Cardiovascular Responses to Eccentric Cycling Based on Perceived Exertion Compared to Concentric Cycling, Effect of Pedaling Rate, and Sex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Procedures
2.3. Experimental Session
2.4. Ergometers
2.5. Cardiovascular and Respiratory Evaluations
2.6. Data and Statistical Analyses
3. Results
3.1. Rating of Perceived Exertion
3.2. Anthropometrics
3.3. Cardiovascular Responses
3.4. Metabolic Responses
4. Discussion
Strenghts and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindstedt, S.L.; LaStayo, P.C.; Reich, T.E. When active muscles lengthen: Properties and consequences of eccentric contractions. News Physiol. Sci. 2001, 16, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.C.; Bigland, B.; Ritchie, J.M. The physiological cost of negative work. J. Physiol. 1952, 117, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Isner-Horobeti, M.E.; Dufour, S.P.; Vautravers, P.; Geny, B.; Coudeyre, E.; Richard, R. Eccentric Exercise Training: Modalities, Applications and Perspectives. Sports Med. 2013, 43, 483–512. [Google Scholar] [CrossRef] [PubMed]
- Hoppeler, H. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality. Front. Physiol. 2016, 7, 483. [Google Scholar] [CrossRef] [PubMed]
- Nickel, R.; Troncoso, F.; Flores, O.; Gonzalez-Bartholin, R.; Mackay, K.; Diaz, O.; Jalon, M.; Peñailillo, L. Physiological response to eccentric and concentric cycling in patients with chronic obstructive pulmonary disease. Appl. Physiol. Nutr. Metab. 2020, 45, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Inostroza, M.; Valdés, O.; Tapia, G.; Núñez, O.; Kompen, M.J.; Nosaka, K.; Peñailillo, L. Effects of eccentric vs concentric cycling training on patients with moderate COPD. Eur. J. Appl. Physiol. 2022, 122, 489–502. [Google Scholar] [CrossRef]
- LaStayo, P.; Marcus, R.; Dibble, L.; Frajacomo, F.; Lindstedt, S. Eccentric exercise in rehabilitation: Safety feasibility, and application. J. Appl. Physiol. 2014, 116, 1426–1434. [Google Scholar] [CrossRef]
- Dufour, S.P.; Lampert, E.; Doutreleau, S.; Lonsdorfer-Wolf, E.; Billat, V.L.; Piquard, F.; Richard, R. Eccentric cycle exercise: Training application of specific circulatory adjustments. Med. Sci. Sports Exerc. 2004, 36, 1900–1906. [Google Scholar] [CrossRef]
- Barreto, R.V.; de Lima, L.C.R.; Denadai, B.S. Moving forward with backward pedaling: A review on eccentric cycling. Eur. J. Appl. Physiol. 2021, 121, 381–407. [Google Scholar] [CrossRef]
- Beaven, C.M.; Willis, S.J.; Cook, C.J.; Holmberg, H.C. Physiological comparison of concentric and eccentric arm cycling in males and females. PLoS ONE 2014, 9, e112079. [Google Scholar] [CrossRef]
- Hedayatpour, N.; Falla, D. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training. Biomed. Res. Int. 2015, 2015, 193741. [Google Scholar] [CrossRef]
- Peñailillo, L.; Mackay, K.; Abbiss, C.R. Rating of perceived exertion during concentric and eccentric cycling: Are we measuring effort or exertion? Int. J. Sports Physiol. Perform. 2018, 13, 517–523. [Google Scholar] [CrossRef]
- Barreto, R.V.; de Lima, L.C.R.; Borszcz, F.K.; de Lucas, R.D.; Denadai, B.S. Chronic Adaptations to Eccentric Cycling Training: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 2861. [Google Scholar] [CrossRef]
