Effects of a 4–Week Detraining Period After 12 Weeks of Combined Training Using Different Weekly Frequencies on Health–Related Physical Fitness in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomization and Allocation Concealment
2.4. Preliminary Evaluations
2.5. Outcome Assessments
2.6. Combined Training Program
2.7. Detraining Period
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cadore, E.L.; Pinto, R.S.; Lhullier, F.L.R.; Correa, C.S.; Alberton, C.L.; Pinto, S.S.; Almeida, A.P.V.; Tartaruga, M.P.; Silva, E.M.; Kruel, L.F.M. Physiological Effects of Concurrent Training in Elderly Men. Int. J. Sports Med. 2010, 31, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.; Fuchs, S.C.; Kruel, L.F.M.; Cadore, E.L.; Alberton, C.L.; Pinto, R.S.; Radaelli, R.; Schoenell, M.; Izquierdo, M.; Tanaka, H.; et al. Effects of Different Concurrent Resistance and Aerobic Training Frequencies on Muscle Power and Muscle Quality in Trained Elderly Men: A Randomized Clinical Trial. Aging Dis. 2016, 7, 697–704. [Google Scholar] [CrossRef]
- Cadore, E.L.; Pinto, R.S.; Bottaro, M.; Izquierdo, M. Strength and Endurance Training Prescription in Healthy and Frail Elderly. Aging Dis. 2014, 5, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Merchant, R.A.; Morley, J.E.; Anker, S.D.; Aprahamian, I.; Arai, H.; Aubertin-Leheudre, M.; Bernabei, R.; Cadore, E.L.; Cesari, M.; et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J. Nutr. Health Aging 2021, 25, 824–853. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Laredo-Aguilera, J.A.; Muñoz-Jiménez, M.; Latorre-Román, P.A. Effects of 12-Week Concurrent High-Intensity Interval Strength and Endurance Training Program on Physical Performance in Healthy Older People. J. Strength Cond. Res. 2019, 33, 1445–1452. [Google Scholar] [CrossRef]
- da Silva, L.X.N.; Teodoro, J.L.; Menger, E.; Lopez, P.; Grazioli, R.; Farinha, J.; Moraes, K.; Bottaro, M.; Pinto, R.S.; Izquierdo, M.; et al. Repetitions to failure versus not to failure during concurrent training in healthy elderly men: A randomized clinical trial. Experimental gerontology 2018, 108, 18–27. [Google Scholar] [CrossRef]
- Ferrari, R.; Kruel, L.F.M.; Cadore, E.L.; Alberton, C.L.; Izquierdo, M.; Conceição, M.; Pinto, R.S.; Radaelli, R.; Wilhelm, E.; Bottaro, M.; et al. Efficiency of Twice Weekly Concurrent Training in Trained Elderly Men. Exp. Gerontol. 2013, 48, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Padilha, C.S.; Ribeiro, A.S.; Fleck, S.J.; Nascimento, M.A.; Pina, F.L.C.; Okino, A.M.; Venturini, D.; Barbosa, D.S.; Mayhew, J.L.; Cyrino, E.S. Effect of Resistance Training with Different Frequencies and Detraining on Muscular Strength and Oxidative Stress Biomarkers in Older Women. Age 2015, 37, 104. [Google Scholar] [CrossRef]
- Henwood, T.R.; Taaffe, D.R. Detraining and Retraining in Older Adults Following Long-Term Muscle Power or Muscle Strength Specific Training. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 751–758. [Google Scholar] [CrossRef]
- Tokmakidis, S.P.; Volaklis, K.A. Training and Detraining Effects of a Combined-Strength and Aerobic Exercise Program on Blood Lipids in Patients with Coronary Artery Disease. J. Cardiopulm. Rehabil. Prev. 2003, 23, 193. [Google Scholar] [CrossRef]
