A Narrative Review of High Throughput Wastewater Sample Processing for Infectious Disease Surveillance: Challenges, Progress, and Future Opportunities
Abstract
:1. Introduction
1.1. Advances in Understanding the Key Factors for Wastewater-Based Epidemiology
1.1.1. Determining the Scale of Sampling
1.1.2. Sampling Techniques Adopted for Wastewater-Based Surveillance
1.1.3. Comparison of Different Sampling Methods—Passive Sampling
1.1.4. Composite Sampling and Grab Sampling
1.1.5. Shelf Life and the Importance of Turnaround Time
1.2. Advancements in Analytical Techniques for Detection of Pathogen from Wastewater
1.2.1. PCR Based Detection Method
1.2.2. Wastewater Concentration for Enhanced Biomarker Detection
1.2.3. Nucleic Acid Extraction from Wastewater Sample
1.2.4. Process Automation for Wastewater Analysis
1.2.5. The Prospects of Wastewater-Based Epidemiology (WBE)
Application of Machine Learning for Outbreak Prediction
1.2.6. The Financial Aspects of WBE
2. Challenges in Processing Wastewater and Predictability of Disease Outbreak
- Community-level wastewater surveillance will not capture communities or facilities served by de-centralized wastewater treatment;
- Precise mapping of the sewer network is required to estimate the infection load in the catchment area;
- A balance between accessibility, cost, and sensitivity is yet to be derived for wastewater sampling;
- The effects of temperature and pH on various wastewater matrix are factors to be considered before sampling;
- A standard protocol for sampling at different scales is yet to be established.
2.1. Varying Limit of Detection
- 6.
- Low infection levels in the community may not be captured by wastewater surveillance [161];
- 7.
- During the SARS-CoV-2 pandemic, researchers have been able to estimate fecal shedding rates of the virus; however, this has yet to be established for other pathogens.
2.2. Hurdles in Correlation with Public Health Data
- 8.
- Population dynamics and effects of the floating population affect the accuracy of the WBE;
- 9.
- The search for the optimal surrogate to validate pre-treatment procedures has become an additional obstacle. A surrogate that is stable during wastewater processing, has no toxicity, possesses similar structural features to the target pathogen, and is unaffected by the wastewater matrices [162] is needed;
- 10.
- The inability of qPCR data to provide data on the virus’s lifecycle represents a significant obstacle. Therefore, it is essential to investigate the survivability of SARS-CoV-2 in wastewater samples and their half-life to comprehend the virus’s transmission between various environmental compartments;
- 11.
- Challenges in correlating, sharing, and interpreting routine wastewater surveillance data across different agencies, such as policymakers and public health officials, limit the full potential of wastewater-based epidemiology (WBE);
- 12.
- Establishing a link between pathogen detection and the clinical impact or location of cases is often unclear;
- 13.
- The lack of updated standardized testing methods poses a challenge, as current approaches are often adapted from clinical diagnostics, which are yet to be validated for wastewater testing.
2.3. Complex Wastewater Matrix and Varying Environmental Conditions
- 14.
- 15.
- WBE is not a comprehensive solution for the monitoring of all the circulating pathogens; the limits and drawbacks are to be considered. There is a lack of trained personnel in wastewater surveillance of infectious disease; in most cases, personnel trained in clinical laboratories are utilized for WBE.
3. Limitation of This Study
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thomas, K.V.; Bijlsma, L.; Castiglioni, S.; Covaci, A.; Emke, E.; Grabic, R.; Hernandez, F.; Karolak, S.; Kasprzyk-Hordern, B.; Lindberg, R.H.; et al. Comparing illicit drug use in 19 European cities through sewage analysis. Sci. Total Environ. 2012, 432, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Baz-Lomba, J.A.; Salvatore, S.; Gracia-Lor, E.; Bade, R.; Castiglioni, S.; Castrignanò, E.; Causanilles, A.; Hernandez, F.; Kasprzyk-Hordern, B.; Kinyua, J.; et al. Comparison of pharmaceutical, illicit drug, alcohol, nicotine and caffeine levels in wastewater with sale, seizure and consumption data for 8 European cities. BMC Public Health 2016, 16, 1035. [Google Scholar] [CrossRef] [PubMed]
- Kilaru, P.; Hill, D.; Anderson, K.; Collins, B.M.; Green, H.; Kmush, L.B.; Larsen, D.A.L. Wastewater surveillance for infectious disease: A systematic review. Am. J. Epidemiol. 2023, 192, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Tulchinsky, T.H. Chapter 5, John Snow, cholera, the Broad Street pump; waterborne diseases then and now. In Case Studies in Public Health; Academic Press: Cambridge, MA, USA, 2018; pp. 77–99. [Google Scholar] [CrossRef]
- Metcalf, T.G.; Melnick, J.L.; Estes, M.K. Environmental virology: From detection of virus in sewage and water by isolation to identification by molecular biology—A trip of over 50 years. Annu. Rev. Microbiol. 1995, 49, 461–487. [Google Scholar] [CrossRef]
- Jiang, X.; Estes, M.K.; Metcalf, T.G. Detection of hepatitis A virus by hybridization with single-stranded RNA probes. Appl. Environ. Microbiol. 1987, 53, 2487–2495. [Google Scholar] [CrossRef]
- Heijnen, L.; Medema, G. Surveillance of influenza A and the pandemic influenza A (H1N1) 2009 in sewage and surface water in the Netherlands. J. Water Health 2011, 9, 434–442. [Google Scholar] [CrossRef]
- Lee, D.Y.; Shannon, K.; Beaudett, L.A. Detection of bacterial pathogens in municipal wastewater using an oligonucleotide microarray and real-time quantitative PCR. J. Microbiol. Methods 2006, 65, 453–467. [Google Scholar] [CrossRef]
- Lépesová, K.; Kraková, L.; Pangallo, D.; Medveďová, A.; Olejníková, P.; Mackuľak, T.; Tichý, J.; Grabic, R.; Birošová, L. Prevalence of antibiotic-resistant coliform bacteria, Enterococcus spp. and Staphylococcus spp. in wastewater sewerage biofilm. J. Glob. Antimicrob. Resist. 2018, 14, 145–151. [Google Scholar] [CrossRef]
- Fong, T.T.; Phanikumar, M.S.; Xagoraraki, I.; Rose, J.B. Quantitative Detection of Human Adenoviruses in Wastewater and Combined Sewer Overflows Influencing a Michigan River. Appl. Environ. Microbiol. 2010, 76, 715–723. [Google Scholar] [CrossRef]
- Abdel Massih, A.; Kamel, A.; Zaki, A.M.; Aboudeif, A.; Emad, C.; Ramadan, D.; Gaber, H.; Bastorous, H.; Shaker, M.; Salah, N.; et al. Revisiting the overlooked role of recycled sewage water in high-income countries in adenoviral outbreaks such as the “2022 pediatric hepatitis’ outbreak”. Egypt. Pediatr. Assoc. Gaz. 2022, 70, 22. [Google Scholar] [CrossRef]
- Hoque, S.A.; Saito, H.; Akino, W.; Kotaki, T.; Okitsu, S.; Onda, Y.; Kobayashi, T.; Hossian, T.; Khamrin, P.; Motomura, K.; et al. The Emergence and Widespread Circulation of Enteric Viruses Throughout the COVID-19 Pandemic: A Wastewater-Based Evidence. Food Environ. Virol. 2023, 15, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Boehm, A.B.; Hughes, B.; Duong, D.; Chan-Herur, V.; Buchman, A.; Wolfe, M.K.; White, B.J. Wastewater concentrations of human influenza, metapneumovirus, parainfluenza, respiratory syncytial virus, rhinovirus, and seasonal coronavirus nucleic-acids during the COVID-19 pandemic: A surveillance study. Lancet Microbe 2023, 4, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.C.; Li, X.F.; Deng, Y.Q.; Tong, Y.G.; Qin, C.F. Excretion of infectious Zika virus in urine. Lancet Infect. Dis. 2016, 16, 641–642. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Marr, L.C. Aerosolization of Ebola Virus Surrogates in Wastewater Systems. Environ. Sci. Technol. 2017, 51, 2669–2675. [Google Scholar] [CrossRef]
