Inherited Epigenetic Hallmarks of Childhood Obesity Derived from Prenatal Exposure to Obesogens
Abstract
:1. Introduction
2. Non-Persistent Organic Pollutants
2.1. Bisphenol A
2.2. Phthalates
3. Persistent Organic Pollutants
3.1. Tributyltin
3.2. Parabens
3.3. Dichlorodiphenyltrichloroethane (DDT)
3.4. Polycyclic Aromatic Hydrocarbons
4. Inorganic Arsenic
5. Future Perspective and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nittari, G.; Scuri, S.; Sagaro, G.G.; Petrelli, F.; Grappasonni, I. Epidemiology of Obesity in Children and Adolescents. In Teamwork in Healthcare; Fistenberg, M.S., Stawicki, S.P., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- Kumar, S.; Kelly, A.S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo. Clin. Proc. 2017, 92, 251–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Zhang, Y.H.; Li, J.; Wang, S.; Zhang, Y.; Huang, T.; Cai, Y.D. Deciphering the Relationship between Obesity and Various Diseases from a Network Perspective. Genes 2017, 8, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kansra, A.R.; Lakkunarajah, S.; Jay, M.S. Childhood and Adolescent Obesity: A Review. Front. Pediatr. 2020, 8, 581461. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, E.M.; Renault, K.M.; Norgaard, K.; Nilas, L.; Jensen, J.E.; Hyldstrup, L.; Michaelsen, K.F.; Cortes, D.; Pryds, O. Newborn regional body composition is influenced by maternal obesity, gestational weight gain and the birthweight standard score. Acta Paediatr. 2014, 103, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Renault, K.M.; Carlsen, E.M.; Norgaard, K.; Nilas, L.; Pryds, O.; Secher, N.J.; Cortes, D.; Jensen, J.E.; Olsen, S.F.; Halldorsson, T.I. Intake of carbohydrates during pregnancy in obese women is associated with fat mass in the newborn offspring. Am. J. Clin. Nutr. 2015, 102, 1475–1481. [Google Scholar] [CrossRef] [Green Version]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef]
- Egusquiza, R.J.; Blumberg, B. Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals. Endocrinology 2020, 161, bqaa024. [Google Scholar] [CrossRef] [Green Version]
- Mocnik, M.; Marcun Varda, N. Obesogens in Children-An Uncharted Territory. Metabolites 2021, 11, 882. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tsutsumi, O.; Ikezuki, Y.; Takai, Y.; Taketani, Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr. J. 2004, 51, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Somogyi, V.; Horvath, T.L.; Toth, I.; Bartha, T.; Frenyo, L.V.; Kiss, D.S.; Jocsak, G.; Kerti, A.; Naftolin, F.; Zsarnovszky, A. Bisphenol A influences oestrogen- and thyroid hormone-regulated thyroid hormone receptor expression in rat cerebellar cell culture. Acta Vet. Hung. 2016, 64, 497–513. [Google Scholar] [CrossRef] [Green Version]
- Micic, D.; Polovina, S.; Micic, D.; Macut, D. Endocrine Disrupting Chemicals and Obesity: The Evolving Story of Obesogens. Acta Endocrinol. 2021, 17, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Mohajer, N.; Du, C.Y.; Checkcinco, C.; Blumberg, B. Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action. Front. Endocrinol. 2021, 12, 780888. [Google Scholar] [CrossRef] [PubMed]
- Robinson, N.; Brown, H.; Antoun, E.; Godfrey, K.M.; Hanson, M.A.; Lillycrop, K.A.; Crozier, S.R.; Murray, R.; Pearce, M.S.; Relton, C.L.; et al. Childhood DNA methylation as a marker of early life rapid weight gain and subsequent overweight. Clin. Epigenetics 2021, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Lesseur, C.; Armstrong, D.A.; Paquette, A.G.; Li, Z.; Padbury, J.F.; Marsit, C.J. Maternal obesity and gestational diabetes are associated with placental leptin DNA methylation. Am. J. Obstet. Gynecol. 2014, 211, 654-e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahamiko, S.; Laiho, A.; Lund, R.; Isolauri, E.; Salminen, S.; Laitinen, K. The impact of probiotic supplementation during pregnancy on DNA methylation of obesity-related genes in mothers and their children. Eur. J. Nutr. 2019, 58, 367–377. [Google Scholar] [CrossRef]
- Jonsson, J.; Renault, K.M.; Garcia-Calzon, S.; Perfilyev, A.; Estampador, A.C.; Norgaard, K.; Lind, M.V.; Vaag, A.; Hjort, L.; Michaelsen, K.F.; et al. Lifestyle Intervention in Pregnant Women with Obesity Impacts Cord Blood DNA Methylation, Which Associates With Body Composition in the Offspring. Diabetes 2021, 70, 854–866. [Google Scholar] [CrossRef]
