How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania
Abstract
:1. Introduction
2. Input Data Analysis
3. Materials and Methods
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renewable Energy Institute. Renewable Energy to Replace Coal Power in Southeast Asia. Renew. Sustain. Energy Rev. 2019. [Google Scholar]
- Gonzalez-Salazar, M.; Langrock, T.; Koch, C.; Spieß, J.; Noack, A.; Witt, M.; Ritzau, M.; Michels, A. Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin. Energies 2020, 13, 6394. [Google Scholar] [CrossRef]
- Deng, M.; Ma, R.; Lu, F.; Nie, Y.; Li, P.; Ding, X.; Yuan, Y.; Shan, M.; Yang, X. Techno-economic performances of clean heating solutions to replace raw coal for heating in Northern rural China. Energy Build. 2021, 240, 110881. [Google Scholar] [CrossRef]
- Morse, R.; Salvatore, S.; Slusarewicz, J.H.; Cohan, D.S. Can wind and solar replace coal in Texas? Renew. Wind. Water, Sol. 2022, 9, 1–17. [Google Scholar] [CrossRef]
- Sattler, S.; Gignac, J.; Collingsworth, J.; Clemmer, S.; Garcia, P. Achieving a clean energy transition in Illinois: Economic and public health benefits of replacing coal plants in Illinois with local clean energy alternatives. Electr. J. 2018, 31, 52–59. [Google Scholar] [CrossRef]
- Yang, Y.; Campana, P.E.; Yan, J. Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities. Renew. Sustain. Energy Rev. 2020, 131, 109967. [Google Scholar] [CrossRef]
- Vögele, S.; Govorukha, K.; Mayer, P.; Rhoden, I.; Rübbelke, D.; Kuckshinrichs, W. Effects of a coal phase-out in Europe on reaching the UN Sustainable Development Goals. Environ. Dev. Sustain. 2023, 25, 879–916. [Google Scholar] [CrossRef]
- Shou, M.-H.; Wang, Z.-X.; Li, D.-D.; Wang, Y. Assessment of the air pollution emission reduction effect of the coal substitution policy in China: An improved grey modelling approach. Environ. Sci. Pollut. Res. 2020, 27, 34357–34368. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Lin, B. How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective. Energy 2021, 233, 121179. [Google Scholar] [CrossRef]
- Chen, H.; Chen, W. Potential impacts of coal substitution policy on regional air pollutants and carbon emission reductions for China’s building sector during the 13th Five-Year Plan period. Energy Policy 2019, 131, 281–294. [Google Scholar] [CrossRef]
- Niu, D.; Song, Z.; Xiao, X. Electric Power Substitution for Coal in China: Status Quo and SWOT Analysis. Renew. Sustain. Energy Rev. 2017, 70, 610–622. [Google Scholar] [CrossRef]
- Davison, N.; Gaxiola, J.B.; Gupta, D.; Garg, A.; Cockerill, T.; Tang, Y.; Yuan, X.; Ross, A. Potential Greenhouse Gas Mitigation for Converting High Moisture Food Waste into Bio-Coal from Hydrothermal Carbonisation in India, Europe and China. Energies 2022, 15, 1372. [Google Scholar] [CrossRef]
- Toktarova, A.; Karlsson, I.; Rootzén, J.; Göransson, L.; Odenberger, M.; Johnsson, F.; Toktarova, A. Pathways for Low-Carbon Transition of the Steel Industry—A Swedish Case Study. Energies 2020, 13, 3840. [Google Scholar] [CrossRef]
- Xie, C.; Du, K.; Zhao, Y.; Brandon, N.P. Possibilities of coal–gas substitution in East Asia: A comparison among China, Japan and South Korea. Nat. Gas Ind. B 2016, 3, 387–397. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Lee, M.-K.; Yoo, S.-H. Willingness to pay for replacing traditional energies with renewable energy in South Korea. Energy 2017, 128, 284–290. [Google Scholar] [CrossRef]