- Bibby, K.; Fischer, R.J.; Casson, L.W.; Stachler, E.; Haas, C.N.; Munster, V.J. Persistence of Ebola Virus in Sterilized Wastewater. Environ. Sci. Technol. Lett. 2015, 2, 245–249. [Google Scholar] [CrossRef]
- Snow, J. On the Mode of Communication of Cholera. Edinb. Med. J. 1856, 1, 668–670. [Google Scholar]
- Wilson, W.J. Isolation of Enteric Bacilli from Sewage and water and its bearing on epidemiology. Br. Med. J. 1933, 2, 560–562. [Google Scholar] [CrossRef]
- Paul, J.R.; Trask, J.D. The virus of poliomyelitis in stools and sewage. JAMA 1941, 116, 493. [Google Scholar] [CrossRef]
- Neefe, J.R.; Stokes, J., Jr. Epidemic of infectious hepatitis apparently due to water borne agent: Epidemiologic observations and transmission experiments in human volunteers. JAMA 1945, 128, 1063–1075. [Google Scholar] [CrossRef]
- Moore, B. The detection of paratyphoid carriers in towns by means of sewage examination. Mon. Bull. Minist. Health Public Health Lab. Serv. 1948, 7, 241–248. [Google Scholar]
- Clark, E.M.; Knowles, D.S.; Shimada, F.T.; Rhodes, A.J.; Ritchie, R.C.; Donohue, W.L. Coxsackie virus in urban sewage, Recovery of virus in season of low incidence of reported poliomyelitis. Can. J. Public Health 1951, 42, 103–107. [Google Scholar] [PubMed]
- Foy, H.M.; Cooney, M.K.; Hatlen, J.B. Adenovirus type 3 epidemic associated with intermittent chlorination of a swimming pool. Arch. Environ. Health 1968, 17, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, J. Detection of Rota virus in Sewage. Appl. Environ. Microbiol. 1981, 41, 1043–1045. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.W.; Gary, G.W.; Greenberg, H.B. Norwalk-related viral gastroenteritis due to contaminated drinking water. Am. J. Epidemiol. 1981, 114, 584–592. [Google Scholar] [CrossRef]
- Wang, X.W.; Li, J.S.; Guo, T.K.; Zhen, B.; Kong, Q.X.; Yi, B.; Li, Z.; Song, N.; Jin, M.; Xiao, W.J. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th Hospital of the Chinese People’s Liberation Army. Water Sci. Technol. 2005, 52, 213–221. [Google Scholar] [CrossRef]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- Sims, N.; Kasprzyk-Hordern, B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020, 139, 105689. [Google Scholar] [CrossRef]
- WHO. Global Wastewater Monitoring Sources for SARS-CoV-2 (COVID-19 Virus). Available online: https://data.who.int/dashboards/covid19/wastewater#:~:text=Wastewater%20testing%20can%20be%20used%20to%20monitor%20the%20trends%20of (accessed on 2 October 2024).
- Centers for Disease Control and Prevention; National Wastewater Surveillance System (NWSS Wastewater Monitoring in the U.S.|National Wastewater Surveillance System|CDC). Available online: https://www.cdc.gov/nwss/index.html (accessed on 14 October 2024).
- EU. Wastewater Observatory for Public Health EU4S. Available online: https://wastewater-observatory.jrc.ec.europa.eu/#/content/maps-dashboards-dashboards (accessed on 2 October 2024).
- Yeager, R.; Holm, R.H.; Saurabh, K.; Fuqua, J.L.; Talley, D.; Bhatnagar, A.; Smith, T. Wastewater Sample Site Selection to Estimate Geographically Resolved Community Prevalence of COVID-19: A Sampling Protocol Perspective. GeoHealth 2021, 5, e2021GH000420. [Google Scholar] [CrossRef]
- Mac Mahon, J.; Criado Monleon, A.J.; Gill, L.W.; O’Sullivan, J.J.; Meijer, W.G. Wastewater-based epidemiology (WBE) for SARS-CoV-2: A review focusing on the significance of the sewer network using a Dublin city catchment case study. Water Sci. Technol. 2022, 86, 1402–1425. [Google Scholar] [CrossRef]
- Sharara, N.; Endo, N.; Duvallet, C.; Ghaeli, N.; Matus, M.; Heussner, J.; Olesen, S.W.; Alm, E.J.; Chai, P.R.; Erickson, T.B. Wastewater network infrastructure in public health: Applications and learnings from the COVID-19 pandemic. PLoS Glob. Public Health 2001, 1, e0000061. [Google Scholar] [CrossRef] [PubMed]
- Gibas, C.; Lambirth, K.; Mittal, N.; Juel, M.A.I.; Barua, V.B.; Roppolo Brazell, L.; Hinton, K.; Lontai, J.; Stark, N.; Young, I.; et al. Implementing building-level SARS-CoV-2 wastewater surveillance on a university campus. Sci. Total Environ. 2021, 782, 146749. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Valmond, L.; Thomas, J.; Kim, A.; Austin, P.; Foster, M.; Matthews, J.; Kim, P.; Newman, J. Wastewater surveillance in smaller college communities may aid future public health initiatives. PLoS ONE 2022, 17, e0270385. [Google Scholar] [CrossRef] [PubMed]
- Wartell, B.A.; Proano, C.; Bakalian, L.; Kaya, D.; Croft, K.; McCreary, M.; Lichtenstein, N.; Miske, V.; Arcellana, P.; Boyer, J.; et al. Implementing wastewater surveillance for SARS-CoV-2 on a university campus: Lessons learned. Water Environ. Res. 2022, 94, e10807. [Google Scholar] [CrossRef]
- Wong, T.E.; Thurston, G.M.; Barlow, N.; Cahill, N.D.; Carichino, L.; Maki, K.; Ross, D.; Schneider, J. Evaluating the sensitivity of SARS-CoV-2 infection rates on college campuses to wastewater surveillance. Infect. Dis. Model. 2021, 6, 1144–1158. [Google Scholar] [CrossRef]
- Koureas, M.; Kyritsi, M.; Vontas, A.; Kourentis, L.; Vasileiou, C.; Mouchtouri, V.A.; Hadjichristodoulou, C. Pilot Implementation of SARS-CoV-2 Wastewater Surveillance on Cruise Ships Arriving at the Port of Piraeus from June to November 2021. Med. Sci. Forum 2022, 13, 6. [Google Scholar] [CrossRef]
- Li, J.; Hosegood, I.; Powell, D.; Tscharke, B.; Lawler, J.; Thomas, K.V.; Mueller, J.F. A global aircraft-based wastewater genomic surveillance network for early warning of future pandemics. Lancet Glob. Health 2023, 11, e791–e795. [Google Scholar] [CrossRef]
- Jones, D.L.; Rhymes, J.M.; Wade, M.J.; Kevill, J.L.; Malham, S.K.; Grimsley, J.M.S.; Rimmer, C.; Weightman, A.J.; Farkas, K. Suitability of aircraft wastewater for pathogen detection and public health surveillance. Sci. Total Environ. 2023, 856, 159162. [Google Scholar] [CrossRef]
- Shingleton, J.W.; Lilley, C.J.; Wade, M.J. Evaluating the theoretical performance of aircraft wastewater monitoring as a tool for SARS-CoV-2 surveillance. PLoS Glob. Public Health 2023, 3, e0001975. [Google Scholar] [CrossRef]
- Bivins, A.; Kaya, D.; Ahmed, W.; Brown, J.; Butler, C.; Greaves, J.; Leal, R.; Maas, K.; Rao, G.; Sherchan, S. Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. Sci. Total Environ. 2022, 835, 155347. [Google Scholar] [CrossRef]
- Santarpia, J.L.; Klug, E.; Ravnholdt, A.; Kinahan, S.M. Environmental sampling for disease surveillance: Recent advances and recommendations for best practice. J. Air Waste Manag. Assoc. 2023, 73, 434–461. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, M.; Isazadeh, S.; Mohseni-Bandpei, A.; Mohebbi, S.R.; Jahangiri-Rad, M.; Eslami, A.; Dabiri, H.; Roostaei, K.; Tanhaei, M.; Amereh, F. Moore swab performs equal to composite and outperforms grab sampling for SARS-CoV-2 monitoring in wastewater. Sci. Total Environ. 2021, 790, 148205. [Google Scholar] [CrossRef] [PubMed]
- Sikorski, M.J.; Levine, M.M. Reviving the “Moore Swab”: A classic environmental surveillance tool involving filtration of flowing surface water and sewage water to recover typhoidal Salmonella bacteria. Appl. Environ. Microbiol. 2020, 86, e00060-20. [Google Scholar] [CrossRef] [PubMed]
- Cha, G.; Graham, K.E.; Zhu, K.J.; Rao, G.; Lindner, B.G.; Kocaman, K.; Woo, S.; D’amico, I.; Bingham, L.R.; Fischer, J.M.; et al. Parallel deployment of passive and composite samplers for surveillance and variant profiling of SARS-CoV-2 in sewage. Sci. Total Environ. 2023, 866, 161101. [Google Scholar] [CrossRef]
