The Influence of Social Dynamics on Biological Aging and the Health of Historically Marginalized Populations: A Biopsychosocial Model for Health Disparities
Abstract
:1. Introduction
2. Social Dynamics, Stress Physiology, and Biological Aging
2.1. Social Stress Theory
2.2. Biology of Social Stress and Its Impact on Health of Historically Marginalized Populations
2.3. Social Support Theory
2.4. Biology of Social Support and Its Impact on Health of Historically Marginalized Populations
2.5. The Biological Effects of Social Dynamics on the Aging Trajectories of Historically Marginalized Individuals
3. Discussion and Future Directions
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ledberg, A. Exponential increase in mortality with age is a generic property of a simple model system of damage accumulation and death. PLoS ONE 2020, 15, e0233384. [Google Scholar] [CrossRef] [PubMed]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.; Adeyi, O.; Arnold, R.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; Breysse, P.N. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- Padrón, N.A. The role of physical infrastructure on health and well-being. In Creating a Lifestyle Medicine Center: From Concept to Clinical Practice; Springer: Cham, Switzerland, 2020; pp. 47–56. [Google Scholar]
- Ebi, K.L. Environmental health research needed to inform strategies, policies, and measures to manage the risks of anthropogenic climate change. Environ. Health 2021, 20, 109. [Google Scholar] [CrossRef] [PubMed]
- Siroux, V.; Agier, L.; Slama, R. The exposome concept: A challenge and a potential driver for environmental health research. Eur. Respir. Rev. 2016, 25, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Vineis, P.; Robinson, O.; Chadeau-Hyam, M.; Dehghan, A.; Mudway, I.; Dagnino, S. What is new in the exposome? Environ. Int. 2020, 143, 105887. [Google Scholar] [CrossRef]
- Meaney, M.J. Epigenetics and the biological definition of gene × environment interactions. Child Dev. 2010, 81, 41–79. [Google Scholar] [CrossRef]
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E. Geroscience: Linking aging to chronic disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef]
- Reynolds, R.M.; Meng, J.; Dorrance Hall, E. Multilayered social dynamics and depression among older adults: A 10-year cross-lagged analysis. Psychol. Aging 2020, 35, 948. [Google Scholar] [CrossRef]
- Cho, H.J.; Seeman, T.E.; Kiefe, C.I.; Lauderdale, D.S.; Irwin, M.R. Sleep disturbance and longitudinal risk of inflammation: Moderating influences of social integration and social isolation in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Brain Behav. Immun. 2015, 46, 319–326. [Google Scholar] [CrossRef]
- Tan, J.; Wang, Y. Social integration, social support, and all-cause, cardiovascular disease and cause-specific mortality: A prospective cohort study. Int. J. Environ. Res. Public Health 2019, 16, 1498. [Google Scholar] [CrossRef] [PubMed]
- Steverink, N.; Lindenberg, S.; Spiegel, T.; Nieboer, A.P. The associations of different social needs with psychological strengths and subjective well-being: An empirical investigation based on social production function theory. J. Happiness Stud. 2020, 21, 799–824. [Google Scholar] [CrossRef]
- Leow, K.; Lynch, M.F.; Lee, J. Social support, basic psychological needs, and social well-being among older cancer survivors. Int. J. Aging Hum. Dev. 2021, 92, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Gillman, M.W. Developmental origins of health and disease. N. Engl. J. Med. 2005, 353, 1848. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R.; Lawrence, J.A.; Davis, B.A.; Vu, C. Understanding how discrimination can affect health. Health Serv. Res. 2019, 54, 1374–1388. [Google Scholar] [CrossRef] [PubMed]
- Beech, B.M.; Ford, C.; Thorpe, R.J., Jr.; Bruce, M.A.; Norris, K.C. Poverty, racism, and the public health crisis in America. Front. Public Health 2021, 9, 699049. [Google Scholar] [CrossRef] [PubMed]
- Holt-Lunstad, J.; Steptoe, A. Social isolation: An underappreciated determinant of physical health. Curr. Opin. Psychol. 2022, 43, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Tomaka, J.; Thompson, S.; Palacios, R. The relation of social isolation, loneliness, and social support to disease outcomes among the elderly. J. Aging Health 2006, 18, 359–384. [Google Scholar] [CrossRef] [PubMed]
- McClendon, J.; Chang, K.; Boudreaux, M.J.; Oltmanns, T.F.; Bogdan, R. Black-White racial health disparities in inflammation and physical health: Cumulative stress, social isolation, and health behaviors. Psychoneuroendocrinology 2021, 131, 105251. [Google Scholar] [CrossRef]
