Urban Exotic Pollution: The Harmful Environmental Footprint for Health and Historical Architecture
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Chemical Composition and Morphology of the Collected Samples
3.2. Coloristic Analysis of Golia Wall Sampling Spots
3.3. Meteorological and Atmospheric Quality Context
3.4. Effects of Streets Washing with Aqueous Solutions Containing Dust Binders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Männikkö, J.P.; Niemi, J.; Ritola, R.; Kupiainen, K.; Pirjola, L.; Väkevä, O.; Virtanen, T. REDUST: Best Practices in Winter Maintenance to Reduce Respirable Street Dust; REDUST Project: Helsinki, Finland, 2014; ISBN 978-952-272-794-7. ISBN (PDF) 978-952-272-795-4. [Google Scholar]
- Reyier, J. A Comparison between Calcium Chloride and Magnesium Chloride as Dust-Binding Agents on Gravel Roads; Examination Project; The Institute for Road-Building, Royal Technical College: Stockholm, Sweden, 1972. [Google Scholar]
- Garofalide, S.; Diaconu, M.; Cocean, I.; Cocean, A.; Pelin, V.; Gurlui, S.; Leontie, L. Study of physico-chemical characteristics of some major urban air pollutants. IOP Conf. Ser. Mater. Sci. Eng. 2020, 877, 012049. [Google Scholar] [CrossRef]
- Domínguez, J.R.; González, T.; García, H.M.; Sánchez-Lavado, F.; de Heredia, J.B. Aluminium sulfate as coagulant for highly polluted cork processing wastewaters: Removal of organic matter. J. Hazard. Mater. 2007, 148, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Matilainen, A.; Vepsäläinen, M.; Sillanpää, M. Natural organic matter removal by coagulation during drinking water treatment: A review. Adv. Colloid Interface Sci. 2010, 159, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-Q. The role of coagulation in water treatment. Curr. Opin. Chem. Eng. 2015, 8, 36–44. [Google Scholar] [CrossRef]
- Contreras, C.A.; Sugita, S.; Ramos, E. Preparation of sodium aluminate from basic aluminium sulfate. AZo J. Mater. 2006, 2. [Google Scholar] [CrossRef]
- Cocean, I.; Cocean, A.; Iacomi, F.; Gurlui, S. City water pollution by soot-surface-active agents revealed by FTIR spectroscopy. Appl. Surf. Sci. 2020, 499, 142487. [Google Scholar] [CrossRef]
- Available online: https://www.wunderground.com/history/monthly/ro/ia%C8%99i/LRIA/date/2021-3 (accessed on 5 May 2021).
- Available online: https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3 (accessed on 5 May 2021).
- Ravindra Reddy, T.; Kaneko, S.; Endo, T.; Lakshmi Reddy, S. Spectroscopic Characterization of Bentonite. J. Lasers Opt. Photonics 2017, 4, 3. [Google Scholar] [CrossRef]
- Blanchard, M.; Méheut, M.; Delon, L.; Poirier, M.; Micoud, P.; Le Roux, C.; Martin, F. Infrared spectroscopic study of the synthetic Mg–Ni talc series. Phys. Chem. Miner. 2018, 45, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, S.A.; Ahmed, R. (Eds.) . Novel Developments in Pharmaceutical and Biomedical Analysis; Bentham Science Publishers: Sharjah, United Arab Emirates, 2018. [Google Scholar]