- Breulmann, M.; Kallies, R.; Bernhard, K.; Gasch, A.; Müller, R.A.; Harms, H.; Chatzinotas, A.; van Afferden, M. A long-term passive sampling approach for wastewater-based monitoring of SARS-CoV-2 in Leipzig, Germany. Sci. Total Environ. 2023, 887, 164143. [Google Scholar] [CrossRef]
- Schang, C.; Crosbie, N.D.; Nolan, M.; Poon, R.; Wang, M.; Jex, A.; John, N.; Baker, L.; Scales, P.; Schmidt, J.; et al. Passive sampling of SARS-CoV-2 for wastewater surveillance. Environ. Sci. Technol. 2021, 55, 10432–10441. [Google Scholar] [CrossRef]
- Habtewold, J.; McCarthy, D.; McBean, E.; Law, I.; Goodridge, L.; Habash, M.; Murphy, H.M. Passive sampling, a practical method for wastewater-based surveillance of SARS-CoV-2. Environ. Res. 2022, 204, 112058. [Google Scholar] [CrossRef]
- Wilson, M.; Qiu, Y.; Yu, J.; Lee, B.E.; McCarthy, D.T.; Pang, X. Comparison of auto sampling and passive sampling methods for SARS-CoV-2 detection in wastewater. Pathogens 2022, 11, 359. [Google Scholar] [CrossRef]
- Hayes, E.K.; Sweeney, C.L.; Anderson, L.E.; Li, B.; Erjavec, G.B.; Gouthro, M.T.; Krkosek, W.H.; Stoddart, A.K.; Gagnon, G.A. A novel passive sampling approach for SARS-CoV-2 in wastewater in a Canadian province with low prevalence of COVID-19. Environ. Sci. Water Res. Technol. 2021, 7, 1576–1586. [Google Scholar] [CrossRef]
- Acer, P.T.; Kelly, L.M.; Lover, A.A.; Butler, C.S. Quantifying the relationship between SARS-CoV-2 wastewater concentrations and building-level COVID-19 prevalence at an isolation residence: A passive sampling approach. Int. J. Environ. Res. Public Health 2022, 19, 11245. [Google Scholar] [CrossRef]
- West, N.W.; Hartrick, J.; Alamin, M.; Vasquez, A.A.; Bahmani, A.; Turner, C.L.; Shuster, W.; Ram, J.L. Passive swab versus grab sampling for detection of SARS-CoV-2 markers in wastewater. Sci. Total Environ. 2023, 889, 164180. [Google Scholar] [CrossRef] [PubMed]
- Geissler, M.; Mayer, R.; Helm, B.; Dumke, R. Food and environmental virology: Use of passive sampling to characterize the presence of SARS-CoV-2 and other viruses in wastewater. Food Environ. Virol. 2024, 16, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bivins, A.; Bertsch, P.M.; Bibby, K.; Gyawali, P.; Sherchan, S.P.; Simpson, S.L.; Thomas, K.V.; Verhagen, R.; Kitajima, M.; et al. Intraday variability of indicator and pathogenic viruses in 1-h and 24-h composite wastewater samples: Implications for wastewater-based epidemiology. Environ. Res. 2021, 193, 110531. [Google Scholar] [CrossRef] [PubMed]
- Augusto, M.R.; Claro, I.C.M.; Siqueira, A.K.; Sousa, G.S.; Caldereiro, C.R.; Duran, A.F.A.; de Miranda, T.B.; Bomediano Camillo, L.M.; Cabral, A.D.; de Freitas Bueno, R. Sampling strategies for wastewater surveillance: Evaluating the variability of SARS-CoV-2 RNA concentration in composite and grab samples. J. Environ. Chem. Eng. 2022, 10, 107478. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ahmed, W.; Metcalfe, S.; Smith, W.J.M.; Tscharke, B.; Lynch, P.; Sherman, P.; Vo, P.H.N.; Kaserzon, S.L.; Simpson, S.L.; et al. Monitoring of SARS-CoV-2 in sewersheds with low COVID-19 cases using a passive sampling technique. Water Res. 2022, 218, 118481. [Google Scholar] [CrossRef]
- Murphy, H. Persistence of pathogens in sewage and other water types. In Water and Sanitation for the 21st Century: Health and Microbiological Aspects of Excreta and Wastewater Management; Global Water Pathogen Project; Rose, J.B., Jiménez-Cisneros, B., Eds.; Michigan State University: East Lansing, MI, USA, 2017. [Google Scholar] [CrossRef]
- Ballesté, E.; Blanch, A.R. Persistence of Bacteroides species populations in a river as measured by molecular and culture techniques. Appl. Environ. Microbiol. 2010, 76, 7608–7616. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, J.; Sharma, E.; Li, X.; Gao, S.; Zhou, X.; O’Brien, J.; Coin, L.; Liu, Y.; Sivakumar, M.; et al. In-sewer decay and partitioning of Campylobacter jejuni and Campylobacter coli and implications for their wastewater surveillance. Water Res. 2023, 233, 119737. [Google Scholar] [CrossRef]
- Joseph-Duran, B.; Serra-Compte, A.; Sàrrias, M.; Gonzalez, S.; López, D.; Prats, C.; Català, M.; Alvarez-Lacalle, E.; Alonso, S.; Arnaldos, M. Assessing wastewater-based epidemiology for the prediction of SARS-CoV-2 incidence in Catalonia. Sci. Rep. 2022, 12, 15073. [Google Scholar] [CrossRef]
- Kumar, M.; Jiang, G.; Kumar Thakur, A.; Chatterjee, S.; Bhattacharya, T.; Mohapatra, S.; Chaminda, T.; Kumar Tyagi, V.; Vithanage, M.; Bhattacharya, P.; et al. Lead time of early warning by wastewater surveillance for COVID-19: Geographical variations and impacting factors. Chem. Eng. J. 2022, 441, 135936. [Google Scholar] [CrossRef]
- Ye, Y.; Ellenberg, R.M.; Graham, K.E.; Wigginton, K.R. Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater. Environ. Sci. Technol. 2016, 50, 5077–5085. [Google Scholar] [CrossRef]
- Aquino de Carvalho, N.; Stachler, E.N.; Cimabue, N.; Bibby, K. Evaluation of Phi6 persistence and suitability as an enveloped virus surrogate. Environ. Sci. Technol. 2017, 51, 8692–8700. [Google Scholar] [CrossRef] [PubMed]
- Hart, O.E.; Halden, R.U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities, and challenges. Sci. Total Environ. 2020, 730, 138875. [Google Scholar] [CrossRef] [PubMed]
- Casanova, L.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Survival of surrogate coronaviruses in water. Water Res. 2009, 43, 1893–1898. [Google Scholar] [CrossRef] [PubMed]
- Markt, R.; Mayr, M.; Peer, E.; Wagner, A.O.; Lackner, N.; Insam, H. Detection and stability of SARS-CoV-2 fragments in wastewater: Impact of storage temperature. Pathogens 2021, 10, 1215. [Google Scholar] [CrossRef]
- Ahmed, W.; Bertsch, P.M.; Bibby, K.; Haramoto, E.; Hewitt, J.; Huygens, F.; Gyawali, P.; Korajkic, A.; Riddell, S.; Sherchan, S.P.; et al. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environ. Res. 2020, 191, 110092. [Google Scholar] [CrossRef]
- Simpson, A.; Topol, A.; White, B.J.; Wolfe, M.K.; Wigginton, K.R.; Boehm, A.B. Effect of storage conditions on SARS-CoV-2 RNA quantification in wastewater solids. PeerJ 2021, 9, e11933. [Google Scholar] [CrossRef]
- Huge, B.J.; North, D.; Mousseau, C.B.; Bibby, K.; Dovichi, N.J.; Champion, M.M. Comparison of RT-dPCR and RT-qPCR and the effects of freeze–thaw cycle and glycine release buffer for wastewater SARS-CoV-2 analysis. Sci. Rep. 2022, 12, 20641. [Google Scholar] [CrossRef]
- Beattie, R.E.; Blackwood, A.D.; Clerkin, T.; Dinga, C.; Noble, R.T. Evaluating the impact of sample storage, handling, and technical ability on the decay and recovery of SARS-CoV-2 in wastewater. PLoS ONE 2022, 17, e0270659. [Google Scholar] [CrossRef]
- Hsu, S.Y.; Bayati, M.; Li, C.; Hsieh, H.Y.; Belenchia, A.; Klutts, J.; Zemmer, S.A.; Reynolds, M.; Semkiw, E.; Johnson, H.Y.; et al. Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology. Water Res. 2022, 223, 118985. [Google Scholar] [CrossRef]
- Maal-Bared, R.; Qiu, Y.; Li, Q.; Gao, T.; Hrudey, S.E.; Bhavanam, S.; Ruecker, N.J.; Ellehoj, E.; Lee, B.E.; Pang, X. Does normalization of SARS-CoV-2 concentrations by Pepper Mild Mottle Virus improve correlations and lead time between wastewater surveillance and clinical data in Alberta (Canada): Comparing twelve SARS-CoV-2 normalization approaches. Sci. Total Environ. 2023, 856, 158964. [Google Scholar] [CrossRef]
- D’Aoust, P.M.; Mercier, E.; Montpetit, D.; Jia, J.J.; Alexandrov, I.; Neault, N.; Baig, A.T.; Mayne, J.; Zhang, X.; Alain, T. Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. Water Res. 2021, 188, 116560. [Google Scholar] [CrossRef] [PubMed]
- Guidelines for Environmental Surveillance of Poliovirus Circulation, WHO/V&B/03.03; World Health Organization: Geneva, Switzerland, 2023.