- Calkins, K.; Devaskar, S.U. Fetal origins of adult disease. Curr. Probl. Pediatr. Adolesc. Health Care 2011, 41, 158–176. [Google Scholar] [CrossRef] [Green Version]
- Fall, C.H.D.; Kumaran, K. Metabolic programming in early life in humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180123. [Google Scholar] [CrossRef] [Green Version]
- Onuzulu, C.D.; Rotimi, O.A.; Rotimi, S.O. Epigenetic modifications associated with in utero exposure to endocrine disrupting chemicals BPA, DDT and Pb. Rev. Environ. Health 2019, 34, 309–325. [Google Scholar] [CrossRef]
- Jung, Y.H.; Wang, H.V.; Ruiz, D.; Bixler, B.J.; Linsenbaum, H.; Xiang, J.F.; Forestier, S.; Shafik, A.M.; Jin, P.; Corces, V.G. Recruitment of CTCF to an Fto enhancer is responsible for transgenerational inheritance of BPA-induced obesity. Proc. Natl. Acad. Sci. USA 2022, 119, e2214988119. [Google Scholar] [CrossRef]
- Junge, K.M.; Leppert, B.; Jahreis, S.; Wissenbach, D.K.; Feltens, R.; Grützmann, K.; Thürmann, L.; Bauer, T.; Ishaque, N.; Schick, M.; et al. MEST mediates the impact of prenatal bisphenol A exposure on long-term body weight development. Clin. Epigenetics 2018, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.A.; Shioda, K.; Mitsunaga, S.; Yawata, S.; Angle, B.M.; Nagel, S.C.; Vom Saal, F.S.; Shioda, T. Prenatal Exposure to Bisphenol A Disrupts Naturally Occurring Bimodal DNA Methylation at Proximal Promoter of fggy, an Obesity-Relevant Gene Encoding a Carbohydrate Kinase, in Gonadal White Adipose Tissues of CD-1 Mice. Endocrinology 2018, 159, 779–794. [Google Scholar] [CrossRef] [Green Version]
- Susiarjo, M.; Xin, F.; Bansal, A.; Stefaniak, M.; Li, C.; Simmons, R.A.; Bartolomei, M.S. Bisphenol a exposure disrupts metabolic health across multiple generations in the mouse. Endocrinology 2015, 156, 2049–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manikkam, M.; Tracey, R.; Guerrero-Bosagna, C.; Skinner, M.K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS ONE 2013, 8, e55387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neier, K.; Cheatham, D.; Bedrosian, L.D.; Dolinoy, D.C. Perinatal exposures to phthalates and phthalate mixtures result in sex-specific effects on body weight, organ weights and intracisternal A-particle (IAP) DNA methylation in weanling mice. J. Dev. Orig. Health Dis. 2019, 10, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Chamorro-Garcia, R.; Diaz-Castillo, C.; Shoucri, B.M.; Kach, H.; Leavitt, R.; Shioda, T.; Blumberg, B. Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice. Nat. Commun. 2017, 8, 2012. [Google Scholar] [CrossRef] [Green Version]
- Shioda, K.; Odajima, J.; Blumberg, B.; Shioda, T. Transgenerational Transcriptomic and DNA Methylome Profiling of Mouse Fetal Testicular Germline and Somatic Cells after Exposure of Pregnant Mothers to Tributyltin, a Potent Obesogen. Metabolites 2022, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K.; Manikkam, M.; Tracey, R.; Guerrero-Bosagna, C.; Haque, M.; Nilsson, E.E. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med. 2013, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Leppert, B.; Strunz, S.; Seiwert, B.; Schlittenbauer, L.; Schlichting, R.; Pfeiffer, C.; Roder, S.; Bauer, M.; Borte, M.; Stangl, G.I.; et al. Maternal paraben exposure triggers childhood overweight development. Nat. Commun. 2020, 11, 561. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Zhang, H.; Maher, C.; Arteaga-Solis, E.; Champagne, F.A.; Wu, L.; McDonald, J.D.; Yan, B.; Schwartz, G.J.; Miller, R.L. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR) γ methylation in offspring, grand-offspring mice. PLoS ONE 2014, 9, e110706. [Google Scholar] [CrossRef] [Green Version]
- Colwell, M.L.; Flack, N.; Rezabek, A.; Faulk, C. Intergenerational arsenic exposure on the mouse epigenome and metabolic physiology. Environ. Mol. Mutagen. 2023, 64, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Lee, Y.A.; Hong, Y.C.; Cho, J.; Lee, K.S.; Shin, C.H.; Kim, B.N.; Kim, J.I.; Park, S.J.; Bisgaard, H.; et al. Effect of prenatal bisphenol A exposure on early childhood body mass index through epigenetic influence on the insulin-like growth factor 2 receptor (IGF2R) gene. Environ. Int. 2020, 143, 105929. [Google Scholar] [CrossRef] [PubMed]
- Miura, R.; Ikeda-Araki, A.; Ishihara, T.; Miyake, K.; Miyashita, C.; Nakajima, T.; Kobayashi, S.; Ishizuka, M.; Kubota, T.; Kishi, R. Effect of prenatal exposure to phthalates on epigenome-wide DNA methylations in cord blood and implications for fetal growth: The Hokkaido Study on Environment and Children’s Health. Sci. Total Environ. 2021, 783, 147035. [Google Scholar] [CrossRef] [PubMed]