- Perrey, S.; Betik, A.; Candau, R.; Rouillon, J.D.; Hughson, R.L. Comparison of oxygen uptake kinetics during concentric and eccentric cycle exercise. J. Appl. Physiol. 2001, 91, 2135–2142. [Google Scholar] [CrossRef]
- Rakobowchuk, M.; Isacco, L.; Ritter, O.; Represas, A.G.; Bouhaddi, M.; Degano, B.; Tordi, N.; Mourot, L. Muscle Oxygenation Responses to Low-intensity Steady Rate Concentric and Eccentric Cycling. Int. J. Sports Med. 2018, 39, 173–180. [Google Scholar] [CrossRef]
- Ritter, O.; Isacco, L.; Rakobowchuk, M.; Tordi, N.; Laroche, D.; Bouhaddi, M.; Degano, B.; Mourot, L. Cardiorespiratory and Autonomic Nervous System Responses to Prolonged Eccentric Cycling. Int. J. Sports Med. 2019, 40, 453–461. [Google Scholar] [CrossRef]
- Lipski, M.; Abbiss, C.R.; Nosaka, K. Oxygen consumption, rate of perceived exertion and enjoyment in high-intensity interval eccentric cycling. Eur. J. Sport Sci. 2018, 18, 1390–1397. [Google Scholar] [CrossRef]
- Lipski, M.; Abbiss, C.R.; Nosaka, K. Cardio-pulmonary responses to incremental eccentric and concentric cycling tests to task failure. Eur. J. Appl. Physiol. 2018, 118, 947–957. [Google Scholar] [CrossRef]
- Wang, H.; Ji, Z.; Jiang, G.; Liu, W.; Jiao, X. Correlation among proprioception, muscle strength, and balance. J. Phys. Ther. Sci. 2016, 28, 3468–3472. [Google Scholar] [CrossRef]
- Hotfiel, T.; Freiwald, J.; Hoppe, M.W.; Lutter, C.; Forst, R.; Grim, C.; Bloch, W.; Hüttel, M.; Heiss, R. Advances in Delayed-Onset Muscle Soreness (DOMS): Part I: Pathogenesis and Diagnostics. Sportverletzung-Sportschaden 2018, 32, 243–250. [Google Scholar] [CrossRef]
- Lieber, R.L. Biomechanical response of skeletal muscle to eccentric contractions. J. Sport Heal. Sci. 2018, 7, 294–309. [Google Scholar] [CrossRef]
- Lin, H.F.; Chou, C.C.; Cheng, H.M.; Tanaka, H. Delayed Onset Vascular Stiffening Induced by Eccentric Resistance Exercise and Downhill Running. Clin. J. Sport Med. 2017, 27, 369–374. [Google Scholar] [CrossRef]
- Lee, J.G.; Joo, S.J. Arterial stiffness and cardiovascular risk. Korean J. Intern. Med. 2019, 34, 504. [Google Scholar] [CrossRef]
- Elmer, S.J.; McDaniel, J.; Martin, J.C. Alterations in neuromuscular function and perceptual responses following acute eccentric cycling exercise. Eur. J. Appl. Physiol. 2010, 110, 1225–1233. [Google Scholar] [CrossRef]
- LaStayo, P.C.; Woolf, J.M.; Lewek, M.D.; Snyder-Mackler, L.; Reich, T.; Lindstedt, S.L. Eccentric Muscle Contractions: Their Contribution to Injury, Prevention, Rehabilitation, and Sport. J. Orthop. Sports Phys. Ther. 2003, 33, 557–571. [Google Scholar] [CrossRef]
- Nakamura, N.; Muraoka, I. Effects of Greater Central Arterial Stiffness on Cardiovagal Baroreflex Sensitivity in Resistance-Trained Men. Sport Med.-Open 2021, 7, 77. [Google Scholar] [CrossRef]
- Okada, Y.; Galbreath, M.M.; Shibata, S.; Jarvis, S.S.; Vangundy, T.B.; Meier, R.L.; Vongpatanasin, W.; Levine, B.D.; Fu, Q. Relationship between sympathetic baroreflex sensitivity and arterial stiffness in elderly men and women. Hypertens 2012, 59, 98–104. [Google Scholar] [CrossRef]