- Wittwer, C.T.; Makrigiorgos, G.M. 4-Nucleic Acid Techniques. In Principles and Applications of Molecular Diagnostics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 47–86. [Google Scholar]
- Chavarria-Miró, G.; Anfruns-Estrada, E.; Martínez-Velázquez, A.; Vázquez-Portero, M.; Guix, S.; Paraira, M.; Galofré, B.; Sánchez, G.; Pintó, R.M.; Bosch, A. Time Evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Wastewater during the First Pandemic Wave of COVID-19 in the Metropolitan Area of Barcelona, Spain. Appl. Environ. Microbiol. 2021, 87, e02750-20. [Google Scholar] [CrossRef] [PubMed]
- Dewantoro, A.; Anggundari, W.; Prasetya, B.; Yopi, Y. Review of digital PCR potential for surveillance of emerging disease from wastewater. IOP Conf. Ser. Earth Environ. Sci. 2021, 926, 012065. [Google Scholar] [CrossRef]
- Corpuz, M.V.A.; Buonerba, A.; Zarra, T.; Hasan, S.W.; Korshin, G.V.; Belgiorno, V.; Naddeo, V. Advances in virus detection methods for wastewater-based epidemiological applications. Case Stud. Chem. Environ. Eng. 2022, 6, 100238. [Google Scholar] [CrossRef]
- Svec, D.; Tichopad, A.; Novosadova, V.; Pfaffl, M.W.; Kubista, M. How Good Is a PCR Efficiency Estimate: Recommendations for Precise and Robust qPCR Efficiency Assessments. Biomol. Detect. Quantif. 2015, 3, 9–16. [Google Scholar] [CrossRef]
- Ahmed, W.; Bivins, A.; Metcalfe, S.; Smith, W.J.M.; Verbyla, M.E.; Symonds, E.M.; Simpson, S.L. Evaluation of process limit of detection and quantification variation of SARS-CoV-2 RT-qPCR and RT-dPCR assays for wastewater surveillance. Water Res. 2022, 213, 118132. [Google Scholar] [CrossRef]
- Ciesielski, M.; Blackwood, D.; Clerkin, T.; Gonzalez, R.; Thompson, H.; Larson, A.; Noble, R. Assessing sensitivity and reproducibility of RT-ddPCR and RT-qPCR for the quantification of SARS-CoV-2 in wastewater. J. Virol. Methods 2021, 297, 114230. [Google Scholar] [CrossRef]
- Neault, N.; Baig, A.; Graber, T.; D’Aoust, P.; Mercier, E.; Alexandrov, I.; Crosby, D.; Mayne, J.; Pounds, T.; MacKenzie, M.; et al. SARS-CoV-2 protein in wastewater mirrors COVID-19 prevalence. medRxiv 2020. PPR:PPR208645. [Google Scholar] [CrossRef]
- Amoah, I.D.; Mthethwa, N.P.; Pillay, L.; Deepnarain, N.; Pillay, K.; Awolusi, O.O.; Kumari, S.; Bux, F. RT-LAMP: A cheaper, simpler and faster alternative for the detection of SARS-CoV-2 in wastewater. Food Environ. Virol. 2021, 13, 447–456. [Google Scholar] [CrossRef]
- Godinez, A.; Hill, D.; Dandaraw, B.; Green, H.; Kilaru, P.; Middleton, F.; Run, S.; Kmush, B.L.; Larsen, D.A. High Sensitivity and Specificity of Dormitory-Level Wastewater Surveillance for COVID-19 during Fall Semester 2020 at Syracuse University, New York. Int. J. Environ. Res. Public Health 2022, 19, 4851. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, X.; Gu, A.; Dobelle, L.; Cid, C.A.; Li, J.; Hoffmann, M.R. Membrane-based in-gel loop-mediated isothermal amplification (mgLAMP) system for SARS-CoV-2 quantification in environmental waters. Environ. Sci. Technol. 2021, 56, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Oshiki, M.; Miura, T.; Kazama, S.; Segawa, T.; Ishii, S.; Hatamoto, M.; Yamaguchi, T.; Kubota, K.; Iguchi, A.; Tagawa, T.; et al. Microfluidic PCR Amplification and MiSeq Amplicon Sequencing Techniques for High-Throughput Detection and Genotyping of Human Pathogenic RNA Viruses in Human Feces, Sewage, and Oysters. Front. Microbiol. 2018, 9, 830. [Google Scholar] [CrossRef] [PubMed]
- Kittigul, L.; Ekchaloemkiet, S.; Utrarachkij, F.; Siripanichgon, K.; Sujirarat, D.; Pungchitton, S.; Boonthum, A. An efficient virus concentration method and RT-nested PCR for detection of rotaviruses in environmental water samples. J. Virol. Methods 2005, 124, 117–122. [Google Scholar] [CrossRef]
- Haramoto, E.; Malla, B.; Thakali, O.; Kitajima, M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 2020, 737, 140405. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Lara, R.; Elsinga, G.; Heijnen, L.; Munnink, B.B.O.; Schapendonk, C.M.E.; Nieuwenhuijse, D.; Kon, M.; Lu, L.; Aarestrup, F.M.; Lycett, S.; et al. Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium. Emerg. Infect. Dis. 2021, 27, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Munnink, B.B.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; van der Spek, A.; Tolsma, P.; Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021, 371, 172–177. [Google Scholar] [CrossRef]
- Hillary, L.S.; Farkas, K.; Maher, K.H.; Lucaci, A.O.; Thorpe, J.; Distaso, M.A.; Gaze, W.H.; Paterson, S.; Burke, T.A.; Connor, T.R.; et al. Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK. Water Res. 2021, 200, 117214. [Google Scholar] [CrossRef]
- Rothman, J.A.; Loveless, T.B.; Kapcia, J.; Adams, E.D.; Steele, J.A.; Zimmer-Faust, A.G.; Langlois, K.; Wanless, D.; Griffith, M.; Mao, L.; et al. RNA viromics of Southern California wastewater and detection of SARS-CoV-2 single-nucleotide variants. Appl. Environ. Microbiol. 2021, 87, e01448-21. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, J.; Xiao, A.; Gu, X.; Lee, W.L.; Armas, F.; Kauffman, K.; Hanage, W.; Matus, M.; Ghaeli, N.; et al. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. mSystems 2020, 5, 00614–00620. [Google Scholar] [CrossRef]
- Wolfe, M.K.; Archana, A.; Catoe, D.; Coffman, M.M.; Dorevich, S.; Graham, K.E.; Kim, S.; Mendoza Grijalva, L.; Roldan-Hernandez, L.; Silverman, A.I.; et al. Scaling of SARS-CoV-2 RNA in Settled Solids from Multiple Wastewater Treatment Plants to Compare Incidence Rates of Laboratory-Confirmed COVID-19 in Their Sewersheds. Environ. Sci. Technol. Lett. 2021, 8, 398–404. [Google Scholar] [CrossRef]
- Wolfe, M.K.; Topol, A.; Knudson, A.; Simpson, A.; White, B.; Vugia, D.J.; Yu, A.T.; Li, L.; Balliet, M.; Stoddard, P.; et al. High-Frequency, High-Throughput Quantification of SARS-CoV-2 RNA in Wastewater Settled Solids at Eight Publicly Owned Treatment Works in Northern California Shows Strong Association with COVID-19 Incidence. mSystems 2021, 6, e00829-21. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bertsch, P.M.; Angel, N.; Bibby, K.; Bivins, A.; Dierens, L.; Edson, J.; Ehret, J.; Gyawali, P.; Hamilton, K.A.; et al. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: A surveillance tool for assessing the presence of COVID-19 infected travelers. J. Travel Med. 2020, 27, taaa116. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.; Onan, B.M.; Xagoraraki, I. Quantification of enteric viruses, pathogen indicators, and Salmonella bacteria in class B anaerobically digested biosolids by culture and molecular methods. Appl. Environ. Microbiol. 2010, 76, 6441–6448. [Google Scholar] [CrossRef] [PubMed]