- Reimann, B.; Vrijens, K.; Roels, H.A.; Wang, C.; Cosemans, C.; Van Overmeire, I.; Nawrot, T.S.; Plusquin, M. In utero exposure to parabens and early childhood BMI z-scores—Associations between placental ethyl paraben, longitudinal BMI trajectories and cord blood metabolic biomarkers. Environ. Int. 2021, 157, 106845. [Google Scholar] [CrossRef]
- Legeay, S.; Faure, S. Is bisphenol A an environmental obesogen? Fundam. Clin. Pharmacol. 2017, 31, 594–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalowicz, J. Bisphenol A—Sources, toxicity and biotransformation. Environ. Toxicol. Pharmacol. 2014, 37, 738–758. [Google Scholar] [CrossRef]
- Xu, J.; Huang, G.; Guo, T.L. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases. Toxics 2016, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Perez-Bermejo, M.; Mas-Perez, I.; Murillo-Llorente, M.T. The Role of the Bisphenol A in Diabetes and Obesity. Biomedicines 2021, 9, 666. [Google Scholar] [CrossRef]
- Longo, M.; Zatterale, F.; Naderi, J.; Nigro, C.; Oriente, F.; Formisano, P.; Miele, C.; Beguinot, F. Low-dose Bisphenol-A Promotes Epigenetic Changes at Pparγ Promoter in Adipose Precursor Cells. Nutrients 2020, 12, 3498. [Google Scholar] [CrossRef]
- Hoepner, L.A. Bisphenol a: A narrative review of prenatal exposure effects on adipogenesis and childhood obesity via peroxisome proliferator-activated receptor gamma. Environ. Res. 2019, 173, 54–68. [Google Scholar] [CrossRef]
- Dunn, E.C.; Soare, T.W.; Zhu, Y.; Simpkin, A.J.; Suderman, M.J.; Klengel, T.; Smith, A.; Ressler, K.J.; Relton, C.L. Sensitive Periods for the Effect of Childhood Adversity on DNA Methylation: Results from a Prospective, Longitudinal Study. Biol. Psychiatry 2019, 85, 838–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, S.; Masai, E.; Kamimura, N.; Takahashi, K.; Anderson, R.C.; Faisal, P.A. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J. Hazard. Mater 2017, 340, 360–383. [Google Scholar] [CrossRef]
- Braun, J.M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Stojanoska, M.M.; Milosevic, N.; Milic, N.; Abenavoli, L. The influence of phthalates and bisphenol A on the obesity development and glucose metabolism disorders. Endocrine 2017, 55, 666–681. [Google Scholar] [CrossRef]
- Amin, M.M.; Ebrahimpour, K.; Parastar, S.; Shoshtari-Yeganeh, B.; Hashemi, M.; Mansourian, M.; Poursafa, P.; Fallah, Z.; Rafiei, N.; Kelishadi, R. Association of urinary concentrations of phthalate metabolites with cardiometabolic risk factors and obesity in children and adolescents. Chemosphere 2018, 211, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Hatch, E.E.; Nelson, J.W.; Qureshi, M.M.; Weinberg, J.; Moore, L.L.; Singer, M.; Webster, T.F. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: A cross-sectional study of NHANES data, 1999–2002. Environ. Health 2008, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Park, H.; Lee, J.; Cho, G.; Choi, S.; Choi, G.; Kim, S.Y.; Eun, S.H.; Suh, E.; Kim, S.K.; et al. Association of diethylhexyl phthalate with obesity-related markers and body mass change from birth to 3 months of age. J. Epidemiol. Community Health 2016, 70, 466–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.S.; Schaedlich, K.; Fiandanese, N.; Pocar, P.; Fischer, B. Effects of di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice. Environ. Health Perspect. 2012, 120, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Qin, Y.; Chen, M.; Li, X.; Wang, R.; Huang, Z.; Xu, Q.; Yu, M.; Zhang, Y.; Han, X.; et al. Prenatal low-dose DEHP exposure induces metabolic adaptation and obesity: Role of hepatic thiamine metabolism. J. Hazard. Mater 2020, 385, 121534. [Google Scholar] [CrossRef]
- Berger, K.; Hyland, C.; Ames, J.L.; Mora, A.M.; Huen, K.; Eskenazi, B.; Holland, N.; Harley, K.G. Prenatal Exposure to Mixtures of Phthalates, Parabens, and Other Phenols and Obesity in Five-Year-Olds in the CHAMACOS Cohort. Int. J. Environ. Res. Public Health 2021, 18, 1796. [Google Scholar] [CrossRef]
- Philips, E.M.; Jaddoe, V.W.V.; Deierlein, A.; Asimakopoulos, A.G.; Kannan, K.; Steegers, E.A.P.; Trasande, L. Exposures to phthalates and bisphenols in pregnancy and postpartum weight gain in a population-based longitudinal birth cohort. Environ. Int. 2020, 144, 106002. [Google Scholar] [CrossRef] [PubMed]