- Adler, D.B.; Jha, A.; Severnini, E. Considering the nuclear option: Hidden benefits and social costs of nuclear power in the U.S. since 1970. Resour. Energy Econ. 2020, 59. [Google Scholar] [CrossRef]
- Li, J.; Huang, J. The expansion of China’s solar energy: Challenges and policy options. Renew. Sustain. Energy Rev. 2020, 132, 110002. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Cai, J.; Baležentis, T.; Li, Y. The Impact of “Coal to Gas” Policy on Air Quality: Evidence from Beijing, China. Energies 2020, 13, 3876. [Google Scholar] [CrossRef]
- Zhao, J.; Duan, Y.; Liu, X. Study on the policy of replacing coal-fired boilers with gas-fired boilers for central heating based on the 3E system and the TOPSIS method: A case in Tianjin, China. Energy 2019, 189, 116206. [Google Scholar] [CrossRef]
- Wang, D.; Li, S.; He, S.; Gao, L. Coal to substitute natural gas based on combined coal-steam gasification and one-step methanation. Appl. Energy 2019, 240, 851–859. [Google Scholar] [CrossRef]
- Karellas, S.; Panopoulos, K.; Panousis, G.; Rigas, A.; Karl, J.; Kakaras, E. An evaluation of Substitute natural gas production from different coal gasification processes based on modeling. Energy 2012, 45, 183–194. [Google Scholar] [CrossRef]
- Ortner, A.; Totschnig, G.; Ortner, A.; Totschnig, G. The future relevance of electricity balancing markets in Europe—A 2030 case study. Energy Strat. Rev. 2019, 24, 111–120. [Google Scholar] [CrossRef]
- Farrokhseresht, M.; Slootweg, H.; Gibescu, M. Day-ahead bidding strategies of a distribution market operator in a coupled local and central market. Smart Energy 2021, 2. [Google Scholar] [CrossRef]
- Filimonova, I.; Nemov, V.; Komarova, A.; Mishenin, M.; Kozhevin, V. Relationship of renewable energy consumption to economic, environmental and institutional factors in Europe. Energy Rep. 2021, 7, 358–365. [Google Scholar] [CrossRef]
- Faia, R.; Soares, J.; Vale, Z.; Corchado, J. An Optimization Model for Energy Community Costs Minimization Considering a Local Electricity Market between Prosumers and Electric Vehicles. Electronics 2021, 10, 129. [Google Scholar] [CrossRef]
- Lang, B.; Dolan, R.; Kemper, J.; Northey, G. Prosumers in times of crisis: Definition, archetypes and implications. J. Serv. Manag. 2020, 32, 176–189. [Google Scholar] [CrossRef]
- de Villena, M.M.; Jacqmin, J.; Fonteneau, R.; Gautier, A.; Ernst, D. Network tariffs and the integration of prosumers: The case of Wallonia. Energy Policy 2021, 150, 112065. [Google Scholar] [CrossRef]
- Gimeno, J.; Llera-Sastresa, E.; Scarpellini, S. A Heuristic Approach to the Decision-Making Process of Energy Prosumers in a Circular Economy. Appl. Sci. 2020, 10, 6869. [Google Scholar] [CrossRef]
- Moyo, N. Environmental Concern and Purchase Intention of Electric Vehicles in the Eastern Part of China. Arch. Bus. Res. 2018. [CrossRef]
- Babangida, A.; Szemes, P.T. Electric Vehicle Modelling and Simulation of a Light Commercial Vehicle Using PMSM Propulsion. Hung. J. Ind. Chem. 2021, 49, 37–46. [Google Scholar] [CrossRef]
- Serowaniec, M. Sustainable Development Policy and Renewable Energy in Poland. Energies 2021, 14, 2244. [Google Scholar] [CrossRef]