- Iaconelli, M.; Muscillo, M.; Della Libera, S.; Fratini, M.; Meucci, L.; De Ceglia, M.; Giacosa, D.; La Rosa, G. One-year surveillance of human enteric viruses in raw and treated wastewaters, downstream river waters, and drinking waters. Food Environ. Virol. 2017, 9, 79–88. [Google Scholar] [CrossRef]
- Mabasa, V.V.; van Zyl, W.B.; Ismail, A.; Allam, M.; Taylor, M.B.; Mans, J. Multiple novel human norovirus recombinants identified in wastewater in Pretoria, South Africa by next-generation sequencing. Viruses 2022, 14, 2732. [Google Scholar] [CrossRef]
- Wolfe, M.K.; Duong, D.H.; Bakker, K.M.; Ammerman, M.B.; Mortenson, L.; Hughes, B.; Arts, P.J.; Lauring, A.S.; Fitzsimmons, W.J.; Bendall, E.E.; et al. Wastewater-based detection of two influenza outbreaks. Environ. Sci. Technol. Lett. 2022, 9, 687–692. [Google Scholar] [CrossRef]
- Mejia, E.M.; Hizon, N.A.; Dueck, C.E.; Lidder, R.; Daigle, J.; Wonitowy, Q.; Medina, N.G.; Mohammed, U.P.; Cox, G.W.; Safronetz, D.; et al. Detection of mpox virus in wastewater provides forewarning of clinical cases in Canadian cities. Sci. Total Environ. 2024, 933, 173108. [Google Scholar] [CrossRef]
- de Jonge, E.F.; Peterse, C.M.; Koelewijn, J.M.; van der Drift, A.R.; van der Beek, R.F.H.J.; Nagelkerke, E.; Lodder, W.J. The detection of monkeypox virus DNA in wastewater samples in The Netherlands. Sci. Total Environ. 2022, 852, 158265. [Google Scholar] [CrossRef]
- Kim, J.; Oh, E.; Banting, G.S.; Braithwaite, S.; Chui, L.; Ashbolt, N.J.; Neumann, N.F.; Jeon, B. An improved culture method for selective isolation of Campylobacter jejuni from wastewater. Front. Microbiol. 2016, 7, 1345. [Google Scholar] [CrossRef]
- Mahfouz, N.; Caucci, S.; Achatz, E.; Semmler, T.; Guenther, S.; Berendonk, T.U.; Schroeder, M. High genomic diversity of multi-drug resistant wastewater Escherichia coli. Sci. Rep. 2018, 8, 8928. [Google Scholar] [CrossRef]
- Kutilova, I.; Medvecky, M.; Leekitcharoenphon, P.; Munk, P.; Masarikova, M.; Davidova-Gerzova, L.; Jamborova, I.; Bortolaia, V.; Pamp, S.J.; Dolejska, M. Extended-spectrum beta-lactamase-producing Escherichia coli and antimicrobial resistance in municipal and hospital wastewaters in Czech Republic: Culture-based and metagenomic approaches. Environ. Res. 2021, 193, 110487. [Google Scholar] [CrossRef] [PubMed]
- Davidova-Gerzova, L.; Lausova, J.; Sukkar, I.; Nesporova, K.; Nechutna, L.; Vlkova, K.; Chudejova, K.; Krutova, M.; Palkovicova, J.; Kaspar, J. Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli. Front. Cell. Infect. Microbiol. 2023, 13, 1184081. [Google Scholar] [CrossRef] [PubMed]
- Biggel, M.; Zurfluh, K.; Treier, A.; Nüesch-Inderbinen, M.; Stephan, R. Characteristics of fosA-carrying plasmids in E. coli and Klebsiella spp. isolates originating from food and environmental samples. J. Antimicrob. Chemother. 2021, 76, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Louis, S.; Mark-Carew, M.; Biggerstaff, M.; Yoder, J.; Boehm, A.B.; Wolfe, M.K.; Flood, M.; Peters, S.; Stobierski, M.G.; Coyle, J.; et al. Wastewater Surveillance for Influenza A Virus and H5 Subtype Concurrent with the Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in Cattle and Poultry and Associated Human Cases-United States. MMWR Morb. Mortal Wkly. Rep. 2024, 73, 804–809. [Google Scholar] [CrossRef]
- Bofill-Mas, S.; Rodriguez-Manzano, J.; Calgua, B.; Carratala, A.; Girones, R. Newly described human polyomaviruses Merkel cell, KI and WU are present in urban sewage and may represent potential environmental contaminants. Virol. J. 2010, 7, 141. [Google Scholar] [CrossRef]
- Kuhn, K.G.; Shukla, R.; Mannell, M.; Graves, G.M.; Miller, A.C.; Vogel, J.; Malloy, K.; Deshpande, G.; Florea, G.; Shelton, K.; et al. Using Wastewater Surveillance to Monitor Gastrointestinal Pathogen Infections in the State of Oklahoma. Microorganisms 2023, 11, 2193. [Google Scholar] [CrossRef]
- Diemert, S.; Yan, T. Clinically unreported salmonellosis outbreak detected via comparative genomic analysis of municipal wastewater Salmonella isolates. Appl. Environ. Microbiol. 2019, 85, e00139-19. [Google Scholar] [CrossRef]
- Dong, L.; Zhou, J.; Niu, C.; Wang, Q.; Pan, Y.; Sheng, S.; Wang, X.; Zhang, Y.; Yang, J.; Liu, M.; et al. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR. Talanta 2021, 224, 121726. [Google Scholar] [CrossRef]
- Flood, M.T.; D’Souza, N.; Rose, J.B.; Aw, T.G. Methods evaluation for rapid concentration and quantification of SARS-CoV-2 in raw wastewater using droplet digital and quantitative RT-PCR. Food Environ. Virol. 2021, 13, 303–315. [Google Scholar] [CrossRef]
- Hata, A.; Honda, R. Potential sensitivity of wastewater monitoring for SARS-CoV-2: Comparison with norovirus cases. Environ. Sci. Technol. 2020, 54, 6451–6452. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, 63. [Google Scholar] [CrossRef] [PubMed]
- Tumino, S.; Tolone, M.; Parco, A.; Puleio, R.; Arcoleo, G.; Manno, C.; Nicholas, R.A.J.; Loria, G.R. Validation of loop-mediated isothermal amplification (LAMP) field tool for rapid and sensitive diagnosis of contagious agalactia in small ruminants. Animals 2020, 10, 509. [Google Scholar] [CrossRef] [PubMed]
- Buddolla, A.; Kim, S. Recent trends in the utilization of LAMP for the diagnosis of viruses, bacteria, and allergens in food. Recent Dev. Appl. Microbiol. Biochem. 2021, 2, 291–297. [Google Scholar] [CrossRef]
- Ongerth, J.E.; Danielson, R.E. RT qLAMP-direct detection of SARS-CoV-2 in raw sewage. J. Biomol. Tech. 2021, 32, 206–213. [Google Scholar] [CrossRef]
- Cao, H.; Mao, K.; Ran, F.; Xu, P.; Zhao, Y.; Zhang, X.; Zhou, H.; Yang, Z.; Zhang, H.; Jiang, G. Paper device combining CRISPR/Cas12a and reverse-transcription loop-mediated isothermal amplification for SARS-CoV-2 detection in wastewater. Environ. Sci. Technol. 2022, 56, 13245–13253. [Google Scholar] [CrossRef]
- Shrestha, S.; Malla, B.; Haramoto, E. High-throughput microfluidic quantitative PCR system for the simultaneous detection of antibiotic resistance genes and bacterial and viral pathogens in wastewater. Environ. Res. 2024, 255, 119156. [Google Scholar] [CrossRef]
- Rao, G.; Capone, D.; Zhu, K.; Knoble, A.; Linden, Y.; Clark, R.; Lai, A.; Kim, J.; Huang, C.H.; Bivins, A.; et al. Simultaneous detection and quantification of multiple pathogen targets in wastewater. PLoS Water 2024, 3, e0000224. [Google Scholar] [CrossRef]
- Zheng, X.; Deng, Y.; Xu, X.; Li, S.; Zhang, Y.; Ding, J.; On, H.Y.; Lai, J.C.C.; Yau, C.; Chin, A.W.H.; et al. Comparison of virus concentration methods and RNA extraction methods for SARS-CoV-2 wastewater surveillance. Sci. Total Environ. 2022, 824, 153687. [Google Scholar] [CrossRef]