- Van Steen, E.; Callanan, L.H. Recent advances in the science and technology of zeolites and related materials. In Proceedings of the 14th International Zeolite Conference, Cape Town, South Africa, 25–30 April 2004; Elsevier: Amsterdam, The Netherlands, 2004; Volume 154. [Google Scholar]
- Hamdan, H.; Endud, S.; He, H.; Muhid, M.N.M.; Klinowski, J. Alumination of the purely siliceous mesoporous molecular sieve MCM-41 and its hydrothermal conversion into zeolite Na-A. J. Chem. Soc. Faraday Trans. 1998, 24, 3527–3780. [Google Scholar]
- Cocean, A.; Cocean, I.; Cimpoesu, N.; Cocean, G.; Cimpoesu, R.; Postolachi, C.; Popescu, V.; Gurlui, S. Laser Induced Method to Produce Curcuminoid-Silanol Thin Films for Transdermal Patches Using Irradiation of Turmeric Target. Appl. Sci. 2021, 11, 4030. [Google Scholar] [CrossRef]
- Pretsch, E.; Buhlmann, P.; Badertscher, M. Structure Determination of Organic Compounds: Tables of spectral data. Struct. Determ. Org. Compd. 2009, 10, 978–1007. [Google Scholar]
- Miller, F.A.; Wilkins, C.H. Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Use Qual. Anal. Anal. Chem. 1952, 24, 1253–1294. [Google Scholar] [CrossRef]
- Senthilkumar, S.; Rajendran, A. Synthesis, Characterization and Electrical Properties of Nano Metal and Metal-Oxide Doped with Conducting Polymer Composites by in-Situ Chemical Polymerization. MOJ Poly. Sci. 2017, 1, 00031. [Google Scholar] [CrossRef] [Green Version]
- Cocean, I.; Cocean, A.; Postolachi, C.; Pohoata, V.; Cimpoesu, N.; Bulai, G.; Iacomi, F.; Gurlui, S. Alpha keratin amino acids behvior under high fluence laser interaction. Medical applications. Appl. Surf. Sci. 2019, 488, 418–426. [Google Scholar] [CrossRef]
- Giorio, C.; Marton, M.; Formenton, G.; Tapparo, A. Formation of Metal-Cyanide Complexes in deliquescent airborne particles. Environ. Sci. Technol. 2017, 51, 24. [Google Scholar] [CrossRef] [PubMed]
- Cocean, A.; Cocean, I.; Cazacu, M.; Bulai, G.; Iacomi, F.; Gurlui, S. Atmosphere self-cleaning under humidity conditions and influence of the snowflakes and artificial light. Appl. Surf. Sci. 2018, 443, 83–90. [Google Scholar] [CrossRef]
- Téllez-Salazar, W.; Ovalle-Encinia, O.; Ramírez-Rosales, D.; Ma, X.; Dorantes-Rosales, H.; Lara-García, H.; Ortiz-Landeros, J. Chemical synthesis and evaluation of Co3O4/Ce0.9Zr0.05Y0.05O2-dmixedoxides for the catalytic-assisted combustion of soot. Chem. Eng. Sci. 2021, 234, 1164432. [Google Scholar] [CrossRef]