- Laroche, D.; Joussain, C.; Espagnac, C.; Morisset, C.; Tordi, N.; Gremeaux, V.; Casillas, J.M. Is it possible to individualize intensity of eccentric cycling exercise from perceived exertion on concentric test? Arch. Phys. Med. Rehabil. 2013, 94, 1621–1627.e1. [Google Scholar] [CrossRef]
- Casillas, J.M.; Besson, D.; Hannequin, A.; Gremeaux, V.; Morisset, C.; Tordi, N.; Laurent, Y.; Laroche, D. Effects of an eccentric training personalized by a low rate of perceived exertion on the maximal capacities in chronic heart failure: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2016, 52, 159–168. [Google Scholar]
- Clos, P.; Mater, A.; Laroche, D.; Lepers, R. Concentric versus eccentric cycling at equal power output or effort perception: Neuromuscular alterations and muscle pain. Scand. J. Med. Sci. Sports 2022, 32, 45–59. [Google Scholar] [CrossRef]
- Boone, J.; Barstow, T.J.; Celie, B.; Prieur, F.; Bourgois, J. The impact of pedal rate on muscle oxygenation, muscle activation and whole-body VO₂ during ramp exercise in healthy subjects. Eur. J. Appl. Physiol. 2015, 115, 57–70. [Google Scholar] [CrossRef]
- Shastri, L.; Alkhalil, M.; Forbes, C.; El-Wadi, T.; Rafferty, G.; Ishida, K.; Formenti, F. Skeletal muscle oxygenation during cycling at different power output and cadence. Physiol. Rep. 2019, 7, e13963. [Google Scholar] [CrossRef]
- Hamer, M.; Boutcher, Y.N.; Boutcher, S.H. Effect of pedal rate and power output on rating of perceived exertion during cycle ergometry exercise. Percept. Mot. Ski. 2005, 101, 827–834. [Google Scholar] [CrossRef]
- Wells, R.; Morrissey, M.; Hughson, R. Internal work and physiological responses during concentric and eccentric cycle ergometry. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 295–301. [Google Scholar] [CrossRef]
- Mitchell, R.A.; Boyle, K.G.; Ramsook, A.H.; Puyat, J.H.; Henderson, W.R.; Koehle, M.S.; Guenette, J.A. The Impact of Cycling Cadence on Respiratory and Hemodynamic Responses to Exercise. Med. Sci. Sports Exerc. 2019, 51, 1727–1735. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Park, J.W. Different cortical activation patterns during voluntary eccentric and concentric muscle contractions: An fMRI study. NeuroRehabilitation 2011, 29, 253–259. [Google Scholar] [CrossRef]
- Chapman, D.; Newton, M.; Sacco, P.; Nosaka, K. Greater muscle damage induced by fast versus slow velocity eccentric exercise. Int. J. Sports Med. 2006, 27, 591–598. [Google Scholar] [CrossRef]
- Ueda, H.; Tsuchiya, Y.; Ochi, E. Fast-Velocity Eccentric Cycling Exercise Causes Greater Muscle Damage Than Slow Eccentric Cycling. Front. Physiol. 2020, 11, 596640. [Google Scholar] [CrossRef]
- Appelman, Y.; van Rijn, B.B.; ten Haaf, M.E.; Boersma, E.; Peters, S.A.E. Sex differences in cardiovascular risk factors and disease prevention. Atherosclerosis 2015, 241, 211–218. [Google Scholar] [CrossRef]
- Stachenfeld, N.S. Including women in research. It’s necessary, and really not so hard to do. Exp. Physiol. 2018, 103, 1296–1297. [Google Scholar] [CrossRef]
- Diaz-Canestro, C.; Montero, D. The Impact of Sex on Left Ventricular Cardiac Adaptations to Endurance Training: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 1501–1513. [Google Scholar] [CrossRef]
- Reckelhoff, J.F.; Reckelhoff, J.F. Gender Differences in the Regulation of Blood Pressure. Hypertension 2001, 37, 1199–1208. [Google Scholar] [CrossRef]