- Sapula, S.A.; Whittall, J.J.; Pandopulos, A.J.; Gerber, C.; Venter, H. An optimized and robust PEG precipitation method for detection of SARS-CoV-2 in wastewater. Sci. Total Environ. 2022, 785, 147270. [Google Scholar] [CrossRef]
- Hjelmsø, M.H.; Hellmér, M.; Fernandez-Cassi, X.; Timoneda, N.; Lukjancenko, O.; Seidel, M.; Elsässer, D.; Aarestrup, F.M.; Löfström, C.; Bofill-Mas, S.; et al. Evaluation of Methods for the Concentration and Extraction of Viruses from Sewage in the Context of Metagenomic Sequencing. PLoS ONE 2017, 12, e0170199. [Google Scholar] [CrossRef]
- Nour, I.; Hanif, A.; Alanazi, F.; Zakri, A.M.; Al-Ashkar, I.; Alhetheel, A.; Eifan, S. Evaluation of three different concentration and extraction methods for recovery efficiency of human adenovirus and human rotavirus virus A. J. Virol. Methods 2021, 295, 114212. [Google Scholar] [CrossRef] [PubMed]
- Jafferali, M.H.; Khatami, K.; Atasoy, M.; Birgersson, M.; Williams, C.; Cetecioglu, Z. Benchmarking virus concentration methods for quantification of SARS-CoV-2 in raw wastewater. Sci. Total Environ. 2021, 755, 142939. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.; et al. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Direct. 2016, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Kevill, J.L.; Kevill, J.L.; Pellett, C.; Farkas, K.; Brown, M.R.; Bassano, I.; Denise, H.; McDonald, J.E.; Malham, S.K.; Porter, J.; et al. A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater. Sci. Total Environ. 2021, 808, 151916. [Google Scholar] [CrossRef]
- Polo, D.; Quintela-Baluja, M.; Corbishley, A.; Jones, D.L.; Singer, A.C.; Graham, D.W.; Romalde, J.L. Making waves: Wastewater-based epidemiology for COVID-19—Approaches and challenges for surveillance and prediction. Water Res. 2020, 186, 116404. [Google Scholar] [CrossRef]
- Wehrendt, D.P.; Massó, M.G.; Gonzales Machuca, A.; Vargas, C.V.; Barrios, M.E.; Campos, J.; Costamagna, D.; Bruzzone, L.; Cisterna, D.M.; Iglesias, N.G.; et al. A rapid and simple protocol for concentration of SARS-CoV-2 from sewage. J. Virol. Methods 2021, 297, 114272. [Google Scholar] [CrossRef]
- Adachi Katayama, Y.; Hayase, S.; Ando, Y.; Kuroita, T.; Okada, K.; Iwamoto, R.; Yanagimoto, T.; Kitajima, M.; Masago, Y. COPMAN: A novel high-throughput and highly sensitive method to detect viral nucleic acids including SARS-CoV-2 RNA in wastewater. Sci. Total Environ. 2022, 856, 158966. [Google Scholar] [CrossRef]
- Ando, H.; Iwamoto, R.; Kobayashi, H.; Okabe, S.; Kitajima, M. The Efficient and Practical virus Identification System with ENhanced Sensitivity for Solids (EPISENS-S): A rapid and cost-effective SARS-CoV-2 RNA detection method for routine wastewater surveillance. Sci. Total Environ. 2022, 843, 157101. [Google Scholar] [CrossRef]
- Barril, P.A.; Pianciola, L.A.; Mazzeo, M.; Ousset, M.J.; Jaureguiberry, M.V.; Alessandrello, M.; Sánchez, G.; Oteiza, J.M. Evaluation of viral concentration methods for SARS-CoV-2 recovery from wastewater. Sci. Total Environ. 2021, 756, 144105. [Google Scholar] [CrossRef]
- Mondal, S.; Feirer, N.; Brockman, M.; Preston, M.A.; Teter, S.J.; Ma, D.; Goueli, S.A.; Moorji, S.; Saul, B.; Cali, J.J. A direct capture method for purification and detection of viral nucleic acid enables epidemiological surveillance of SARS-CoV-2. Sci. Total Environ. 2021, 795, 148834. [Google Scholar] [CrossRef]
- Peinado, B.; Martínez-García, L.; Martínez, F.; Nozal, L.; Sánchez, M.B. Improved methods for the detection and quantification of SARS-CoV-2 RNA in wastewater. Sci. Rep. 2022, 12, 7201. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Ronquillo, N.; Belda Ferre, P.; Alvarado, D.; Javidi, T.; Longhurst, C.A.; Knight, R. High-throughput wastewater SARS-CoV-2 detection enables forecasting of community infection dynamics in San Diego County. mSystems 2021, 6, e00045-21. [Google Scholar] [CrossRef] [PubMed]
- Whitney, O.N.; Kennedy, L.C.; Fan, V.B.; Hinkle, A.; Kantor, R.; Greenwald, H.; Crits-Christoph, A.; Al-Shayeb, B.; Chaplin, M.; Maurer, A.C.; et al. Sewage, Salt, Silica, and SARS-CoV-2 (4S): An Economical Kit-Free Method for Direct Capture of SARS-CoV-2 RNA from Wastewater. Environ. Sci. Technol. 2021, 55, 4880–4888. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.B.; Rundell, Z.C.; Nemec, M.D.; Langan, L.M.; Back, J.A.; Lugo, J.N. A Comparison of Four Commercially Available RNA Extraction Kits for Wastewater Surveillance of SARS-CoV-2 in a College Population. Sci. Total Environ. 2021, 801, 149595. [Google Scholar] [CrossRef]
- Boehm, A.B.; Wolfe, M.K.; Wigginton, K.R.; Bidwell, A.; White, B.J.; Hughes, B.; Duong, D.; Chan-Herur, V.; Bischel, H.N.; Naughton, C.C. Human viral nucleic acids concentrations in wastewater solids from Central and Coastal California, USA. Sci. Data 2023, 10, 396. [Google Scholar] [CrossRef]
- Pérez-Cataluña, A.; Cuevas-Ferrando, E.; Randazzo, W.; Falcó, I.; Allende, A.; Sánchez, G. Comparing analytical methods to detect SARS-CoV-2 in wastewater. Sci. Total Environ. 2021, 758, 143870. [Google Scholar] [CrossRef]
- Qiu, Y.; Yu, J.; Pabbaraju, K.; Lee, B.E.; Gao, T.; Ashbolt, N.J.; Hrudey, S.E.; Diggle, M.; Tipples, G.; Maal-Bared, R.; et al. Validating and optimizing the method for molecular detection and quantification of SARS-CoV-2 in wastewater. Sci. Total Environ. 2022, 812, 151434. [Google Scholar] [CrossRef]
- Olesen, S.W.; Imakaev, M.; Duvallet, C. Making waves: Defining the lead time of wastewater-based epidemiology for COVID-19. Water Res. 2021, 202, 117433. [Google Scholar] [CrossRef]
- Bailey, A.L.; Ledeboer, N.; Burnham, C.D. Clinical Microbiology Is Growing Up: The Total Laboratory Automation Revolution. Clin. Chem. 2017, 65, 634–643. [Google Scholar] [CrossRef]
- Croxatto, A.; Dijkstra, K.; Prod’hom, G.; Greub, G. Comparison of Inoculation with the InoqulA and WASP Automated Systems with Manual Inoculation. J. Clin. Microbiol. 2015, 53, 2298–2307. [Google Scholar] [CrossRef]
- Iversen, J.; Stendal, G.; Gerdes, C.M.; Meyer, C.H.; Andersen, C.Ø.; Frimodt-Møller, N. Comparative Evaluation of Inoculation of Urine Samples with the Copan WASP and BD Kiestra InoqulA Instruments. J. Clin. Microbiol. 2016, 54, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Culbreath, K.; Piwonka, H.; Korver, J.; Noorbakhsh, M. Benefits derived from full laboratory automation in microbiology: A tale of four laboratories. J. Clin. Microbiol. 2021, 59, e01969-20. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Nguyen, A.; McDonald, D.; Zong, Y.; Ronquillo, N.; Ren, J.; Zou, J.; Farmer, S.; Humphrey, G.; Henderson, D.; et al. Rapid, large-scale wastewater surveillance and automated reporting system enable early detection of nearly 85% of COVID-19 cases on a university campus. mSystems 2021, 6, e00793-21. [Google Scholar] [CrossRef] [PubMed]