- Garofalide, S.; Postolachi, C.; Cocean, A.; Cocean, G.; Motrescu, I.; Cocean, I.; Munteanu, B.S.; Prelipceanu, M.; Gurlui, S.; Leontie, L. Saharan Dust Storm Aerosol Characterization of the Event (9 to 13 May 2020) over European AERONET Sites. Atmosphere 2022, 13, 493. [Google Scholar] [CrossRef]
- Cocean, G.; Cocean, A.; Postolachi, C.; Garofalide, S.; Bulai, G.; Munteanu, B.S.; Cimpoesu, N.; Cocean, I.; Gurlui, S. High-Power Laser Deposition of Chitosan Polymers: Medical and Environmental Applications. Polymers 2022, 14, 1537. [Google Scholar] [CrossRef] [PubMed]
- Pelin, V.; Răţoi, B.; Apăvăloaei, B.; Vasilache, V.; Sandu, I.; Brânzilâ, M. Monument Future: Decay and Conservation of Stone: Proceedings of the 14th International Congress on the Deterioration and Conservation of Stone/Siegfried Siegesmund/Bernhard Middendorf (Eds.); Mitteldeutscher Verlag: Halle an der Saale City, Germany, 2020; pp. 1089–1904. [Google Scholar]
Golia Wall Sampling Spot | Distance between the Sampling Area and the Street |
---|---|
Wst-b | 190 cm |
Wd-d | 305 cm |
Wm | 308 cm |
S | 1315 cm |
Spectral Vibration Bands (cm−1) | Functional Groups | References | |||||
---|---|---|---|---|---|---|---|
Street Samples | Golia Wall Samples | ||||||
Liquid | Foam | Wd-d | Wm | Wst-b | S | ||
3854 | 3854 | 3854 | 3854 | 3854 | 3854 | Al–OH–Al stretching modes | [11] |
3746 | * | 3746 | 3746 | 3746 | 3746 | Si–OH stretching modes | [12,13,14,15,16] |
* | 3615 | 3615 | 3627 | * | 3627 | Al–OH–Al stretching modes | [11] |
* | * | * | 3569 | * | 3569 | OH stretching in alcohols free | |
3431–3413 | 3441–3413 | 3428–3401 | 3428–3392 | 3428–3388 | 3428 | OH stretching vibrations N–H stretching vibrations in primary amides | [8,17] |
* | * | 3274–3247–3211 | * | * | 3392 | N–H stretching | [17] |
2956 | 2960 | 2976 | 2980 | 2960 | 2980 | C–H aliphatic stretching; SH thiol group stretching in aliphatics | [17] |
2920 | 2924 | 2944 | 2944 | 2935 | 2944 | C–H aliphatic stretching | [17] |
2852 | 2852 | 2877–2822 | 2877 | 2881 | 2877 | C–H aliphatic stretching | [17] |
* | * | * | 2764 | * | 2764 | C–H aliphatic stretching in aldehydes | [17] |
* | * | 2591 | 2578 | * | 2578 | S–H thiol | [17] |
2510 | 2504 | 2514 | 2510 | 2510 | 2510 | P–H stretching O–H in COOH | [17] |
* | * | * | 2428 | * | * | ||
2352 | 2352 | 2383 | 2379 | * | 2379–2351 | O=C=O stretching (carbon dioxide) Si–H stretching | [17] |
* | 1989; 1966; 1936 | * | * | * | * | FerrocyanidesSodium ferrocyanide Na4Fe(CN)6 Calcium ferrocyanide Ca2Fe(CN)6 | [18] |
1874; 1796 | * | 1796 | 1765 | * | 1795 | Amino NH and carbonyl C=O groups in amides and aminoacids | [17] |
1650; 1627 | 1631 | 1636 | 1632 | 1650 | 1632 | Amino NH and carbonyl C=O groups in amides and aminoacids; Ferrous sulfate FeSO4; Aluminum sulfate Al2SO4 Calcium sulfate CaSO4∙2H2O Ferrocyanides | [17,18] |