- Steen, P.B.; Poulsen, P.H.; Andersen, J.H.; Biering, K. Subjective social status is an important determinant of perceived stress among adolescents: A cross-sectional study. BMC Public Health 2020, 20, 396. [Google Scholar] [CrossRef]
- Rahal, D.; Chiang, J.J.; Bower, J.E.; Irwin, M.R.; Venkatraman, J.; Fuligni, A.J. Subjective social status and stress responsivity in late adolescence. Stress 2020, 23, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Maydych, V. The interplay between stress, inflammation, and emotional attention: Relevance for depression. Front. Neurosci. 2019, 13, 384. [Google Scholar] [CrossRef] [PubMed]
- Ursache, A.; Noble, K.G.; Blair, C. Socioeconomic status, subjective social status, and perceived stress: Associations with stress physiology and executive functioning. Behav. Med. 2015, 41, 145–154. [Google Scholar] [CrossRef]
- Girardi, D.; Falco, A.; De Carlo, A.; Benevene, P.; Comar, M.; Tongiorgi, E.; Bartolucci, G.B. The mediating role of interpersonal conflict at work in the relationship between negative affectivity and biomarkers of stress. J. Behav. Med. 2015, 38, 922–931. [Google Scholar] [CrossRef] [PubMed]
- Aneshensel, C.S. Social stress: Theory and research. Annu. Rev. Sociol. 1992, 18, 15–38. [Google Scholar] [CrossRef]
- Speyer, L.G.; Brown, R.H.; Ribeaud, D.; Eisner, M.; Murray, A.L. The role of moment-to-moment dynamics of perceived stress and negative affect in co-occurring ADHD and internalising symptoms. J. Autism Dev. Disord. 2023, 53, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Rahal, D.; Chiang, J.J.; Fales, M.; Fuligni, A.J.; Haselton, M.G.; Slavich, G.M.; Robles, T.F. Early life stress, subjective social status, and health during late adolescence. Psychol. Health 2020, 35, 1531–1549. [Google Scholar] [CrossRef]
- Yohn, C.N.; Ashamalla, S.A.; Bokka, L.; Gergues, M.M.; Garino, A.; Samuels, B.A. Social instability is an effective chronic stress paradigm for both male and female mice. Neuropharmacology 2019, 160, 107780. [Google Scholar] [CrossRef]
- DeFreese, J.; Mihalik, J.P. Work-based social interactions, perceived stress, and workload incongruence as antecedents of athletic trainer burnout. J. Athl. Train. 2016, 51, 28–34. [Google Scholar] [CrossRef]
- McClelland, K. Cumulative disadvantage among the highly ambitious. Sociol. Educ. 1990, 63, 102–121. [Google Scholar] [CrossRef]
- Prior, L. Allostatic load and exposure histories of disadvantage. Int. J. Environ. Res. Public Health 2021, 18, 7222. [Google Scholar] [CrossRef] [PubMed]
- Nurius, P.S.; Uehara, E.; Zatzick, D.F. Intersection of stress, social disadvantage, and life course processes: Reframing trauma and mental health. Am. J. Psychiatr. Rehabil. 2013, 16, 91–114. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, S.; Xiao, Q.; Feldman, M. Social support and psychological well-being under social change in urban and rural China. Soc. Indic. Res. 2014, 119, 979–996. [Google Scholar] [CrossRef]
- Denscombe, M. Social conditions for stress: Young people’s experience of doing GCSEs. Br. Educ. Res. J. 2000, 26, 359–374. [Google Scholar] [CrossRef]
- Smaliukienė, R.; Bekesiene, S.; Mažeikienė, A.; Larsson, G.; Karčiauskaitė, D.; Mazgelytė, E.; Vaičaitienė, R. Hair cortisol, perceived stress, and the effect of group dynamics: A longitudinal study of Young men during compulsory military training in Lithuania. Int. J. Environ. Res. Public Health 2022, 19, 1663. [Google Scholar] [CrossRef] [PubMed]
- Dejonckheere, E.; Rhee, J.J.; Baguma, P.K.; Barry, O.; Becker, M.; Bilewicz, M.; Castelain, T.; Costantini, G.; Dimdins, G.; Espinosa, A. Perceiving societal pressure to be happy is linked to poor well-being, especially in happy nations. Sci. Rep. 2022, 12, 1514. [Google Scholar] [CrossRef] [PubMed]
- Viertiö, S.; Kiviruusu, O.; Piirtola, M.; Kaprio, J.; Korhonen, T.; Marttunen, M.; Suvisaari, J. Factors contributing to psychological distress in the working population, with a special reference to gender difference. BMC Public Health 2021, 21, 611. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.H.; Chen, E.; Chiang, J.J.; Miller, G.E. Socioeconomic disadvantage, chronic stress, and proinflammatory phenotype: An integrative data analysis across the lifecourse. PNAS Nexus 2022, 1, pgac219. [Google Scholar] [CrossRef] [PubMed]
- Acabchuk, R.L.; Kamath, J.; Salamone, J.D.; Johnson, B.T. Stress and chronic illness: The inflammatory pathway. Soc. Sci. Med. 2017, 185, 166–170. [Google Scholar] [CrossRef]