- Koenig, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef]
- Schmitt, J.A.M.; Joyner, M.J.; Charkoudian, N.; Wallin, B.G.; Hart, E.C. Sex differences in α-adrenergic support of blood pressure. Clin. Auton. Res. 2010, 20, 271–275. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V.; Kararigas, G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol. Rev. 2017, 97, 1–37. [Google Scholar] [CrossRef]
- Christou, D.D.; Jones, P.P.; Jordan, J.; Diedrich, A.; Robertson, D.; Seals, D.R. Women have lower tonic autonomic support of arterial blood pressure and less effective baroreflex buffering than men. Circulation 2005, 111, 494–498. [Google Scholar] [CrossRef]
- Bassareo, P.P.; Crisafulli, A. Gender Differences in Hemodynamic Regulation and Cardiovascular Adaptations to Dynamic Exercise. Curr. Cardiol. Rev. 2020, 16, 65–72. [Google Scholar] [CrossRef]
- Barnes, J.N.; Fu, Q. Sex-specific ventricular and vascular adaptations to exercise. Adv. Exp. Med. Biol. 2018, 1065, 329–346. [Google Scholar] [CrossRef]
- Pincivero, D.M.; Polen, R.R.; Byrd, B.N. Gender and contraction mode on perceived exertion. Int. J. Sports Med. 2010, 31, 359–363. [Google Scholar] [CrossRef]
- Harriss, D.J.; Atkinson, G. Ethical Standards in Sport and Exercise Science Research: 2016 Update. Int. J. Sports Med. 2015, 36, 1121–1124. [Google Scholar] [CrossRef]
- Besson, D.; Joussain, C.; Gremeaux, V.; Morisset, C.; Laurent, Y.; Casillas, J.M.; Laroche, D. Eccentric training in chronic heart failure: Feasibility and functional effects. Results of a comparative study. Ann. Phys. Rehabil. Med. 2013, 56, 30–40. [Google Scholar] [CrossRef]
- Borg, E.; Borg, G. A comparison of AME and CR100 for scaling perceived exertion. Acta Psychol. 2002, 109, 157–175. [Google Scholar] [CrossRef]
- Sugawara, J.; Tanabe, T.; Miyachi, M.; Yamamoto, K.; Takahashi, K.; Iemitsu, M.; Otsuki, T.; Homma, S.; Maeda, S.; Ajisaka, R.; et al. Non-invasive assessment of cardiac output during exercise in healthy young humans: Comparison between Modelflow method and Doppler echocardiography method. Acta Physiol. Scand. 2003, 179, 361–366. [Google Scholar] [CrossRef]
- Hill, L.B.K.; Sollers, J.J.; Thayer, J.F. Resistance reconstructed: Estimation of total peripheral resistance from computationally-derived cardiac output. Biomed. Sci. Instrum. 2013, 49, 216. [Google Scholar]
- Kipp, S.; Byrnes, W.C.; Kram, R. Calculating metabolic energy expenditure across a wide range of exercise intensities: The equation matters. Appl. Physiol. Nutr. Metab. 2018, 43, 639–642. [Google Scholar] [CrossRef]
- Jeukendrup, A.E.; Wallis, G.A. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int. J. Sport. Med. Suppl. 2005, 26, S28–S37. [Google Scholar] [CrossRef]
- Belli, A.; Hintzy, F. Influence of pedalling rate on the energy cost of cycling in humans. Eur. J. Appl. Physiol. 2002, 88, 158–162. [Google Scholar] [CrossRef]
- Mater, A.; Boly, A.; Assadi, H.; Martin, A.; Lepers, R. Effect of Cadence on Physiological and Perceptual Responses during Eccentric Cycling at Different Power Outputs. Med. Sci. Sports Exerc. 2023, 55, 1105–1113. [Google Scholar] [CrossRef]