- Dehghan Banadaki, M.; Torabi, S.; Strike, W.D.; Noble, A.; Keck, J.W.; Berry, S.M. Improving wastewater-based epidemiology performance through streamlined automation. J. Environ. Chem. Eng. 2023, 11, 109595. [Google Scholar] [CrossRef] [PubMed]
- West, N.W.; Vasquez, A.A.; Bahmani, A.; Khan, M.F.; Hartrick, J.; Turner, C.L.; Shuster, W.; Ram, J.L. Sensitive detection of SARS-CoV-2 molecular markers in urban community sewersheds using automated viral RNA purification and digital droplet PCR. Sci. Total Environ. 2022, 847, 157547. [Google Scholar] [CrossRef] [PubMed]
- Riberio, M.H.D.M.; da Silva, R.G.; Mariani, V.C.; Coelho, L.D.S. Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos Solitons Fractals 2020, 135, 109853. [Google Scholar] [CrossRef]
- Vaughan, L.; Zhang, M.; Gu, H.; Rose, J.B.; Naughton, C.C.; Medema, G.; Allan, V.; Roiko, A.; Blackall, L.; Zamyadi, A. An exploration of challenges associated with machine learning for time series forecasting of COVID-19 community spread using wastewater-based epidemiological data. Sci. Total Environ. 2023, 858, 159748. [Google Scholar] [CrossRef]
- Jiang, G.; Wu, J.; Weidhaas, J.; Li, X.; Chen, Y.; Mueller, J.; Li, J.; Kumar, M.; Zhou, X.; Arora, S.; et al. Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. Water Res. 2022, 218, 118451. [Google Scholar] [CrossRef]
- McMahan, C.; Self, S.; Rennert, L.; Kalbaugh, C.; Kriebel, D.; Graves, D.; Colby, C.; Deaver, J.; Popat, S.; Karanfil, T. COVID-19 wastewater epidemiology: A model to estimate infected populations. Lancet Planet Health 2021, 5, 874–881. [Google Scholar] [CrossRef]
- Safford, H.R.; Shapiro, K.; Bischel, H.N. Opinion: Wastewater analysis can be a powerful public health tool-if it’s done sensibly. Proc. Natl. Acad. Sci. USA 2022, 119, e2119600119. [Google Scholar] [CrossRef]
- Guerrero-Latorre, L.; Collado, N.; Abasolo, N.; Anzaldi, G.; Bofill-Mas, S.; Bosch, A.; Bosch, L.; Busquets, S.; Caimari, A.; Canela, N.; et al. The Catalan Surveillance Network of SARS-CoV-2 in Sewage: Design, implementation, and performance. Sci. Rep. 2022, 12, 16704. [Google Scholar] [CrossRef] [PubMed]
- Ngwira, L.G.; Sharma, B.; Shrestha, K.B.; Dahal, S.; Tuladhar, R.; Manthalu, G.; Chilima, B.; Ganizani, A.; Rigby, J.; Kanjerwa, O.; et al. Cost of wastewater-based environmental surveillance for SARS-CoV-2: Evidence from pilot sites in Blantyre, Malawi and Kathmandu, Nepal. PLoS Glob. Public Health 2022, 2, e0001377. [Google Scholar] [CrossRef] [PubMed]
- Yoo, B.K.; Iwamoto, R.; Chung, U.; Sasaki, T.; Kitajima, M. Economic evaluation of wastewater surveillance combined with clinical COVID-19 screening tests, Japan. Emerg. Infect. Dis. 2023, 29, 1608–1617. [Google Scholar] [CrossRef]
- Betancourt, W.Q.; Schmitz, B.W.; Innes, G.K.; Prasek, S.M.; Pogreba Brown, K.M.; Stark, E.R.; Foster, A.R.; Sprissler, R.S.; Harris, D.T.; Sherchan, S.P.; et al. COVID-19 containment on a college campus via wastewater-based epidemiology, targeted clinical testing and an intervention. Sci. Total Environ. 2021, 779, 146408. [Google Scholar] [CrossRef] [PubMed]
- Price, B.L.; Gilbert, P.B.; van der Laan, M.J. Estimation of the optimal surrogate based on a randomized trial. Biometrics 2018, 74, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Barceló, D. Wastewater-Based Epidemiology to monitor COVID-19 outbreak: Present and future diagnostic methods to be in your radar. Case Stud. Chem. Eng. 2020, 2, 100042. [Google Scholar] [CrossRef]
- Belouhova, M.; Peykov, S.; Stefanova, V.; Topalova, Y. Comparison of Two Methods for SARS-CoV-2 Detection in Wastewater: A Case Study from Sofia, Bulgaria. Water 2023, 15, 658. [Google Scholar] [CrossRef]
S. No | Country | Testing Agency | Target Tested | Data/Dashboard Link |
---|---|---|---|---|
1 | United State of America | CDC’s National Wastewater Surveillance System (NWSS) | SARS-CoV-2, Respiratory syncytial virus (RSV), Influenza A, Mpox | NWSS Wastewater Monitoring in the U.S. (https://www.cdc.gov/nwss/index.html, accessed on 14 October 2024) |
2 | Republic of Korea | Department of Analysis of High-Risk Pathogens | SARS-CoV-2 | Korea Disease Control and Prevention Agency (https://kdca.go.kr/, accessed on 14 October 2024) |
3 | Japan | National Institute of Infectious Diseases | SARS-CoV-2 | NIJIs—Novel Coronavirus Survey Project in Sewage (https://nijis.jp/#links, accessed on 14 October 2024) |
4 | New Zealand | ESR (Environmental Science and Research) | SARS-CoV-2 | ESR Wastewater Surveillanc (https://esr-cri.shinyapps.io/wastewater/#region=Wellington&log_or_linear=linear&period=twelveMonthsButton, accessed on 14 October 2024) |
5 | Australia | Government of Western Australia, | SARS-CoV-2 and its variants | COVID-19 wastewater surveillance (https://www.health.wa.gov.au/articles/a_e/coronavirus/covid19-wastewater-surveillance accessed on 14 October 2024) |
New South Wales (NSW), health | Influenza and SARS-CoV-2 | NSW respiratory surveillance—COVID-19 and influenza (https://www.health.nsw.gov.au/Infectious/covid-19/Pages/reports.aspx accessed on 14 October 2024) | ||
6 | India | CSIR-National Chemical Laboratory (NCL), Symbiosis School of Biological Sciences (SSBS), and the Indian Institute Science Education and Research (IISER) Pune | H1N1, H3N2, Influenza A, and SARS-CoV-2 | Wastewater Surveillance Dashboard For Infectious Diseases (COVID-19, H1N1, H3N2, Influenza-A) (https://www.pkc.org.in/pkc-focus-area/health/waste-water-surveillance/wws-covid-dashboard-pune/ accessed on 14 October 2024) |
8 | Turkey | Turkish Water Institute | SARS-CoV-2 | Türkiye Genelinde COVID-19 Yayılımının Atık Sularda SARS-CoV-2 Analizleri ile Takibi (https://covid19.tarimorman.gov.tr/Home/Index accessed on 14 October 2024) |
9 | Switzerland | ETH, Zurich | SARS-CoV-2, Influenza A, B and RSV | Wastewater Surveillance (https://wise.ethz.ch/ accessed on 14 October 2024) |
10 | European Union | Digital European Exchange Platform (DEEP)/European Commission’s Health Emergency Preparedness and Response Authority (HERA) | SARS-CoV-2 and Variants of concern | Official SARS-CoV-2 sewage surveillance in the EU (https://wastewater-observatory.jrc.ec.europa.eu/#/dashboards/1/47 accessed on 14 October 2024) |
11 | Canada | Provincial, territorial, and academic partners across Canada | SARS-CoV-2, Influenza, RSV | Respiratory viruses: Wastewater monitoring dashboard: Respiratory virus activity (https://health-infobase.canada.ca/wastewater/ accessed on 14 October 2024) |