- Kinnally, E.L.; Martinez, S.J.; Chun, K.; Capitanio, J.P.; Ceniceros, L.C. Early social stress promotes inflammation and disease risk in rhesus monkeys. Sci. Rep. 2019, 9, 7609. [Google Scholar] [CrossRef]
- Dube, S.R.; Fairweather, D.; Pearson, W.S.; Felitti, V.J.; Anda, R.F.; Croft, J.B. Cumulative childhood stress and autoimmune diseases in adults. Psychosom. Med. 2009, 71, 243. [Google Scholar] [CrossRef] [PubMed]
- Sims, M.; Glover, L.S.M.; Gebreab, S.Y.; Spruill, T.M. Cumulative psychosocial factors are associated with cardiovascular disease risk factors and management among African Americans in the Jackson Heart Study. BMC Public Health 2020, 20, 566. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulos, I.; Catania, C.; Pinto, L.G.; Silva, R.; Pollerberg, G.E.; Takashima, A.; Sousa, N.; Almeida, O.F. Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J. Neurosci. 2011, 31, 7840–7847. [Google Scholar] [CrossRef] [PubMed]
- Karin, O.; Raz, M.; Tendler, A.; Bar, A.; Korem Kohanim, Y.; Milo, T.; Alon, U. A new model for the HPA axis explains dysregulation of stress hormones on the timescale of weeks. Mol. Syst. Biol. 2020, 16, e9510. [Google Scholar] [CrossRef] [PubMed]
- Bruijnzeel, A.; Stam, R.; Croiset, G.; Wiegant, V. Long-term sensitization of cardiovascular stress responses after a single stressful experience. Physiol. Behav. 2001, 73, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Koolhaas, J.; Meerlo, P.; De Boer, S.; Strubbe, J.; Bohus, B. The temporal dynamics of the stress response. Neurosci. Biobehav. Rev. 1997, 21, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Stroud, C.B. The stress sensitization model. In The Oxford Handbook of Stress and Mental Health; Oxford University Press: Oxford, UK, 2020; pp. 348–370. [Google Scholar]
- Gądek-Michalska, A.; Spyrka, J.; Rachwalska, P.; Tadeusz, J.; Bugajski, J. Influence of chronic stress on brain corticosteroid receptors and HPA axis activity. Pharmacol. Rep. 2013, 65, 1163–1175. [Google Scholar] [CrossRef] [PubMed]
- Lupien, S.J.; Juster, R.-P.; Raymond, C.; Marin, M.-F. The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Front. Neuroendocrinol. 2018, 49, 91–105. [Google Scholar] [CrossRef]
- Biltz, R.G.; Sawicki, C.M.; Sheridan, J.F.; Godbout, J.P. The neuroimmunology of social-stress-induced sensitization. Nat. Immunol. 2022, 23, 1527–1535. [Google Scholar] [CrossRef]
- daSilva, A.W.; Huckins, J.F.; Wang, W.; Wang, R.; Campbell, A.T.; Meyer, M.L. Daily perceived stress predicts less next day social interaction: Evidence from a naturalistic mobile sensing study. Emotion 2021, 21, 1760. [Google Scholar] [CrossRef]
- Okamura, H.; Yasugaki, S.; Suzuki-Abe, H.; Arai, Y.; Sakurai, K.; Yanagisawa, M.; Takizawa, H.; Hayashi, Y. Long-term effects of repeated social defeat stress on brain activity during social interaction in BALB/c mice. eNeuro 2022, 9, ENEURO.0068-22.2022. [Google Scholar] [CrossRef]
- Ayash, S.; Schmitt, U.; Müller, M.B. Chronic social defeat-induced social avoidance as a proxy of stress resilience in mice involves conditioned learning. J. Psychiatr. Res. 2020, 120, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Lampert, R.; Tuit, K.; Hong, K.-I.; Donovan, T.; Lee, F.; Sinha, R. Cumulative stress and autonomic dysregulation in a community sample. Stress 2016, 19, 269–279. [Google Scholar] [CrossRef]
- Lieb, D.C.; Parson, H.K.; Mamikunian, G.; Vinik, A.I. Cardiac autonomic imbalance in newly diagnosed and established diabetes is associated with markers of adipose tissue inflammation. J. Diabetes Res. 2012, 2012, 878760. [Google Scholar] [CrossRef] [PubMed]
- Peçanha, T.; de Andrade Lima, A.H.R. Inflammation and cardiovascular autonomic dysfunction in rheumatoid arthritis: A bidirectional pathway leading to cardiovascular disease. J. Physiol. 2017, 595, 1025. [Google Scholar] [CrossRef]
- Evans, G.W.; Kim, P. Childhood poverty and health: Cumulative risk exposure and stress dysregulation. Psychol. Sci. 2007, 18, 953–957. [Google Scholar] [CrossRef]
- Theall, K.P.; Drury, S.S.; Shirtcliff, E.A. Cumulative neighborhood risk of psychosocial stress and allostatic load in adolescents. Am. J. Epidemiol. 2012, 176 (Suppl. S7), S164–S174. [Google Scholar] [CrossRef]
- Hackman, D.A.; Betancourt, L.M.; Brodsky, N.L.; Hurt, H.; Farah, M.J. Neighborhood disadvantage and adolescent stress reactivity. Front. Hum. Neurosci. 2012, 6, 277. [Google Scholar] [CrossRef] [PubMed]
- Dovidio, J.F.; Hebl, M.R. Discrimination at the level of the individual: Cognitive and affective factors. In Discrimination at Work; Psychology Press: London, UK, 2013; pp. 11–35. [Google Scholar]