- Grun, F. The obesogen tributyltin. Vitam. Horm. 2014, 94, 277–325. [Google Scholar] [CrossRef] [PubMed]
- Bandara, K.R.V.; Chinthaka, S.D.M.; Yasawardene, S.G.; Manage, P.M. Modified, optimized method of determination of Tributyltin (TBT) contamination in coastal water, sediment and biota in Sri Lanka. Mar. Pollut Bull 2021, 166, 112202. [Google Scholar] [CrossRef] [PubMed]
- Hoch, M. Organotin compounds in the environment—An overview. Appl. Geochem. 2001, 16, 719–743. [Google Scholar] [CrossRef]
- Merlo, E.; Silva, I.V.; Cardoso, R.C.; Graceli, J.B. The obesogen tributyltin induces features of polycystic ovary syndrome (PCOS): A review. J. Toxicol. Environ. Health B Crit. Rev. 2018, 21, 181–206. [Google Scholar] [CrossRef]
- Silva, P.V.; Silva, A.R.; Mendo, S.; Loureiro, S. Toxicity of tributyltin (TBT) to terrestrial organisms and its species sensitivity distribution. Sci. Total Environ. 2014, 466–467, 1037–1046. [Google Scholar] [CrossRef]
- Jie, J.; Ling, L.; Yi, Y.; Tao, L.; Liao, X.; Gao, P.; Xu, Q.; Zhang, W.; Chen, Y.; Zhang, J.; et al. Tributyltin triggers lipogenesis in macrophages via modifying PPARgamma pathway. Environ. Pollut 2021, 271, 116331. [Google Scholar] [CrossRef]
- Stossi, F.; Dandekar, R.D.; Johnson, H.; Lavere, P.; Foulds, C.E.; Mancini, M.G.; Mancini, M.A. Tributyltin chloride (TBT) induces RXRA down-regulation and lipid accumulation in human liver cells. PLoS ONE 2019, 14, e0224405. [Google Scholar] [CrossRef]
- Grun, F.; Watanabe, H.; Zamanian, Z.; Maeda, L.; Arima, K.; Cubacha, R.; Gardiner, D.M.; Kanno, J.; Iguchi, T.; Blumberg, B. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol. Endocrinol. 2006, 20, 2141–2155. [Google Scholar] [CrossRef]
- Zanol, J.F.; Nino, O.M.S.; da Costa, C.S.; Freitas-Lima, L.C.; Miranda-Alves, L.; Graceli, J.B. Tributyltin and high-refined carbohydrate diet lead to metabolic and reproductive abnormalities, exacerbating premature ovary failure features in the female rats. Reprod Toxicol. 2021, 103, 108–123. [Google Scholar] [CrossRef]
- Chamorro-García, R.; Sahu, M.; Abbey, R.J.; Laude, J.; Pham, N.; Blumberg, B. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environ. Health Perspect. 2013, 121, 359–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz-Castillo, C.; Chamorro-Garcia, R.; Shioda, T.; Blumberg, B. Transgenerational Self-Reconstruction of Disrupted Chromatin Organization After Exposure to An Environmental Stressor in Mice. Sci. Rep. 2019, 9, 13057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, M.; Felix, J.S.; Scaramele, N.F.; Almeida, M.C.; Furlan, A.O.; Troiano, J.A.; de Athayde, F.R.F.; Lopes, F.L. Co-expression analysis of lncRNA and mRNA identifies potential adipogenesis regulatory non-coding RNAs involved in the transgenerational effects of tributyltin. PLoS ONE 2023, 18, e0281240. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.C.; Joloya, E.M.; Li, Z.; Shoucri, B.M.; Shioda, T.; Blumberg, B. miR-223 Plays A Key Role in Obesogen-Enhanced Adipogenesis in Mesenchymal Stem Cells and in Transgenerational Obesity. Endocrinology 2023, bqad027. [Google Scholar] [CrossRef] [PubMed]
- Kolatorova, L.; Sramkova, M.; Vitku, J.; Vcelak, J.; Lischkova, O.; Starka, L.; Duskova, M. Parabens and their relation to obesity. Physiol. Res. 2018, 67, S465–S472. [Google Scholar] [CrossRef]
- Xu, X.; Wu, H.; Terry, P.D.; Zhao, L.; Chen, J. Impact of Paraben Exposure on Adiposity-Related Measures: An Updated Literature Review of Population-Based Studies. Int. J. Environ. Res. Public Health 2022, 19, 16268. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Xia, W.; Li, Y.; Li, J.; Zhang, B.; Zheng, T.; Zhou, A.; Zhao, H.; Huo, W.; Hu, J.; et al. Repeated Measurements of Paraben Exposure during Pregnancy in Relation to Fetal and Early Childhood Growth. Environ. Sci. Technol. 2019, 53, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K. Gamma-glutamyltransferase-friend or foe within? Liver Int. 2016, 36, 1723–1734. [Google Scholar] [CrossRef] [Green Version]
- Beard, J.; Australian Rural Health Research, C. DDT and human health. Sci. Total Environ. 2006, 355, 78–89. [Google Scholar] [CrossRef]
- Van den Berg, H. Global status of DDT and its alternatives for use in vector control to prevent disease. Environ. Health Perspect. 2009, 117, 1656–1663. [Google Scholar] [CrossRef]