- Pyka, I.; Nocoń, A. Responsible Lending Policy of Green Investments in the Energy Sector in Poland. Energies 2021, 14, 7298. [Google Scholar] [CrossRef]
- Stec, S.; Szymańska, E.J. Energy Innovation of Polish Local Governments. Energies 2022, 15, 1414. [Google Scholar] [CrossRef]
- Fernández-González, R.; Puime-Guillén, F.; Panait, M. Multilevel governance, PV solar energy, and entrepreneurship: The generation of green hydrogen as a fuel of renewable origin. Util. Policy 2022, 79, 101438. [Google Scholar] [CrossRef]
- Nagaj, R.; Korpysa, J. Impact of COVID-19 on the Level of Energy Poverty in Poland. Energies 2020, 13, 4977. [Google Scholar] [CrossRef]
- Karpinska, L.; Śmiech, S. Will energy transition in Poland increase the extent and depth of energy poverty? J. Clean. Prod. 2021, 328, 129480. [Google Scholar] [CrossRef]
- Karpinska, L.; Śmiech, S. Breaking the cycle of energy poverty. Will Poland make it? Energy Econ. 2021, 94, 105063. [Google Scholar] [CrossRef]
- Popescu, C.; Hysa, E.; Panait, M. Perspectives of Responsible Management in Today’s VUCA World. In Agile Management and VUCA-RR: Opportunities and Threats in Industry 4.0 towards Society 5.0; Akkaya, B., Guah, M.W., Jermsittiparsert, K., Bulinska-Stangrecka, H., Kaya, Y., Eds.; Emerald Publishing Limited: Bingley, UK, 2022; pp. 57–71. ISBN 978-1-80262-326-0. [Google Scholar]
- Malec, M. The prospects for decarbonisation in the context of reported resources and energy policy goals: The case of Poland. Energy Policy 2022, 161, 112763. [Google Scholar] [CrossRef]
- Leonard, M.D.; Michaelides, E.E.; Michaelides, D.N. Substitution of coal power plants with renewable energy sources—Shift of the power demand and energy storage. Energy Convers. Manag. 2018, 164, 27–35. [Google Scholar] [CrossRef]
- Figueiredo, R.; Nunes, P.; Meireles, M.; Madaleno, M.; Brito, M.C. Replacing coal-fired power plants by photovoltaics in the Portuguese electricity system. J. Clean. Prod. 2019, 222, 129–142. [Google Scholar] [CrossRef]
- Teodorović, D.; Janić, M. Transportation, Environment, and Society. In Transportation Engineering; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Milne, R.J.; Cotfas, L.-A.; Delcea, C. Minimizing health risks as a function of the number of airplane boarding groups. Transp. B 2022, 10, 901–922. [Google Scholar] [CrossRef]
- Delcea, C.; Cotfas, L.-A.; Trică, C.L.; Crăciun, L.; Molanescu, A.G. Modeling the Consumers Opinion Influence in Online Social Media in the Case of Eco-friendly Products. Sustainability 2019, 11, 1796. [Google Scholar] [CrossRef] [Green Version]
- Jigani, A.-I.; Delcea, C.; Ioanăș, C. Consumers’ Behavior in Selective Waste Collection: A Case Study Regarding the Determinants from Romania. Sustainability 2020, 12, 6527. [Google Scholar] [CrossRef]
- Delcea, C.; Crăciun, L.; Ioanăș, C.; Ferruzzi, G.; Cotfas, L.-A. Determinants of Individuals’ E-Waste Recycling Decision: A Case Study from Romania. Sustainability 2020, 12, 2753. [Google Scholar] [CrossRef] [Green Version]
- Abdulkadir, A.; Maryam Lawal, A.; Muhammad, T.I. Climate change and its implications on human existence in Nigeria: A review. Bayero J. Pure Appl. Sci. 2018, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Milne, R.J.; Delcea, C.; Cotfas, L.-A. Airplane boarding methods that reduce risk from COVID-19. Saf. Sci. 2021, 134, 105061. [Google Scholar] [CrossRef] [PubMed]