- Loeb, E.; Hurd, N.M. Subjective social status, perceived academic competence, and academic achievement among underrepresented students. J. Coll. Stud. Retent. Res. Theory Pract. 2019, 21, 150–165. [Google Scholar] [CrossRef]
- Derry, H.M.; Fagundes, C.P.; Andridge, R.; Glaser, R.; Malarkey, W.B.; Kiecolt-Glaser, J.K. Lower subjective social status exaggerates interleukin-6 responses to a laboratory stressor. Psychoneuroendocrinology 2013, 38, 2676–2685. [Google Scholar] [CrossRef]
- Carmeli, C.; Steen, J.; Petrovic, D.; Lepage, B.; Delpierre, C.; Kelly-Irving, M.; Bochud, M.; Kivimäki, M.; Vineis, P.; Stringhini, S. Mechanisms of life-course socioeconomic inequalities in adult systemic inflammation: Findings from two cohort studies. Soc. Sci. Med. 2020, 245, 112685. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.-C.; Wang, L.-L.; Xu, Y.-T. Understanding the different types of social support offered by audience to A-list diary-like and informative bloggers. Cyberpsychology Behav. Soc. Netw. 2013, 16, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Wills, T.A. Stress, social support, and the buffering hypothesis. Psychol. Bull. 1985, 98, 310. [Google Scholar] [CrossRef] [PubMed]
- Drageset, J. Social support. In Health Promotion in Health Care–Vital Theories and Research; Springer: Cham, Switzerland, 2021; pp. 137–144. [Google Scholar]
- Cutrona, C.E.; Suhr, J.A. Controllability of stressful events and satisfaction with spouse support behaviors. Commun. Res. 1992, 19, 154–174. [Google Scholar] [CrossRef]
- Cohen, S.; Hoberman, H.M. Positive events and social supports as buffers of life change stress. J. Appl. Soc. Psychol. 1983, 13, 99–125. [Google Scholar] [CrossRef]
- Thoits, P.A. Social support as coping assistance. J. Consult. Clin. Psychol. 1986, 54, 416. [Google Scholar] [CrossRef] [PubMed]
- Lakey, B.; Hubbard, S.A.; Woods, W.C.; Brummans, J.; Obreiter, A.; Fles, E.; Andrews, J.; Vander Molen, R.J.; Hesse, C.; Gildner, B. Supportive people evoke positive affect, but do not reduce negative affect, while supportive groups result from favorable dyadic, not group effects. Anxiety Stress Coping 2022, 35, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Woods, W.C.; Lakey, B.; Sain, T. The role of ordinary conversation and shared activity in the main effect between perceived support and affect. Eur. J. Soc. Psychol. 2016, 46, 356–368. [Google Scholar] [CrossRef]
- Eriksson, M.; Lindström, B. Antonovsky’s sense of coherence scale and the relation with health: A systematic review. J. Epidemiol. Community Health 2006, 60, 376. [Google Scholar] [CrossRef]
- Diener, E.; Chan, M.Y. Happy people live longer: Subjective well-being contributes to health and longevity. Appl. Psychol. Health Well-Being 2011, 3, 1–43. [Google Scholar] [CrossRef]
- Appau, S.; Churchill, S.A.; Farrell, L. Social integration and subjective wellbeing. Appl. Econ. 2019, 51, 1748–1761. [Google Scholar] [CrossRef]
- Bailey, D.; Wolfe, D.M.; Wolfe, C.R. With a little help from our friends: Social support as a source of well-being and of copying with stress. J. Soc. Soc. Welf. 1994, 21, 127. [Google Scholar] [CrossRef]
- Chu, P.S.; Saucier, D.A.; Hafner, E. Meta-analysis of the relationships between social support and well-being in children and adolescents. J. Soc. Clin. Psychol. 2010, 29, 624–645. [Google Scholar] [CrossRef]
- Thoits, P.A. Mechanisms linking social ties and support to physical and mental health. J. Health Soc. Behav. 2011, 52, 145–161. [Google Scholar] [CrossRef]
- Lyyra, T.-M.; Heikkinen, R.-L. Perceived social support and mortality in older people. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2006, 61, S147–S152. [Google Scholar] [CrossRef]
- Miyazaki, T.; Ishikawa, T.; Iimori, H.; Miki, A.; Wenner, M.; Fukunishi, I.; Kawamura, N. Relationship between perceived social support and immune function. Stress Health J. Int. Soc. Investig. Stress 2003, 19, 3–7. [Google Scholar] [CrossRef]
- Ali, S.M.; Merlo, J.; Rosvall, M.; Lithman, T.; Lindström, M. Social capital, the miniaturisation of community, traditionalism and first time acute myocardial infarction: A prospective cohort study in southern Sweden. Soc. Sci. Med. 2006, 63, 2204–2217. [Google Scholar] [CrossRef]
- Uchino, B.N.; Trettevik, R.; Kent de Grey, R.G.; Cronan, S.; Hogan, J.; Baucom, B.R. Social support, social integration, and inflammatory cytokines: A meta-analysis. Health Psychol. 2018, 37, 462. [Google Scholar] [CrossRef]
- Karlsen, M. The Benefits of Social Support for Your Healthy Lifestyle. Available online: https://nutritionstudies.org/benefits-social-support-healthy-lifestyle/ (accessed on 20 February 2024).