- Morgan, D.P.; Lin, L.I.; Saikaly, H.H. Morbidity and mortality in workers occupationally exposed to pesticides. Arch. Environ. Contam. Toxicol. 1980, 9, 349–382. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.P. Mortality of workers employed at organochlorine pesticide manufacturing plants--an update. Scand J. Work Environ. Health 1992, 18, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K.; Bongaerts, B.W.C.; Schneider, A.; Huth, C.; Meisinger, C.; Peters, A.; Schneider, A.; Wittsiepe, J.; Schramm, K.W.; Greiser, K.H.; et al. Persistent organic pollutants and the incidence of type 2 diabetes in the CARLA and KORA cohort studies. Environ. Int. 2019, 129, 221–228. [Google Scholar] [CrossRef]
- Tawar, N.; Banerjee, B.D.; Mishra, B.K.; Sharma, T.; Tyagi, S.; Madhu, S.V.; Agarwal, V.; Gupta, S. Adipose Tissue Levels of DDT as Risk Factor for Obesity and Type 2 Diabetes Mellitus. Indian J. Endocrinol. Metab. 2021, 25, 160–165. [Google Scholar] [CrossRef]
- Stratakis, N.; Rock, S.; La Merrill, M.A.; Saez, M.; Robinson, O.; Fecht, D.; Vrijheid, M.; Valvi, D.; Conti, D.V.; McConnell, R.; et al. Prenatal exposure to persistent organic pollutants and childhood obesity: A systematic review and meta-analysis of human studies. Obes. Rev. 2022, 23, e13383. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K.; Ben Maamar, M.; Sadler-Riggleman, I.; Beck, D.; Nilsson, E.; McBirney, M.; Klukovich, R.; Xie, Y.; Tang, C.; Yan, W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 2018, 11, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Maamar, M.; King, S.E.; Nilsson, E.; Beck, D.; Skinner, M.K. Epigenetic transgenerational inheritance of parent-of-origin allelic transmission of outcross pathology and sperm epimutations. Dev. Biol. 2020, 458, 106–119. [Google Scholar] [CrossRef]
- Ben Maamar, M.; Nilsson, E.; Thorson, J.L.M.; Beck, D.; Skinner, M.K. Transgenerational disease specific epigenetic sperm biomarkers after ancestral exposure to dioxin. Environ. Res. 2021, 192, 110279. [Google Scholar] [CrossRef] [PubMed]
- King, S.E.; Nilsson, E.; Beck, D.; Skinner, M.K. Adipocyte epigenetic alterations and potential therapeutic targets in transgenerationally inherited lean and obese phenotypes following ancestral exposures. Adipocyte 2019, 8, 362–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, D.; Nilsson, E.E.; Ben Maamar, M.; Skinner, M.K. Environmental induced transgenerational inheritance impacts systems epigenetics in disease etiology. Sci. Rep. 2022, 12, 5452. [Google Scholar] [CrossRef]
- Manikkam, M.; Haque, M.M.; Guerrero-Bosagna, C.; Nilsson, E.E.; Skinner, M.K. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline. PLoS ONE 2014, 9, e102091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhu, L.; James-Todd, T.; Sun, Q. Urinary polycyclic aromatic hydrocarbon excretion and regional body fat distribution: Evidence from the U.S. National Health and Nutrition Examination Survey 2001–2016. Environ. Health 2022, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Stallings-Smith, S.; Mease, A.; Johnson, T.M.; Arikawa, A.Y. Exploring the association between polycyclic aromatic hydrocarbons and diabetes among adults in the United States. Environ. Res. 2018, 166, 588–594. [Google Scholar] [CrossRef]
- Vondracek, J.; Machala, M. The Role of Metabolism in Toxicity of Polycyclic Aromatic Hydrocarbons and their Non-genotoxic Modes of Action. Curr. Drug. Metab. 2021, 22, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Tang, W.Y.; Herbstman, J.; Tang, D.; Levin, L.; Miller, R.; Ho, S.M. Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS ONE 2009, 4, e4488. [Google Scholar] [CrossRef]
- Rundle, A.; Hoepner, L.; Hassoun, A.; Oberfield, S.; Freyer, G.; Holmes, D.; Reyes, M.; Quinn, J.; Camann, D.; Perera, F.; et al. Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy. Am. J. Epidemiol. 2012, 175, 1163–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scinicariello, F.; Buser, M.C. Urinary polycyclic aromatic hydrocarbons and childhood obesity: NHANES (2001-2006). Environ. Health Perspect. 2014, 122, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Haverinen, E.; Fernandez, M.F.; Mustieles, V.; Tolonen, H. Metabolic Syndrome and Endocrine Disrupting Chemicals: An Overview of Exposure and Health Effects. Int. J. Environ. Res. Public Health 2021, 18, 13047. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Preventing Disease through Healthy Environments. Exposure to Arsenic: A Major Public Health Concern. Available online: https://www.who.int/publications/i/item/WHO-CED-PHE-EPE-19.4.1 (accessed on 13 February 2023).