- Carvalho, M.; Marques, E.; Mota, J. Training and Detraining Effects on Functional Fitness after a Multicomponent Training in Older Women. Gerontology 2009, 55, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Melo, K.C.B.; dos Santos, G.A.; Araujo, F.d.S.; Moreira, S.R. Detraining Period of the PILATES Method on Functional Capacity of Elderly Women with Type 2 Diabetes: A Randomized Clinical Trial. J. Bodyw. Mov. Ther. 2022, 31, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Coetsee, C.; Terblanche, E. The Time Course of Changes Induced by Resistance Training and Detraining on Muscular and Physical Function in Older Adults. EURAPA 2015, 12, 7. [Google Scholar] [CrossRef]
- Fernández-García, I.; Moradell, A.; Navarrete-Villanueva, D.; Subías-Perié, J.; Pérez-Gómez, J.; Ara, I.; González-Gross, M.; Casajús, J.A.; Vicente-Rodríguez, G.; Gómez-Cabello, A. Effects of Multicomponent Training Followed by a Detraining Period on Frailty Level and Functional Capacity of Older Adults with or at Risk of Frailty: Results of 10-Month Quasi-Experimental Study. Int. J. Environ. Res. Public Health 2022, 19, 12417. [Google Scholar] [CrossRef]
- Bosquet, L.; Berryman, N.; Dupuy, O.; Mekary, S.; Arvisais, D.; Bherer, L.; Mujika, I. Effect of Training Cessation on Muscular Performance: A Meta-Analysis. Scand. J. Med. Sci. Sports 2013, 23, e140–e149. [Google Scholar] [CrossRef] [PubMed]
- Sakugawa, R.L.; Moura, B.M.; Orssatto, L.B.d.R.; Bezerra, E.d.S.; Cadore, E.L.; Diefenthaeler, F.; Sakugawa, R.L.; Moura, B.M.; Orssatto, L.B.d.R.; de Souza Bezerra, E.; et al. Effects of Resistance Training, Detraining, and Retraining on Strength and Functional Capacity in Elderly. Aging Clin. Exp. Res. 2019, 31, 31–39. [Google Scholar] [CrossRef]
- Mujika, I.; Padilla, S. Cardiorespiratory and Metabolic Characteristics of Detraining in Humans. Med. Sci. Sports Exerc. 2001, 33, 413–421. [Google Scholar] [CrossRef]
- Ferrari, R.; Domingues, L.B.; Carpes, L.D.O.; Frank, P.D.A.; Schneider, V.M.; Fuchs, S.C.; GET Study Group. Effects of Combined Training Performed Two or Four Times per Week on 24-h Blood Pressure, Glycosylated Hemoglobin and Other Health-Related Outcomes in Aging Individuals with Hypertension: Rationale and Study Protocol of a Randomized Clinical Trial. PLoS ONE 2021, 16, e0251654. [Google Scholar] [CrossRef] [PubMed]
- Boutron, I.; Altman, D.G.; Moher, D.; Schulz, K.F.; Ravaud, P.; CONSORT NPT Group. CONSORT Statement for Randomized Trials of Nonpharmacologic Treatments: A 2017 Update and a CONSORT Extension for Nonpharmacologic Trial Abstracts. Ann. Intern. Med. 2017, 167, 40–47. [Google Scholar] [CrossRef]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 Explanation and Elaboration: Updated Guidelines for Reporting Parallel Group Randomised Trials. Int. J. Surg. 2012, 10, 28–55. [Google Scholar] [CrossRef]
- Barroso, W.K.S.; Rodrigues, C.I.S.; Mota-Gomes, M.A.; Brandão, A.A.; de Magalhães Feitosa, A.D.; Machado, C.A.; Poli-de-Figueiredo, C.E.; Amodeo, C.; Júnior, D.M.; Barbosa, E.C.D.; et al. Diretrizes Brasileiras de Hipertensão Arterial—2020. Arq. Bras. Cardiol. 2021, 116, 516–658. [Google Scholar] [CrossRef] [PubMed]
- Howley, E.T.; Bassett, D.R.; Welch, H.G. Criteria for Maximal Oxygen Uptake: Review and Commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Rikli, R.E.; Jones, C.J. Development and Validation of Criterion-Referenced Clinically Relevant Fitness Standards for Maintaining Physical Independence in Later Years. Gerontologist 2013, 53, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Psychophysical Scaling with Applications in Physical Work and the Perception of Exertion. Scand. J. Work Environ. Health 1990, 16 (Suppl. S1), 55–58. [Google Scholar] [CrossRef]