- Yang, Y.; Zhao, S.; Lin, L.; Qian, J.; Zhang, H.; Cai, F. Social support and quality of life in migrant workers: Focusing on the mediating effect of healthy lifestyle. Front. Public Health 2023, 11, 1061579. [Google Scholar] [CrossRef]
- Tawalbeh, L.I.; Tubaishat, A.; Batiha, A.-M.; Al-Azzam, M.; AlBashtawy, M. The relationship between social support and adherence to healthy lifestyle among patients with coronary artery disease in the north of Jordan. Clin. Nurs. Res. 2015, 24, 121–138. [Google Scholar] [CrossRef]
- Vila, J. Social support and longevity: Meta-analysis-based evidence and psychobiological mechanisms. Front. Psychol. 2021, 12, 717164. [Google Scholar] [CrossRef]
- Margină, D.; Ungurianu, A.; Purdel, C.; Tsoukalas, D.; Sarandi, E.; Thanasoula, M.; Tekos, F.; Mesnage, R.; Kouretas, D.; Tsatsakis, A. Chronic inflammation in the context of everyday life: Dietary changes as mitigating factors. Int. J. Environ. Res. Public Health 2020, 17, 4135. [Google Scholar] [CrossRef]
- Stafford, M.; Bendayan, R.; Tymoszuk, U.; Kuh, D. Social support from the closest person and sleep quality in later life: Evidence from a British birth cohort study. J. Psychosom. Res. 2017, 98, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Mattos, M.K. The Relationship between Social Support and Sleep Quality in Older Adults: A Review of the Evidence. Arch. Gerontol. Geriatr. 2023, 117, 105179. [Google Scholar] [CrossRef]
- Bloom, I.; Edwards, M.; Jameson, K.A.; Syddall, H.E.; Dennison, E.; Gale, C.R.; Baird, J.; Cooper, C.; Aihie Sayer, A.; Robinson, S. Influences on diet quality in older age: The importance of social factors. Age Ageing 2017, 46, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Conklin, A.I.; Forouhi, N.G.; Surtees, P.; Khaw, K.-T.; Wareham, N.J.; Monsivais, P. Social relationships and healthful dietary behaviour: Evidence from over-50s in the EPIC cohort, UK. Soc. Sci. Med. 2014, 100, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, A.; Smith, M.L.; Lee, S.; Towne, S.D.; Ory, M.G. The role of improved social support for healthy eating in a lifestyle intervention: Texercise Select. Public Health Nutr. 2021, 24, 146–156. [Google Scholar] [CrossRef]
- Scarapicchia, T.M.F.; Amireault, S.; Faulkner, G.; Sabiston, C.M. Social support and physical activity participation among healthy adults: A systematic review of prospective studies. Int. Rev. Sport Exerc. Psychol. 2017, 10, 50–83. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, L.; Feng, L.; Xi, Y.; Yu, H.; Ma, W.; Zhang, D.; Xiao, R. Association of dietary intake and lifestyle pattern with mild cognitive impairment in the elderly. J. Nutr. Health Aging 2015, 19, 164–168. [Google Scholar] [CrossRef]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef]
- Kivipelto, M.; Mangialasche, F.; Ngandu, T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, J.A.; Smith, P.J.; Mabe, S.; Hinderliter, A.; Lin, P.-H.; Liao, L.; Welsh-Bohmer, K.A.; Browndyke, J.N.; Kraus, W.E.; Doraiswamy, P.M. Lifestyle and neurocognition in older adults with cognitive impairments: A randomized trial. Neurology 2019, 92, e212–e223. [Google Scholar] [CrossRef]
- Verburgh, L.; Königs, M.; Scherder, E.J.; Oosterlaan, J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. Br. J. Sports Med. 2014, 48, 973–979. [Google Scholar] [CrossRef]
- Cohen, J.F.; Gorski, M.T.; Gruber, S.A.; Kurdziel, L.; Rimm, E.B. The effect of healthy dietary consumption on executive cognitive functioning in children and adolescents: A systematic review. Br. J. Nutr. 2016, 116, 989–1000. [Google Scholar] [CrossRef]
- Sen, A.; Tai, X.Y. Sleep Duration and Executive Function in Adults. Curr. Neurol. Neurosci. Rep. 2023, 23, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Rana, B.K.; Panizzon, M.S.; Franz, C.E.; Spoon, K.M.; Jacobson, K.C.; Xian, H.; Ancoli-Israel, S.; Lyons, M.; Kremen, W.S. Association of sleep quality on memory-related executive functions in middle age. J. Int. Neuropsychol. Soc. 2018, 24, 67–76. [Google Scholar] [CrossRef]
- Hwang, R.I.; Lim, J.Y.; Lee, Y.W. A comparison of the factors influencing the life satisfaction of the elderly according to their cognitive impairment level. J. Korean Acad. Nurs. 2009, 39, 622–631. [Google Scholar] [CrossRef]
- Mohammadi Mehr, M.; Zamani-Alavijeh, F.; Hasanzadeh, A.; Fasihi, T. Effect of healthy lifestyle educational programs on happiness and life satisfaction in the elderly: A randomized controlled trial study. Iran. J. Ageing 2019, 13, 440–451. [Google Scholar] [CrossRef]
- Grant, N.; Wardle, J.; Steptoe, A. The relationship between life satisfaction and health behavior: A cross-cultural analysis of young adults. Int. J. Behav. Med. 2009, 16, 259–268. [Google Scholar] [CrossRef]