- Eick, S.M.; Steinmaus, C. Arsenic and Obesity: A Review of Causation and Interaction. Curr. Environ. Health Rep. 2020, 7, 343–351. [Google Scholar] [CrossRef]
- Panico, P.; Velasco, M.; Salazar, A.M.; Picones, A.; Ortiz-Huidobro, R.I.; Guerrero-Palomo, G.; Salgado-Bernabe, M.E.; Ostrosky-Wegman, P.; Hiriart, M. Is Arsenic Exposure a Risk Factor for Metabolic Syndrome? A Review of the Potential Mechanisms. Front. Endocrinol. 2022, 13, 878280. [Google Scholar] [CrossRef]
- Rodriguez, K.F.; Ungewitter, E.K.; Crespo-Mejias, Y.; Liu, C.; Nicol, B.; Kissling, G.E.; Yao, H.H. Effects of in Utero Exposure to Arsenic during the Second Half of Gestation on Reproductive End Points and Metabolic Parameters in Female CD-1 Mice. Environ. Health Perspect. 2016, 124, 336–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Model | Treatment | Outcomes in Progeny | Reference |
---|---|---|---|---|
Bisphenol A (BPA) | CD1 mice | Dams administered 50 mg/kg/day i.p. of BPA or sesame oil daily to gestating F0 CD1 females from embryonic day E7.5 to E13.5. | ↑ 60% and 97% obesity in the male F2 and F4 progeny, respectively. Obesity phenotype transmittable up to F6. ↑ Visceral WAT and adipocyte size. ↑ Circulating leptin levels. ↑ Food intake. Altered light/dark respiratory exchange ratio. Demethylation in a cis-regulatory element of the Fto gene. | [21] |
Bisphenol A (BPA) | BALB/c mice | Dams exposed to BPA (5 μL of BPA/mL of drinking water) 1 week before mating until delivery of the offspring. | ↑ BW and fat mass. ↓ Mest methylation with increased Mest mRNA expression. | [22] |
Bisphenol A (BPA) | CD-1 mice | Pregnant CD-1 mice (F0) dosed orally with 0, 5 (low-BPA group), or 500 (high-BPA group) μg/kg/day of BPA in tocopherol-stripped corn oil or vehicle during gestational days 9 to 18. | ↑ Whole BW in males F1 (low-BPA group). ↑ Gonadal fat in F1 males (low-BPA group). ↓ Methylation of Fggy promoter in F1 males (low-BPA group). ↑ Fggy mRNA expression in F1 males (low-BPA group). No differences in F1 female mice between the groups. | [23] |
Bisphenol A (BPA) | C57BL/6 mice | Female C57BL/6 mice exposed to BPA at 50 μg/kg food (low-BPA group), BPA 50 mg/kg food (high-BPA group), or vehicle (7% corn oil) from two weeks before mating until weaning. | ↓ Birth weight in F1 male low-BPA group. Accelerated weight gain in F1 male low-BPA group. ↑ BW and fat content at between postnatal day 98 and 117 in F1 male BPA groups. ↑ Insulin levels in F1 male BPA groups. ↑ DNA methylation at the Igf2 differentially methylated region (DMR) 1 in F1 and F2. | [24] |
Bisphenol A (BPA), diethylhexyl phthalate (DEHP) and dibutyl phthalate (DBP) | Sprague Dawley rats | Daily injection of either DMSO or mixture of BPA, DEHP, and DBP at high dose (50, 750, and 66 mg/kg/day, respectively) or low dose (25, 375, and 33 mg/kg/day, respectively) during embryonic days 8 to 14 of gestation. | ↑ BW in the F3 males low-dose plastic lineage. ↑ BW and abdominal fat deposition in the F3 female high- and low-dose plastics lineage. Transgenerational sperm epigenome alterations in 197 DMRs some of which are associated with TNFRSF12A, ESRRA, FGF19, WNT10B, and GDNF obesity genes. | [25] |
Diethylhexyl phthalate (DEHP), diisononyl phthalate (DINP), and dibutyl phthalate (DBP) | Yellow agouti (Avy) mice | Virgin dams at 6–8 weeks consuming 7% corn oil (control), DEHP 25 mg/kg, DBP 25 mg/kg, DINP 75 mg/kg chow, 25 mg DEHP + 75 mg DINP/kg chow or 25 mg DEHP + 75 mg DINP + 25 mg DBP/kg chow from 2 weeks before mating until weaning. | ↑ BW of female F1 mice from F0 mice exposed to DINP or the mixture of the three phthalates. ↑ BW of male F1 mice from F0 mice exposed to DEHP, DINP, and DEHP + DINP. ↑ Liver weight in exposed female offspring exposed to DINP, DEHP + DINP, and DEHP + DINP + DBP. ↑ Gonadal fat weight female offspring exposed to DEHP + DINP + DBP. ↓ Intracisternal A-particle (IAP) DNA methylation in males. ↑ IAP DNA methylation in females. | [26] |
Compound | Model | Treatment | Outcomes in Progeny | Reference |
---|---|---|---|---|