- Röck, M.; Saade, M.R.M.; Balouktsi, M.; Rasmussen, F.N.; Birgisdottir, H.; Frischknecht, R.; Habert, G.; Lützkendorf, T.; Passer, A. Embodied GHG emissions of buildings–The hidden challenge for effective climate change mitigation. Appl. Energy 2020, 258, 114107. [Google Scholar] [CrossRef]
- Androniceanu, A.; Georgescu, I. The Impact of CO2 Emissions and Energy Consumption on Economic Growth: A Panel Data Analysis. Energies 2023, 16, 1342. [Google Scholar] [CrossRef]
- Lorenzo-Sáez, E.; Oliver-Villanueva, J.-V.; Coll-Aliaga, E.; Lemus-Zúñiga, L.-G.; Lerma-Arce, V.; Reig-Fabado, A. Energy Efficiency and GHG Emissions Mapping of Buildings for Decision-Making Processes against Climate Change at the Local Level. Sustainability 2020, 12, 2982. [Google Scholar] [CrossRef] [Green Version]
- Mellah, A.; Abdelhafid, Y.; Benmalek, A. Energy Consumption Policy, GHG Emissions and Climate Change Impact in Algeria. J. Environ. Treat. Tech. 2019, 7, 306–315. [Google Scholar]
- Chowdhury, M.M.I.; Rahman, S.M.; Abubakar, I.R.; Aina, Y.A.; Hasan, M.A.; Khondaker, A.N. A review of policies and initiatives for climate change mitigation and environmental sustainability in Bangladesh. Environ. Dev. Sustain. 2021, 23, 1133–1161. [Google Scholar] [CrossRef]
- Pai, S.; Zerriffi, H.; Jewell, J.; Pathak, J. Solar has greater techno-economic resource suitability than wind for replacing coal mining jobs. Environ. Res. Lett. 2020, 15, 034065. [Google Scholar] [CrossRef]
- Hanto, J.; Krawielicki, L.; Krumm, A.; Moskalenko, N.; Löffler, K.; Hauenstein, C.; Oei, P.-Y. Effects of decarbonization on the energy system and related employment effects in South Africa. Environ. Sci. Policy 2021, 124, 73–84. [Google Scholar] [CrossRef]
2019 | Consumption | Generation | Coal_gen | Oil and Gas_gen | Hydro_gen | Nuclear_gen | Wind_gen | PV_gen | Biomass_gen | Exchange |
---|---|---|---|---|---|---|---|---|---|---|
Consumption | 1 | |||||||||
Generation | 0.754999 | 1 | ||||||||
Coal_gen | 0.52263 | 0.354775 | 1 | |||||||
Oil and Gas_gen | 0.567045 | 0.375932 | 0.425303 | 1 | ||||||
Hydro_gen | 0.182936 | 0.386768 | −0.02498 | −0.43178 | 1 | |||||
Nuclear_gen | 0.174067 | 0.108548 | 0.205406 | 0.432251 | −0.53019 | 1 | ||||
Wind_gen | 0.118986 | 0.455295 | −0.20786 | 0.084702 | −0.24133 | 0.114054 | 1 | |||
PV_gen | 0.17712 | 0.180904 | −0.06517 | −0.16565 | 0.169873 | −0.11078 | −0.11567 | 1 | ||
Biomass_gen | 0.449508 | 0.239664 | 0.411848 | 0.698678 | −0.52954 | 0.551382 | 0.171153 | −0.09841 | 1 | |
Exchange | 0.165864 | −0.02581 | −0.04925 | 0.078088 | −0.05825 | 0.008436 | −0.01483 | 0.02241 | 0.026157 | 1 |
2020 | Consumption | Generation | Coal_gen | Oil and Gas_gen | Hydro_gen | Nuclear_gen | Wind_gen | PV_gen | Biomass_gen | Exchange |
---|---|---|---|---|---|---|---|---|---|---|
Consumption | 1 | |||||||||
Generation | 0.825083 | 1 | ||||||||
Coal_gen | 0.583784 | 0.549967 | 1 | |||||||
Oil and Gas_gen | 0.66631 | 0.65791 | 0.697599 | 1 | ||||||
Hydro_gen | 0.463647 | 0.356033 | 0.137276 | 0.096338 | 1 | |||||
Nuclear_gen | 0.085489 | 0.056769 | −0.09498 | 0.088235 | −0.48591 | 1 | ||||
Wind_gen | 0.041043 | 0.436442 | −0.14321 | −0.04993 | −0.34735 | 0.189985 | 1 | |||