- Best, J.R.; Nagamatsu, L.S.; Liu-Ambrose, T. Improvements to executive function during exercise training predict maintenance of physical activity over the following year. Front. Hum. Neurosci. 2014, 8, 353. [Google Scholar] [CrossRef]
- Dohle, S.; Diel, K.; Hofmann, W. Executive functions and the self-regulation of eating behavior: A review. Appetite 2018, 124, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.A.; Melnyk, B.M.; Jacobson, D.L.; O’Haver, J.A. Correlates among healthy lifestyle cognitive beliefs, healthy lifestyle choices, social support, and healthy behaviors in adolescents: Implications for behavioral change strategies and future research. J. Pediatr. Health Care 2011, 25, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Beavers, K.M.; Brinkley, T.E.; Nicklas, B.J. Effect of exercise training on chronic inflammation. Clin. Chim. Acta 2010, 411, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Simpson, N.; Dinges, D.F. Sleep and inflammation. Nutr. Rev. 2007, 65 (Suppl. S3), S244–S252. [Google Scholar] [CrossRef]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean diet as a tool to combat inflammation and chronic diseases. An overview. Biomedicines 2020, 8, 201. [Google Scholar] [CrossRef] [PubMed]
- Ricordi, C.; Garcia-Contreras, M.; Farnetti, S. Diet and inflammation: Possible effects on immunity, chronic diseases, and life span. J. Am. Coll. Nutr. 2015, 34 (Suppl. S1), 10–13. [Google Scholar] [CrossRef] [PubMed]
- Maunder, R.; Nolan, R.; Hunter, J.; Lancee, W.; Steinhart, A.; Greenberg, G. Relationship between social support and autonomic function during a stress protocol in ulcerative colitis patients in remission. Inflamm. Bowel Dis. 2012, 18, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Bosle, C.; Brenner, H.; Fischer, J.E.; Jarczok, M.N.; Schöttker, B.; Perna, L.; Hoffmann, K.; Herr, R.M. The association between supportive social ties and autonomic nervous system function—Differences between family ties and friendship ties in a cohort of older adults. Eur. J. Ageing 2022, 19, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Koopman, F.; Van Maanen, M.; Vervoordeldonk, M.J.; Tak, P. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J. Intern. Med. (GBR) 2017, 282, 64–75. [Google Scholar] [CrossRef]
- Chobanyan-Jürgens, K.; Jordan, J. Autonomic nervous system activity and inflammation: Good ideas, good treatments, or both? Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1999–H2001. [Google Scholar] [CrossRef]
- Bellocchi, C.; Carandina, A.; Montinaro, B.; Targetti, E.; Furlan, L.; Rodrigues, G.D.; Tobaldini, E.; Montano, N. The interplay between autonomic nervous system and inflammation across systemic autoimmune diseases. Int. J. Mol. Sci. 2022, 23, 2449. [Google Scholar] [CrossRef] [PubMed]
- Gerteis, A.K.S.; Schwerdtfeger, A.R. When rumination counts: Perceived social support and heart rate variability in daily life. Psychophysiology 2016, 53, 1034–1043. [Google Scholar] [CrossRef]
- Giletta, M.; Hastings, P.D.; Rudolph, K.D.; Bauer, D.J.; Nock, M.K.; Prinstein, M.J. Suicide ideation among high-risk adolescent females: Examining the interplay between parasympathetic regulation and friendship support. Dev. Psychopathol. 2017, 29, 1161–1175. [Google Scholar] [CrossRef]
- Lujan, H.L.; DiCarlo, S.E. Physical activity, by enhancing parasympathetic tone and activating the cholinergic anti-inflammatory pathway, is a therapeutic strategy to restrain chronic inflammation and prevent many chronic diseases. Med. Hypotheses 2013, 80, 548–552. [Google Scholar] [CrossRef]
- Huston, J.M.; Tracey, K.J. The pulse of inflammation: Heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J. Intern. Med. (GBR) 2011, 269, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, R.E.; Anderson, A.S.; Compas, B.E. Autonomic nervous system correlates of posttraumatic stress symptoms in youth: Meta-analysis and qualitative review. Clin. Psychol. Rev. 2022, 92, 102125. [Google Scholar] [CrossRef]
- Williamson, J.B.; Porges, E.C.; Lamb, D.G.; Porges, S.W. Maladaptive autonomic regulation in PTSD accelerates physiological aging. Front. Psychol. 2015, 5, 108546. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. The polyvagal theory: Phylogenetic substrates of a social nervous system. Int. J. Psychophysiol. 2001, 42, 123–146. [Google Scholar] [CrossRef]
- Kamarck, T.W.; Manuck, S.B.; Jennings, J.R. Social support reduces cardiovascular reactivity to psychological challenge: A laboratory model. Psychosom. Med. 1990, 52, 42–58. [Google Scholar] [CrossRef]