Tributyltin (TBT) | C57BL/6J mice | Female C57BL/6J mice exposed to either 50 nM TBT or 0.1% DMSO via drinking water 7 days before mating and continued throughout lactation. F4 mice fed with standard diet (STD) until 19 weeks of age and then with either chow or high-fat diet (HFD) for 6 weeks and then STD diet until 33 weeks of age. | ↑ BW in F1 females. ↑ Gonadal WAT content in F2-F4 male. ↓ Inguinal adipose depot in males. No differences in BW between the groups. ↑ Body fat in F4 males after exposure to HFD. ↓ Fat mobilization in F4-TBT males. ↑ Leptin levels at week 33 in F4-TBT males. Hypermethylation of gonadal WAT genome associated with changes in expression of genes involved in metabolic processes. | [27] |
Tributyltin (TBT) | Transgenic OG2 mice | Female OG2 mice exposed to either 50 nM TBT or 0.1% DMSO via drinking water 7 days before mating and continued throughout lactation until 3 weeks after delivery. F3 mice fed with chow diet until 19 weeks of age, with either chow or HFD for 6 weeks. | ↑ Fat mass in TBT-F3 males after HFD. ↓ Body fluids and lean mass with no increase in BW in TBT-F3 males after HFD. Presence of normal-weight obesity syndrome. No transgenerationally persistent changes in CpG methylation promoter-associated CpG islands in fetal testes. Chromatin compaction protein MORC1 led to RNA expression changes in representative mouse endogenous retroviruses. | [28] |
Dichlorodiphenyltrichloroethane (DDT) | Hsd: Sprague Dawley®™SD®™ rats | Pregnant rats administered either i.p. 50 or 25 mg/kg BW/d of DDT or vehicle daily from gestation days G8 to G14. | No changes in BW in the F1 generation. ↑ Obesity incidence in the F3 generation by 50%. Transgenerational transmission of disease through both female and male germlines. ↑ Testis, ovary, and kidney abnormalities in F1 and F3 generations. Identification of 39 differential DNA methylated regions (DMR) in sperm from F3 DTT lineage. ↓ Density CpG regions (CpG desert). | [29] |
Parabens | BALB/cByJ mice | Pregnant dams exposed subcutaneously to 1.75 μg of butylparaben (BuP) in 100 μL corn oil or vehicle twice a week until weaning. | ↑ BW, fat mass, food intake fasting serum glucose levels, and adipocyte size in female offspring from BuP-exposed dams. ↓ Lean mass in female. No changes in males in any of the parameters measured. ↓ POMC expression via hypermethylation of mPE1 regulatory region of Pomc. | [30] |
Polycyclic aromatic hydrocarbon (PAH) mixture. | BALB/cByj mice | Female BALB/cByj mice exposed to either control aerosol solution (99.97% water, 0.02% Tween 80, and 0.01% antifoam) or 7.29 ng/m3 PAH mixture (3.69 ng/m3 pyrene plus 3.60 ng/m3 from eight other individual PAH) administered via nebulizers from gestational day (GD) 1-3 through GD 19-21 or until day of delivery. | ↑ BW on PND25-27 and PND52-60 for females and PND30-60 for males. ↑ Fat mass of inguinal WAT in PAH female offspring on PND60. ↑ Gonadal WAT in PAH-offspring at PND60. ↑ WAT and BAT adipocyte size in PAH group. ↑ Pparγ, Cox2, and Adiponectin mRNA expression in WAT and BAT PAH-offspring. ↓ Fas expression in WAT and BAT in male PAH-offspring. ↓ DNA methylation of Pparγ promoter at CpG-303 in female and CpG-303 and CpG-189 in male offspring in inguinal WAT. ↓ DNA methylation of Pparγ promoter at CpG-303 and CpG-195 in female and CpG-303 in male offspring in interscapular BAT. | [31] |
Inorganic arsenic (iAs) | C57BL/6J mice | F0 female mice exposed to 1 (control, tap water), 10, 245, or 2300 ppb of inorganic arsenic (iAs) in drinking water two weeks before mating until delivery. | Sex- and dose-specific differences in weight and body composition in F1 and F2 generations. ↓ Wean weight in F1 generation from dams exposed to 10 and 2300 ppb iAs. Altered glucose metabolism in F1 female offspring of 10 ppb. ↑ Wean weight in 10 ppb F2 male offspring. ↓ Weight gain and final body mass to fat mass ratio in F2 male in all treatments. ↑ Differentially methylated CpGs (DMC) and DMR in F2 female generation exposed to 10 and 245 ppb iAs. No DMR shared between F1 and F2. Only three DMC shared between generations. | [32] |
Compound | Cohort and Sample Size | Objective | Measures | Outcomes | References |
---|---|---|---|---|---|