12 | South Africa | National Institute for communicable Diseases | SARS-CoV-2 and Variants of concern | Wastewater-Based Epidemiology For SARS-CoV-2 In South Africa—NICD (https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/weekly-reports/wastewater-based-epidemiology-for-sars-cov-2-in-south-africa/ accessed on 14 October 2024) |
13 | Global Database-Wastewater SPHERE (SARS Public Health Environmental Response) and COVID poops 19 | Data contributed by multiple organizations | SARS-CoV-2 | About: Wastewater SPHERE (https://sphere.waterpathogens.org/about accessed on 14 October 2024) |
Sampling | Volume/Duration of Exposure | Pathogen | Detected Concentration/Positive Ratio | Ref. | Remarks |
---|---|---|---|---|---|
Grab | - | SARS-CoV-2 | N1 gene-5.5 log 10 copies/L N2 gene-6.4 log 10 copies/L | [58] | The grab samples, collected between 8 a.m. and 10 a.m., showed less variability than composite sample. |
Composite | Varied based on the wastewater flow rate. | SARS-CoV-2 | N1 gene-5.3 log 10 copies/L N2 gene-6.3 log 10 copies/L | ||
Passive sample using cotton buds, electronegative membranes, and medical gauze Composite sampling | 24 h 24 h | SARS-CoV-2 | 25% 41% 31% 50% | [50] | Passive samples made of affordable materials can be used as an economic alternative to expensive auto samplers. The author further used 3D-printed housing units to maintain the mass transfer efficiency. |
Composite sampling | 1 h |
| log 10 Gene copies/mL
| [57] | The author advocates that 24 h composite samples are likely to be superior to 1 h composite samples. |
Composite sampling | 24 h |
| log 10 Gene copies/mL
| ||
Passive sampling using
| One week | SARS-CoV-2 | Mean gene copies/L
| [49] | The study depicts a positive correlation with composite samples, tested municipal WWTP, and passive samples collected at a city scale. |
Passive sampling using tampons | 24 h | SARS-CoV-2 | Median gene copies/day N2 = 1.29 × 109 N1 = 1.04 × 109 | [54] | The author quantified viral RNA by two methods, N1 and N2, and recommends passive sampling approach due to its ease of operation. |
Passive sampling using
| 24 h | SARS-CoV-2 | E gene copies/24 h
| [56] | The passive sample approach and the medium used was more suitable for other pathogen studies in the work (AdV and Influenza virus). |
Composite sample: 24 h composite sample | 24 h | E gene copies/24 h 5.4 × 107 |
S. No | Sensitivity | Method Used | Reference |
---|---|---|---|
1 | 2.9–4.6 genome copies/reaction | RT-dPCR | [83] |
2 | 0.066 copies/μL | Reverse transcription-droplet digital PCR (RT-ddPCR) | [84] |
3 | 25 × 102 copies/μL | RT-ddPCR | [85] |
4 | 0.4 copies/μL | Reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) | [86] |
5 | 0.31 × 10−3 ng/μL | RT-LAMP | [87] |
6 | 0.0093–9.3 copies/μL | RT-LAMP | [88] |
7 | 105 copies/μL | Nested PCR | [89] |
8 | 1.67 plaque forming units (PFU) | NESTED PCR | [90] |
9 | 7.8 × 103 viruses/liter | NESTED PCR | [10] |
10 | 2.4 × 103 viruses/liter | NESTED PCR | [91] |
S. No | Targeted Organism | PCR Technique | Sequencing | Country | References |
---|---|---|---|---|---|
1 | SARS-CoV-2 | Multiplex PCR | Nanopore sequencing and Illumina sequencing | Netherlands and Belgium | [92,93] |
2 | SARS-CoV-2 | qRT-PCR | Illumina sequencing | United Kingdom | [94] |
3 | SARS-CoV-2 | RT-ddPCR | metatranscriptomic sequencing-Illumina | United States | [95] |
4 | SARS-CoV-2 | qRT-PCR | Sanger Sequencing | United States | [96] |
5 | SARS-CoV-2 | qRT-PCR | - | Netherlands | [27] |
6 | SARS-CoV-2 | dd PCR | - | United States | [97,98] |
7 | SARS-CoV-2 | RT-ddPCR | NextSeq Illumina sequencing | Australia | [99] |
8 | Rotavirus A (RVA), AstV, NoV, AdV, and SV | RT-PCR | - | Japan | [12] |
9 | Influenza A and B virus, RSV, Mpox virus, human metapneumovirus (HMPV), NoV GII, and PMMoV | Droplet digital PCR (dd-PCR) | - | Central California, USA | [13] |
10 | Human AdV, HAV, NoV, and Salmonella enterica | Integrated cell culture-PCR (ICC-PCR) and qRT-PCR | - | United States | [100] |
11 | Enterovirus (EVs), NoV, AdV, Hepatitis A and E virus | qRT-PCR and Cell culture | - | Italy | [101] |
12 | NoV | RT-PCR | Illumina sequencing | South Africa | [102] |
13 | Influenza A virus | ddRT-PCR | Sanger Sequencing | United States | [103] |
14 | Mpox virus | qPCR | Sanger Sequencing | Canada | [104] |
15 | Mpox virus | qPCR | Sanger Sequencing | Netherlands | [105] |
16 | Campylobacter jejuni | qRT-PCR and Multiplex PCR | 16S rRNA | Canada | [106] |
17 | C. jejuni and C. coli | qPCR | - | Australia | [62] |
18 | Escherichia coli | qRT-PCR | Illumina sequencing | Germany | [107] |
19 | Escherichia coli | PCR | Illumina sequencing | Czech Republic | [108,109] |
20 | E. coli and Klebsiella spp. | PCR | ONT and Illumina sequencing | Switzerland | [110] |
21 | Influenza A(H5N1) | dPCR | - | USA | [111] |
22 | Polyomaviruses (KI, WU, and Merkel cell polyomavirus) | Nested PCR | - | Barcelona | [112] |
23 | Salmonella, Campylobacter, and NoV | qPCR and RT-qPCR | - | Oklahoma, USA | [113] |
24 | Salmonella | - | Illumina MiSeq | Hawaii | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmugam, B.K.; Alqaydi, M.; Abdisalam, D.; Shukla, M.; Santos, H.; Samour, R.; Petalidis, L.; Oliver, C.M.; Brudecki, G.; Salem, S.B.; et al. A Narrative Review of High Throughput Wastewater Sample Processing for Infectious Disease Surveillance: Challenges, Progress, and Future Opportunities. Int. J. Environ. Res. Public Health 2024, 21, 1432. https://doi.org/10.3390/ijerph21111432
Shanmugam BK, Alqaydi M, Abdisalam D, Shukla M, Santos H, Samour R, Petalidis L, Oliver CM, Brudecki G, Salem SB, et al. A Narrative Review of High Throughput Wastewater Sample Processing for Infectious Disease Surveillance: Challenges, Progress, and Future Opportunities. International Journal of Environmental Research and Public Health. 2024; 21(11):1432. https://doi.org/10.3390/ijerph21111432
Chicago/Turabian StyleShanmugam, Bhuvanesh Kumar, Maryam Alqaydi, Degan Abdisalam, Monika Shukla, Helio Santos, Ranya Samour, Lawrence Petalidis, Charles Matthew Oliver, Grzegorz Brudecki, Samara Bin Salem, and et al. 2024. "A Narrative Review of High Throughput Wastewater Sample Processing for Infectious Disease Surveillance: Challenges, Progress, and Future Opportunities" International Journal of Environmental Research and Public Health 21, no. 11: 1432. https://doi.org/10.3390/ijerph21111432
APA StyleShanmugam, B. K., Alqaydi, M., Abdisalam, D., Shukla, M., Santos, H., Samour, R., Petalidis, L., Oliver, C. M., Brudecki, G., Salem, S. B., & Elamin, W. (2024). A Narrative Review of High Throughput Wastewater Sample Processing for Infectious Disease Surveillance: Challenges, Progress, and Future Opportunities. International Journal of Environmental Research and Public Health, 21(11), 1432. https://doi.org/10.3390/ijerph21111432