- Peñailillo, L.; Blazevich, A.J.; Nosaka, K. Factors contributing to lower metabolic demand of eccentric compared with concentric cycling. J. Appl. Physiol. 2017, 123, 884–893. [Google Scholar] [CrossRef]
- Green, D.J.; Thomas, K.; Ross, E.Z.; Green, S.C.; Pringle, J.S.M.; Howatson, G. Torque, power and muscle activation of eccentric and concentric isokinetic cycling. J. Electromyogr. Kinesiol. 2018, 40, 56–63. [Google Scholar] [CrossRef] [PubMed]
Parameters | Data | Simple Effect | Interactions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CONsl | CONno | ECCsl | ECCno | Modality * | Speed ⊙ | Sex ϕ | Modality × Speed | Modality × Sex | Speed × Sex | Modality × Speed × Sex | ||
Heart Rate | ♀ | 92.56 ± 9.48 | 113.74 ± 19.22 | 93.67 ± 9.92 | 96.72 ± 8.78 | p < 0.001 d = 0.590 | p < 0.001 d = 0.790 | p = 0.096 d = 0.590 | p < 0.001 Increase only on CON while increasing speed | p = 0.955 | p = 0.299 | p = 0.237 |
♂ | 88.32 ± 10.93 | 102.85 ± 13.72 | 86.10 ± 14.03 | 89.65 ± 16.51 | ||||||||
Cardiac Index L/min/m2 | ♀ | 2.729 ± 0.640 | 3.945 ± 1.348 | 2.826 ± 0.737 | 3.062 ± 0.950 | p = 0.004 d = 0.553 | p < 0.001 d = 0.662 | p = 0.002 d = 1.081 | p < 0.001 Increase only on CON while increasing speed | p = 0.811 | p = 0.035 Increase only on CON while increasing speed | p = 0.108 |
♂ | 2.285 ± 0.395 | 2.2792 ± 0.644 | 2.045 ± 0.497 | 2.118 ± 0.478 | ||||||||
Mean Arterial Pressure mmHg | ♀ | 93.52 ± 25.32 | 99.63 ± 32.66 | 101.57 ± 16.19 | 100.91 ± 18.04 | p = 0.127 d = 0.291 | p = 0.075 d = 0.184 | p = 0.036 d = 0.696 | p = 0.285 | p = 0.547 | p = 0.495 | p = 0.729 |
♂ | 105.87 ± 14.07 | 113.26 ± 14.86 | 111.66 ± 15.07 | 115.73 ± 16.66 | ||||||||
Peripheral Resistances | ♀ | 22.62 ± 10.06 | 18.17 ± 13.04 | 23.82 ± 9.00 | 22.72 ± 10.81 | p < 0.001 d = 0.594 | p = 0.009 d = 0.334 | p = 0.032 d = 0.736 | p = 0.057 Decrease only on CON while increasing speed | p = 0.678 | p = 0.202 | p = 0.621 |
♂ | 24.94 ± 5.79 | 22.28 ± 5.92 | 30.23 ± 8.69 | 30.14 ± 9.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faivre-Rampant, V.; Rakobowchuk, M.; Tordi, N.; Mourot, L. Cardiovascular Responses to Eccentric Cycling Based on Perceived Exertion Compared to Concentric Cycling, Effect of Pedaling Rate, and Sex. Int. J. Environ. Res. Public Health 2024, 21, 59. https://doi.org/10.3390/ijerph21010059
Faivre-Rampant V, Rakobowchuk M, Tordi N, Mourot L. Cardiovascular Responses to Eccentric Cycling Based on Perceived Exertion Compared to Concentric Cycling, Effect of Pedaling Rate, and Sex. International Journal of Environmental Research and Public Health. 2024; 21(1):59. https://doi.org/10.3390/ijerph21010059
Chicago/Turabian StyleFaivre-Rampant, Victorien, Mark Rakobowchuk, Nicolas Tordi, and Laurent Mourot. 2024. "Cardiovascular Responses to Eccentric Cycling Based on Perceived Exertion Compared to Concentric Cycling, Effect of Pedaling Rate, and Sex" International Journal of Environmental Research and Public Health 21, no. 1: 59. https://doi.org/10.3390/ijerph21010059
APA StyleFaivre-Rampant, V., Rakobowchuk, M., Tordi, N., & Mourot, L. (2024). Cardiovascular Responses to Eccentric Cycling Based on Perceived Exertion Compared to Concentric Cycling, Effect of Pedaling Rate, and Sex. International Journal of Environmental Research and Public Health, 21(1), 59. https://doi.org/10.3390/ijerph21010059