Bisphenol A (BPA) | Mother–child pairs (LINA mother–child-study, N = 420). (#046–2006, #206–12- 02072012, University of Leipzig). | To analyze epigenetic alterations in the cord blood of BPA prenatally exposed children and their potential link to overweight development. | BPA concentration: urine from gestating women (week 34). DNA methylation: cord blood. Infant’s follow-up: 1 and 6 years. | ↓ Methylation of CpG (cg17580798) in the MEST promoter. ↓ Methylation of cg23117250 (RAB40B). ↑ MEST mRNA levels. BPA prenatal exposure related to longitudinal weight development. | [22] |
Bisphenol A (BPA) | Children exposed prenatally to low or high BPA levels based on 80th percentile of maternal BPA levels (N = 59). (IRB No. 1201-010-392). | To identify differentially methylated CpG sites due to prenatal BPA exposure. | BPA concentration: urine from gestating women collected during the second trimester of pregnancy. DNA methylation: infants’ whole blood at 2 and 6 years old. Infants’ follow-up: 2, 4, 6, and 8 years old. | ↑ Methylation in cg19196862 (IGF2R) associate with ↑ BMI at 2 years of age. ↑ BMI during 4–8 years of age associated with hypermethylation in cg19196862 in girls. ↑ Methylation at cg19249811 (SVIL) not associated with BMI. | [33] |
Di-2-ethylhexyl phthalate (DEHP) | Mother–child pairs (Hokkaido study) (N = 203) (reference no. 14, 22 March 2012, Hokkaido University Center for Environmental and Health Sciences). | To elucidate the relation between prenatal DEHP exposure and cord blood DNA methylation, as well as the association between DNA methylation and ponderal index (PI) at birth. | Mono(2-theylhexyl)phthalate concentration (MEHP) as indicator of DEHP exposure: maternal blood samples. DNA methylation: cord blood. | Maternal MEHP levels positively correlated to methylation levels in CpG located at 200 bases from the transcription start with of ZC3H10 (cg26409978) and another mapped to SDK1 (cg00564857). Enrichment of metabolic pathways, MAPK, Notch, and GnRH signaling pathways, renin secretion, and cortisol synthesis and secretion. ↑ Methylation levels at cg27433759 (PIK3CG), cg10548708 (ACAA1), and cg07002201 (FUT9) related to high levels of MEHP and lower PI. | [34] |
Parabens | Mother–newborn pairs (ENVIRONAGE cohort, N = 229) (reference no. B371201216090 and B371201524537). | To determine the association between placental paraben levels and cord blood metabolic biomarkers, epigenetic alterations, and childhood trajectories of BMI z-scores. | Parabens concentrations (methyl (MeP), ethyl (EtP), propyl (PrP and butyl (BuP) parabens): placenta. DNA methylation: cord blood. Infants’ follow up: up to 29 months after birth. | Correlation between higher levels of EtP and hypermethylation of cg08612779 (annotated to GGT7). EtP related to decreased longitudinal BMI z-scores. | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Sánchez, M.Á.; Jiménez-Méndez, A.; Suárez-Cortés, M.; Martínez-Sánchez, M.A.; Sánchez-Solís, M.; Blanco-Carnero, J.E.; Ruiz-Alcaraz, A.J.; Ramos-Molina, B. Inherited Epigenetic Hallmarks of Childhood Obesity Derived from Prenatal Exposure to Obesogens. Int. J. Environ. Res. Public Health 2023, 20, 4711. https://doi.org/10.3390/ijerph20064711
Núñez-Sánchez MÁ, Jiménez-Méndez A, Suárez-Cortés M, Martínez-Sánchez MA, Sánchez-Solís M, Blanco-Carnero JE, Ruiz-Alcaraz AJ, Ramos-Molina B. Inherited Epigenetic Hallmarks of Childhood Obesity Derived from Prenatal Exposure to Obesogens. International Journal of Environmental Research and Public Health. 2023; 20(6):4711. https://doi.org/10.3390/ijerph20064711
Chicago/Turabian StyleNúñez-Sánchez, María Á., Almudena Jiménez-Méndez, María Suárez-Cortés, María A. Martínez-Sánchez, Manuel Sánchez-Solís, José E. Blanco-Carnero, Antonio J. Ruiz-Alcaraz, and Bruno Ramos-Molina. 2023. "Inherited Epigenetic Hallmarks of Childhood Obesity Derived from Prenatal Exposure to Obesogens" International Journal of Environmental Research and Public Health 20, no. 6: 4711. https://doi.org/10.3390/ijerph20064711
APA StyleNúñez-Sánchez, M. Á., Jiménez-Méndez, A., Suárez-Cortés, M., Martínez-Sánchez, M. A., Sánchez-Solís, M., Blanco-Carnero, J. E., Ruiz-Alcaraz, A. J., & Ramos-Molina, B. (2023). Inherited Epigenetic Hallmarks of Childhood Obesity Derived from Prenatal Exposure to Obesogens. International Journal of Environmental Research and Public Health, 20(6), 4711. https://doi.org/10.3390/ijerph20064711