Case of Dimethoate Removal Using Viscose Fiber-Derived Carbons" International Journal of Environmental Research and Public Health 20, no. 5: 4553. https://doi.org/10.3390/ijerph20054553
APA StyleAnićijević, V., Tasić, T., Milanković, V., Breitenbach, S., Unterweger, C., Fürst, C., Bajuk-Bogdanović, D., Pašti, I. A., & Lazarević-Pašti, T. (2023). How Well Do Our Adsorbents Actually Perform?—The Case of Dimethoate Removal Using Viscose Fiber-Derived Carbons. International Journal of Environmental Research and Public Health, 20(5), 4553. https://doi.org/10.3390/ijerph20054553