- Ferguson, B. ACSM’s Guidelines for Exercise Testing and Prescription 9th Ed. J. Can. Chiropr. Assoc. 2014, 58, 328. [Google Scholar]
- Guirado, G.N.; Damatto, R.L.; Matsubara, B.B.; Roscani, M.G.; Fusco, D.R.; Seki, M.M.; Teixeira, A.S.; Okoshi, K.; Okoshi, M.P. Combined Exercise Training in Asymptomatic Elderly with Controlled Hypertension: Effects on Functional Capacity and Cardiac Diastolic Function. Med. Sci. Monit. 2012, 18, CR461–CR465. [Google Scholar] [CrossRef]
- Leitão, L.; Marocolo, M.; de Souza, H.L.R.; Arriel, R.A.; Campos, Y.; Mazini, M.; Junior, R.P.; Figueiredo, T.; Louro, H.; Pereira, A. Three-Month vs. One-Year Detraining Effects after Multicomponent Exercise Program in Hypertensive Older Women. Int. J. Environ. Res. Public Health 2022, 19, 2871. [Google Scholar] [CrossRef] [PubMed]
- Nystoriak, M.A.; Bhatnagar, A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Med. 2018, 5, 135. [Google Scholar] [CrossRef]
- Lo, K.; Huang, Y.-Q.; Shen, G.; Huang, J.-Y.; Liu, L.; Yu, Y.-L.; Chen, C.-L.; Feng, Y.Q. Effects of Waist to Height Ratio, Waist Circumference, Body Mass Index on the Risk of Chronic Diseases, All-Cause, Cardiovascular and Cancer Mortality. Postgrad. Med. J. 2021, 97, 306–311. [Google Scholar] [CrossRef]
- Slentz, C.A.; Duscha, B.D.; Johnson, J.L.; Ketchum, K.; Aiken, L.B.; Samsa, G.P.; Houmard, J.A.; Bales, C.W.; Kraus, W.E. Effects of the Amount of Exercise on Body Weight, Body Composition, and Measures of Central Obesity: STRRIDE—A Randomized Controlled Study. Arch. Intern. Med. 2004, 164, 31–39. [Google Scholar] [CrossRef]
Mesocycle 1 | Mesocycle 2 | |||
---|---|---|---|---|
Modalities | Volume | Intensity | Volume | Intensity |
Resistance exercises | Sets × Repetitions | RPE | Sets × Repetitions | RPE |
Push-up 1 | 2 × 10–12 | 4–5 | 3 × 10–12 | 5–6 |
Squat 1 | 3 × 12–15 | 4–5 | 4 × 12–15 | 5–6 |
Unilateral balance 1 | 1 × 30″ | – | 1 × 45″ | – |
Inverted row 2 | 2 × 10–12 | 4–5 | 3 × 10–12 | 5–6 |
Calf raise 2 | 2 × 12–15 | 4–5 | 3 × 18–20 | 5–6 |
Crunch 2 | 2 × 15 | 4–5 | 3 × 20 | 5–6 |
Aerobic exercise | Minutes per week | RPE | Minutes per week | RPE |
Walking/Running 3 | 80′ | 5–6 | 100′ | 5–6 |
Variables | CT4 (n = 14) | CT2 (n = 17) | p Value |
---|---|---|---|
Sex, n (%) | 0.934 | ||
Male | 7 (50) | 8 (47.1) | |
Female | 7 (50) | 9 (52.9) | |
Age, years | 66 ± 5 | 66 ± 8 | 0.924 |
Anthropometry | |||
Body mass (kg) | 75.1 ± 11.8 | 77.5 ± 15.7 | 0.281 |
Height (m) | 1.63 ± 0.1 | 165 ± 0.1 | 0.288 |
BMI (kg/m2) | 28.1 ± 3 | 28.3 ± 4.5 | 0.629 |
Waist circumference (cm) | 92.6 ± 10.8 | 97.9 ± 12.8 | 0.450 |
BMI classification, n (%) | 0.066 | ||
Eutrophic | 2 (14.3) | 5 (29.4) | |
Overweight | 10 (71.4) | 5 (29.4) | |
Obesity | 2 (14.3) | 7 (41.2) | |
Cardiorespiratory fitness | |||
Peak VO2 (mL.kg.min−1) | 24.8 ± 4.9 | 28.6 ± 5.9 | 0.081 |
HR VT1 (bpm) | 100 ± 15 | 98 ± 11 | 0.640 |
HR VT2 (bpm) | 126 ± 14 | 125 ± 14 | 0.941 |
Hemodynamics | |||
Systolic BP (mmHg) | 129 ± 13 | 128 ± 16 | 0.969 |
Diastolic BP (mmHg) | 77 ± 11 | 73 ± 9 | 0.283 |
Heart rate (bpm) | 73 ± 13 | 66 ± 8 | 0.078 |
RPP (mmHg.bpm) | 9483 ± 2100 | 8490 ± 1443 | 0.149 |