1424 | 1430 | 1428 | 1442 | 1430 | 1428 | Calcium carbonate CaCO3 –SO2 stretching asymmetric vibrations (S–)CH2 deformation (1425 cm−1); (S–)CH3 deformation asymmetric | [17,18] |
1376 | * | 1379 | * | * | R–SO2–OR | [17] | |
* | * | 1170 | 1170 | * | 1170 | C–O stretching in alcohols | [17] |
1093 | 1084 | 1084 | 1084 | 1084 | 1084 | C–O stretching Si–O–Si SO42− in Ferrous sulfate SO42− in Aluminum sulfate | [16,17,18] |
1029 | 1036 | 1034 | 1038 | 1038 | 1038 | Si–OH deformation modes | [16,17] |
877 | 872 | 872 | 876 | 872 | 876 | S–O stretching in sulfoxides, sulfones, sulfates and sulfites | [17] |
798–775 | 798–775 | 790–771 | 795–776 | 798–775 | 795–784 | S–O stretching in sulfoxides, sulfones, sulfates and sulfites | [17] |
712 | 712 | 713 | 718 | 712 | 718 | S–O stretching in sulfoxides, sulfones, sulfates and sulfites | [17] |
698 | 698 | 668 | 668 | 698 | 668 | S–S in sulfides | [17] |
* | * | 631 | 627 | * | 627 | ||
614 | * | * | * | * | * | Al–O stretching vibrations | [8,19] |
557 | 557 | * | * | * | * | C–S stretching | [17] |
Element | Mass Norm. [%] | Atom [%] | ||||||
---|---|---|---|---|---|---|---|---|
Liquid 1 | Liquid 2 | Foam 1 | Foam 2 | Liquid 1 | Liquid 2 | Foam 1 | Foam 2 | |
Oxygen | 36.29 | 33.41 | 31.59 | 28.05 | 47.91 | 46.25 | 41.81 | 36.93 |
Carbon | 7.7 | 6.46 | 11.36 | 14.41 | 13.54 | 11.91 | 20.02 | 25.27 |
Nitrogen | 0.81 | 0.78 | 0.2 | 0.9 | 1.22 | 1.23 | 0.3 | 1.35 |
Calcium | 5 | 6.91 | 9.35 | 6.57 | 2.63 | 3.81 | 4.94 | 3.46 |
Silicon | 30.49 | 27.28 | 27.87 | 18.61 | 22.93 | 21.5 | 21.01 | 13.96 |
Iron | 4.11 | 6.26 | 6.89 | 6.24 | 1.55 | 2.48 | 2.61 | 2.35 |
Phosphorus | 0.08 | 0.29 | 0.34 | 0.36 | 0.06 | 0.21 | 0.23 | 0.24 |
Potassium | * | * | * | * | * | * | * | * |
Aluminum | 4.64 | 5.17 | 8.2 | 8.53 | 3.64 | 4.24 | 6.44 | 6.66 |
Copper | 0.25 | 0.51 | * | 0.58 | 0.08 | 0.18 | * | 0.19 |
Chlorine | 8.93 | 11.09 | 2.16 | 12.05 | 5.32 | 6.92 | 1.29 | 7.16 |
Sulfur | 1.7 | 1.84 | 2.04 | 3.7 | 1.12 | 1.27 | 1.35 | 2.43 |
100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Element | Mass Norm. | Atom | ||||||
---|---|---|---|---|---|---|---|---|
[%] | [%] | |||||||
West Down Dry (Wd-d) | West Middle (Wm) | West—Support Pole towards the Street—Black (Wst-b) | South (S) | West Down Dry (Wd-d) | West Middle (Wm) | West—Support Pole towards the Street—Black (Wst-b) | South (S) | |
Oxygen | 50.65 | 56.09 | 43.09 | 53.23 | 55.49 | 65.14 | 39.83 | 61.94 |
Carbon | 21.56 | 11.95 | 43.87 | 13.92 | 31.47 | 18.48 | 54.04 | 21.58 |
Calcium | 21.04 | 21.06 | 3.34 | 25.15 | 9.2 | 9.76 | 1.23 | 11.68 |
Silicon | 4.67 | 7.73 | 7.73 | 5.6 | 2.92 | 5.11 | 4.07 | 3.71 |
Iron | 1.28 | 1.18 | 0.9 | 1.02 | 0.4 | 0.39 | 0.24 | 0.34 |
Potassium | * | 0.74 | * | * | * | 0.35 | * | * |
Aluminium | 0.8 | 0.69 | 1.07 | 1.08 | 0.52 | 0.48 | 0.59 | 0.75 |