- Wolff, B.C.; Wadsworth, M.E.; Wilhelm, F.H.; Mauss, I.B. Children’s vagal regulatory capacity predicts attenuated sympathetic stress reactivity in a socially supportive context: Evidence for a protective effect of the vagal system. Dev. Psychopathol. 2012, 24, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Crockford, C.; Deschner, T.; Wittig, R.M. The role of oxytocin in social buffering: What do primate studies add? In Behavioral Pharmacology of Neuropeptides: Oxytocin; Springer: Cham, Switzerland, 2018; pp. 155–173. [Google Scholar]
- Heinrichs, M.; Baumgartner, T.; Kirschbaum, C.; Ehlert, U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol. Psychiatry 2003, 54, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-Y.; Tseng, H.-H.; Chi, M.H.; Chang, H.H.; Wu, C.-K.; Yang, Y.K.; Chen, P.S. The interaction of oxytocin and social support, loneliness, and cortisol level in major depression. Clin. Psychopharmacol. Neurosci. 2019, 17, 487. [Google Scholar] [CrossRef]
- Olff, M.; Frijling, J.L.; Kubzansky, L.D.; Bradley, B.; Ellenbogen, M.A.; Cardoso, C.; Bartz, J.A.; Yee, J.R.; Van Zuiden, M. The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology 2013, 38, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- Light, K.C.; Grewen, K.M.; Amico, J.A. More frequent partner hugs and higher oxytocin levels are linked to lower blood pressure and heart rate in premenopausal women. Biol. Psychol. 2005, 69, 5–21. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Handlin, L.; Petersson, M. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation. Front. Psychol. 2015, 5, 1529. [Google Scholar] [CrossRef] [PubMed]
- Uvnäs-Moberg, K. Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology 1998, 23, 819–835. [Google Scholar] [CrossRef] [PubMed]
- Wittig, R.M.; Crockford, C.; Weltring, A.; Langergraber, K.E.; Deschner, T.; Zuberbühler, K. Social support reduces stress hormone levels in wild chimpanzees across stressful events and everyday affiliations. Nat. Commun. 2016, 7, 13361. [Google Scholar] [CrossRef]
- Maniezzi, C.; Talpo, F.; Spaiardi, P.; Toselli, M.; Biella, G. Oxytocin increases phasic and tonic GABAergic transmission in CA1 region of mouse hippocampus. Front. Cell. Neurosci. 2019, 13, 178. [Google Scholar] [CrossRef]
- Takahashi, T. Sensory stimulation of oxytocin release is associated with stress management and maternal care. Front. Psychol. 2021, 11, 588068. [Google Scholar] [CrossRef]
- Petersson, M.; Diaz-Cabiale, Z.; Narváez, J.A.; Fuxe, K.; Uvnäs-Moberg, K. Oxytocin increases the density of high affinity α2-adrenoceptors within the hypothalamus, the amygdala and the nucleus of the solitary tract in ovariectomized rats. Brain Res. 2005, 1049, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Neumann, I.D. Involvement of the brain oxytocin system in stress coping: Interactions with the hypothalamo-pituitary-adrenal axis. Prog. Brain Res. 2002, 139, 147–162. [Google Scholar] [PubMed]
- Knox, S.S.; Uvnäs-Moberg, K. Social isolation and cardiovascular disease: An atherosclerotic pathway? Psychoneuroendocrinology 1998, 23, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Domes, G.; Heinrichs, M.; Gläscher, J.; Büchel, C.; Braus, D.F.; Herpertz, S.C. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol. Psychiatry 2007, 62, 1187–1190. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Takayanagi, Y.; Inoue, K.; Kimura, T.; Young, L.J.; Onaka, T.; Nishimori, K. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 2009, 29, 2259–2271. [Google Scholar] [CrossRef] [PubMed]
- Szeto, A.; Nation, D.A.; Mendez, A.J.; Dominguez-Bendala, J.; Brooks, L.G.; Schneiderman, N.; McCabe, P.M. Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1495–E1501. [Google Scholar] [CrossRef] [PubMed]
- Ditzen, B.; Heinrichs, M. Psychobiology of social support: The social dimension of stress buffering. Restor. Neurol. Neurosci. 2014, 32, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Eisenberger, N.I.; Taylor, S.E.; Gable, S.L.; Hilmert, C.J.; Lieberman, M.D. Neural pathways link social support to attenuated neuroendocrine stress responses. Neuroimage 2007, 35, 1601–1612. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Rao, H.; Wetmore, G.S.; Furlan, P.M.; Korczykowski, M.; Dinges, D.F.; Detre, J.A. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proc. Natl. Acad. Sci. USA 2005, 102, 17804–17809. [Google Scholar] [CrossRef]
- Eisenberger, N.I.; Lieberman, M.D.; Williams, K.D. Does rejection hurt? An fMRI study of social exclusion. Science 2003, 302, 290–292. [Google Scholar] [CrossRef]