Antihypertensive drugs, n (%) | |||
ACEI | 8 (57.1) | 4 (23.5) | 0.225 |
ARB | 6 (42.9) | 9 (52.9) | 0.390 |
Diuretics | 7 (50) | 10 (58.8) | 0.823 |
β blockers | 2 (14.3) | 4 (23.5) | 0.736 |
CCB | 2 (14.3) | 6 (35.6) | 0.328 |
Hypoglycemic drugs, n (%) | 2 (14.3) | 1 (5.9) | 0.747 |
Hypolipidemic drugs, n (%) | 10 (71.4) | 13 (76.5) | 0.736 |
CT4 (n = 14) | CT2 (n = 17) | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Baseline | Post–Training | Post–Detraining | Baseline | Post–Training | Post–Detraining | Interaction | Time | Group |
Functional capacity | |||||||||
30–s chair-stand (repetitions) | 20 (17–23) | 23 (21–25) 1 | 24 (22–27) 2 | 19 (18–21) | 24 (22–26) 1 | 23 (22–25) 2 | 0.160 | <0.001 | 0.934 |
5–time chair-stand (seconds) | 8.5 (7.5–9.5) | 6.9 (6.2–7.7) 1 | 6.8 (5.9–7.6) 2 | 8.2 (7.6–8.8) | 6.8 (6.3–7.3) 1 | 6.8 (6.4–7.2) 2 | 0.580 | <0.001 | 0.777 |
Right arm grip strength (kg·F) | 33 (27–40) | 33 (28–39) | 31 (26–37) | 32 (28–36) | 38 (34–43) 1 | 34 (30–40) 3 | 0.042 | 0.004 | 0.507 |
Left arm grip strength (kg·F) | 32 (26–38) | 32 (27–38) | 31 (24–38) | 29 (25–33) | 36 (31–41) 1 | 32 (27–37) 3 | 0.068 | 0.014 | 0.852 |
Body composition | |||||||||
Body mass (kg) | 75 (69–81) | 75 (68–81) | 75 (69–80) | 78 (70–85) | 78 (70–86) | 78 (70–86) | 0.747 | 0.968 | 0.572 |
BMI (kg·m2) | 28.1 (26.7–29.5) | 28 (26.5–29.5) | 28 (26.5–29.5) | 28.3 (26.2–30.4) | 28.4 (26.1–30.6) | 28.4 (26.1–30.6) | 0.894 | 0.952 | 0.816 |
Waist circumference (cm) | 96.6 (91.2–101.9) | 92.7 (87.9–97.6) 1 | 95.4 (91.1–99.8) 3 | 97.9 (91.9–103.7) | 96.6 (89.8–103.4) | 97.4 (90.4–104.4) | 0.188 | 0.001 | 0.568 |
Waist–to–height ratio (A.U.) | 0.59 (0.56–0.63) | 0.56 (0.54–0.60) 1 | 0.59 (0.55–0.62) 3 | 0.59 (0.56–0.63) | 0.59 (0.55–0.62) | 0.59 (0.55–0.63) | 0.170 | 0.002 | 0.821 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domingues, L.B.; Schneider, V.M.; Abreu, R.F.d.; Carpes, L.d.O.; Ferrari, R. Effects of a 4–Week Detraining Period After 12 Weeks of Combined Training Using Different Weekly Frequencies on Health–Related Physical Fitness in Older Adults. Int. J. Environ. Res. Public Health 2024, 21, 1433. https://doi.org/10.3390/ijerph21111433
Domingues LB, Schneider VM, Abreu RFd, Carpes LdO, Ferrari R. Effects of a 4–Week Detraining Period After 12 Weeks of Combined Training Using Different Weekly Frequencies on Health–Related Physical Fitness in Older Adults. International Journal of Environmental Research and Public Health. 2024; 21(11):1433. https://doi.org/10.3390/ijerph21111433
Chicago/Turabian StyleDomingues, Lucas Betti, Vinícius Mallmann Schneider, Rodrigo Flores de Abreu, Leandro de Oliveira Carpes, and Rodrigo Ferrari. 2024. "Effects of a 4–Week Detraining Period After 12 Weeks of Combined Training Using Different Weekly Frequencies on Health–Related Physical Fitness in Older Adults" International Journal of Environmental Research and Public Health 21, no. 11: 1433. https://doi.org/10.3390/ijerph21111433
APA StyleDomingues, L. B., Schneider, V. M., Abreu, R. F. d., Carpes, L. d. O., & Ferrari, R. (2024). Effects of a 4–Week Detraining Period After 12 Weeks of Combined Training Using Different Weekly Frequencies on Health–Related Physical Fitness in Older Adults. International Journal of Environmental Research and Public Health, 21(11), 1433. https://doi.org/10.3390/ijerph21111433