Chlorine | * | 0.56 | * | * | * | 0.29 | * | * |
100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
L* | a* | b* | ΔL* | Δa* | Δb* | ΔE* | ||
---|---|---|---|---|---|---|---|---|
Wst-b | Wstb1 | 24.35 | 10.51 | 1.13 | 11.38 | −8.71 | 9.15 | 17.00 |
Wstb2 | 16.76 | 53.93 | −6.66 | 18.97 | −52.13 | 16.94 | 58.00 | |
Wstb3 | 15.35 | 60.13 | −7.80 | 20.38 | −58.33 | 18.08 | 64.38 | |
Wstb4 | 22.56 | 18.55 | −1.48 | 13.17 | −16.75 | 11.76 | 24.34 | |
Wstb5 | 16.70 | 48.17 | −6.88 | 19.03 | −46.37 | 17.16 | 52.98 | |
Wd-d | Wd-d1 | 35.73 | 1.80 | 10.28 | 0.00 | 0.00 | 0.00 | 0 |
Wd-d2 | 26.10 | 11.97 | 3.50 | 9.63 | −10.17 | 6.78 | 15.56 | |
Wd-d3 | 22.56 | 33.24 | −0.89 | 13.17 | −31.44 | 11.17 | 35.87 | |
Wd-d4 | 33.57 | 4.26 | 12.47 | 2.16 | −2.46 | −2.19 | 3.94 | |
Wm | Wm1 | 21.43 | 59.76 | −1.26 | 14.30 | −57.96 | 11.54 | 60.80 |
Wm2 | 25.59 | 33.25 | 9.40 | 10.14 | −31.45 | 0.88 | 33.06 | |
W3 | 22.14 | 52.58 | 0.79 | 13.59 | −50.78 | 9.49 | 53.42 | |
W4 | 19.29 | 73.36 | −5.16 | 16.44 | −71.56 | 15.44 | 75.03 | |
South | S1 | 33.05 | 2.77 | 10.07 | 2.68 | −0.97 | 0.21 | 2.86 |
S2 | 41.33 | 5.38 | 13.06 | −5.60 | −3.58 | −2.78 | 7.20 | |
S3 | 35.40 | 3.23 | 11.81 | 0.33 | −1.43 | −1.53 | 2.12 | |
S4 | 29.05 | 7.70 | 7.67 | 6.68 | −5.90 | 2.61 | 9.29 | |
S5 | 30.93 | 7.91 | 10.27 | 4.80 | −6.11 | 0.01 | 7.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postolachi, C.; Cocean, A.; Garofalide, S.; Munteanu, B.S.; Cocean, G.; Cimpoesu, N.; Pelin, V.; Cocean, I.; Gurlui, S. Urban Exotic Pollution: The Harmful Environmental Footprint for Health and Historical Architecture. Int. J. Environ. Res. Public Health 2023, 20, 4715. https://doi.org/10.3390/ijerph20064715
Postolachi C, Cocean A, Garofalide S, Munteanu BS, Cocean G, Cimpoesu N, Pelin V, Cocean I, Gurlui S. Urban Exotic Pollution: The Harmful Environmental Footprint for Health and Historical Architecture. International Journal of Environmental Research and Public Health. 2023; 20(6):4715. https://doi.org/10.3390/ijerph20064715
Chicago/Turabian StylePostolachi, Cristina, Alexandru Cocean, Silvia Garofalide, Bogdanel Silvestru Munteanu, Georgiana Cocean, Nicanor Cimpoesu, Vasile Pelin, Iuliana Cocean, and Silviu Gurlui. 2023. "Urban Exotic Pollution: The Harmful Environmental Footprint for Health and Historical Architecture" International Journal of Environmental Research and Public Health 20, no. 6: 4715. https://doi.org/10.3390/ijerph20064715
APA StylePostolachi, C., Cocean, A., Garofalide, S., Munteanu, B. S., Cocean, G., Cimpoesu, N., Pelin, V., Cocean, I., & Gurlui, S. (2023). Urban Exotic Pollution: The Harmful Environmental Footprint for Health and Historical Architecture. International Journal of Environmental Research and Public Health, 20(6), 4715. https://doi.org/10.3390/ijerph20064715