PV_gen | 0.12561 | 0.087586 | −0.12801 | −0.17298 | 0.143236 | −0.16636 | −0.08603 | 1 | ||
Biomass_gen | 0.471238 | 0.40893 | 0.295541 | 0.460462 | −0.15052 | 0.553423 | 0.16535 | −0.22169 | 1 | |
Exchange | 0.32365 | 0.091777 | 0.125158 | 0.098427 | 0.130642 | 0.112006 | −0.14479 | 0.010451 | 0.180369 | 1 |
2021 | Consumption | Generation | Coal_gen | Oil and Gas_gen | Hydro_gen | Nuclear_gen | Wind_gen | PV_gen | Biomass_gen | Exchange |
---|---|---|---|---|---|---|---|---|---|---|
Consumption | 1 | |||||||||
Generation | 0.719558 | 1 | ||||||||
Coal_gen | 0.436387 | 0.291136 | 1 | |||||||
Oil and Gas_gen | 0.58185 | 0.409437 | 0.326192 | 1 | ||||||
Hydro_gen | 0.369665 | 0.561788 | 0.051653 | −0.14258 | 1 | |||||
Nuclear_gen | 0.110228 | −0.01885 | 0.07934 | 0.275449 | −0.4583 | 1 | ||||
Wind_gen | 0.122566 | 0.550172 | −0.14308 | 0.069502 | −0.06679 | −0.04133 | 1 | |||
PV_gen | 0.201324 | 0.158353 | 0.023534 | −0.17176 | 0.187405 | −0.10348 | −0.16831 | 1 | ||
Biomass_gen | 0.317228 | 0.357262 | −0.01 | 0.193739 | 0.286445 | −0.01796 | 0.132848 | −0.03331 | 1 | |
Exchange | 0.215344 | −0.0135 | −0.00788 | 0.132373 | −0.02943 | −0.01787 | −0.05167 | −0.00961 | −0.01011 | 1 |
2022 | Consumption | Generation | Coal_gen | Oil and Gas_gen | Hydro_gen | Nuclear_gen | Wind_gen | PV_gen | Biomass_gen | Exchange |
---|---|---|---|---|---|---|---|---|---|---|
Consumption | 1 | |||||||||
Generation | 0.721791 | 1 | ||||||||
Coal_gen | 0.263307 | 0.117945 | 1 | |||||||
Oil and Gas_gen | 0.42723 | 0.374905 | 0.082189 | 1 | ||||||
Hydro_gen | 0.417734 | 0.368431 | 0.279286 | 0.028125 | 1 | |||||
Nuclear_gen | 0.281341 | 0.336698 | −0.11292 | 0.095203 | −0.31325 | 1 | ||||
Wind_gen | 0.192882 | 0.648797 | −0.2811 | −0.07477 | −0.17647 | 0.259488 | 1 | |||
PV_gen | 0.230318 | 0.180934 | 0.027002 | −0.10864 | 0.17804 | −0.14369 | −0.10035 | 1 | ||
Biomass_gen | 0.429314 | 0.362305 | −0.01691 | 0.182836 | 0.101654 | 0.233664 | 0.24608 | −0.1063 | 1 | |
Exchange | 0.279388 | −0.0403 | 0.018273 | −0.01893 | 0.032269 | 0.061683 | −0.08281 | −0.03774 | 0.151705 | 1 |
2400 MW Replacement Case | Pi Wind [MW] | Pi PV [MW] | Storage [MW] |
---|---|---|---|
Scenario1 | 8685 | 0 | 0 |
Scenario2 | 4342.5 | 4089.3 | 15,486 |
600 MW Replacement Case | Pi Wind [MW] | Pi PV [MW] | Storage [MW] |
---|---|---|---|
Scenario1 | 2171.25 | 0 | 0 |
Scenario2 | 1085.62 | 1022.32 | 3871.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bâra, A.; Oprea, S.-V.; Oprea, N. How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania. Int. J. Environ. Res. Public Health 2023, 20, 5115. https://doi.org/10.3390/ijerph20065115
Bâra A, Oprea S-V, Oprea N. How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania. International Journal of Environmental Research and Public Health. 2023; 20(6):5115. https://doi.org/10.3390/ijerph20065115
Chicago/Turabian StyleBâra, Adela, Simona-Vasilica Oprea, and Niculae Oprea. 2023. "How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania" International Journal of Environmental Research and Public Health 20, no. 6: 5115. https://doi.org/10.3390/ijerph20065115
APA StyleBâra, A., Oprea, S. -V., & Oprea, N. (2023). How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania. International Journal of Environmental Research and Public Health, 20(6), 5115. https://doi.org/10.3390/ijerph20065115