- Robles, T.F. Annual Research Review: Social relationships and the immune system during development. J. Child Psychol. Psychiatry 2021, 62, 539–559. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.S.; Cutrona, C.E.; Hicklin, D.; Russell, D.W.; Lubaroff, D.M. Social support and immune function among spouses of cancer patients. J. Personal. Soc. Psychol. 1990, 59, 344. [Google Scholar] [CrossRef] [PubMed]
- Mithen, J.; Aitken, Z.; Ziersch, A.; Kavanagh, A.M. Inequalities in social capital and health between people with and without disabilities. Soc. Sci. Med. 2015, 126, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Krahn, G.L.; Walker, D.K.; Correa-De-Araujo, R. Persons with disabilities as an unrecognized health disparity population. Am. J. Public Health 2015, 105, S198–S206. [Google Scholar] [CrossRef] [PubMed]
- Gething, L. Sources of double disadvantage for people with disabilities living in remote and rural areas of New South Wales, Australia. Disabil. Soc. 1997, 12, 513–531. [Google Scholar] [CrossRef]
- Equality and Human Rights Commission. Being Disabled in Britain: A Journey Less Equal; EHRC: London, UK, 2017. [Google Scholar]
- Bell, V.; Robinson, B.; Katona, C.; Fett, A.-K.; Shergill, S. When trust is lost: The impact of interpersonal trauma on social interactions. Psychol. Med. 2019, 49, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Hyun, S.; Yip, T.; Hahm, H.C.; Liu, C.H. Learning about discrimination during childhood: Implications for racial trauma among Asians and Asian Americans during the pandemic. Asian J. Psychiatry 2022, 77, 103250. [Google Scholar] [CrossRef]
- Burkett, C.A. Obstructed use: Reconceptualizing the mental health (help-seeking) experiences of Black Americans. J. Black Psychol. 2017, 43, 813–835. [Google Scholar] [CrossRef]
- Cokley, K.; Krueger, N.; Cunningham, S.R.; Burlew, K.; Hall, S.; Harris, K.; Castelin, S.; Coleman, C. The COVID-19/racial injustice syndemic and mental health among Black Americans: The roles of general and race-related COVID worry, cultural mistrust, and perceived discrimination. J. Community Psychol. 2022, 50, 2542–2561. [Google Scholar] [CrossRef]
- Kohl, K.S.; Amilon, A.; Olsen, L. Trust and mistrust in public services for people with disabilities: Analysing the gap between the perspectives of caseworkers and disabled people in Denmark. Br. J. Soc. Work. 2022, 52, 3288–3306. [Google Scholar] [CrossRef]
- Yang, Y.C.; Schorpp, K.; Harris, K.M. Social support, social strain and inflammation: Evidence from a national longitudinal study of US adults. Soc. Sci. Med. 2014, 107, 124–135. [Google Scholar] [CrossRef]
- Ozbay, F.; Johnson, D.C.; Dimoulas, E.; Morgan Iii, C.; Charney, D.; Southwick, S. Social support and resilience to stress: From neurobiology to clinical practice. Psychiatry (Edgmont) 2007, 4, 35–40. [Google Scholar] [PubMed]
- Chang, Y.-H.; Yang, C.-T.; Hsieh, S. Social support enhances the mediating effect of psychological resilience on the relationship between life satisfaction and depressive symptom severity. Sci. Rep. 2023, 13, 4818. [Google Scholar] [CrossRef] [PubMed]
- Stoop, R. Neuromodulation by oxytocin and vasopressin. Neuron 2012, 76, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.S. Oxytocin pathways and the evolution of human behavior. Annu. Rev. Psychol. 2014, 65, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Holt-Lunstad, J.; Smith, T.B.; Layton, J.B. Social relationships and mortality risk: A meta-analytic review. PLoS Med. 2010, 7, e1000316. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.; Anderson, C.; Gillespie, S.; Giurgescu, C.; Nolan, T.; Nowak, A.; Williams, K.P. Social integration and quality of social relationships as protective factors for inflammation in a nationally representative sample of black women. J. Urban Health 2019, 96, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Meier, H.C.; Mitchell, C.; Karadimas, T.; Faul, J.D. Systemic inflammation and biological aging in the Health and Retirement Study. Geroscience 2023, 45, 3257–3265. [Google Scholar] [CrossRef]
- Samson, L.D.; Buisman, A.M.; Ferreira, J.A.; Picavet, H.S.J.; Verschuren, W.M.; Boots, A.M.; Engelfriet, P. Inflammatory marker trajectories associated with frailty and ageing in a 20-year longitudinal study. Clin. Transl. Immunol. 2022, 11, e1374. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, A.J.; McCartney, D.L.; Harris, S.E.; Taylor, A.M.; Redmond, P.; Starr, J.M.; Zhang, Q.; McRae, A.F.; Wray, N.R.; Spires-Jones, T.L. Trajectories of inflammatory biomarkers over the eighth decade and their associations with immune cell profiles and epigenetic ageing. Clin. Epigenet. 2018, 10, 159. [Google Scholar] [CrossRef]
- Benayoun, B.A.; Pollina, E.A.; Singh, P.P.; Mahmoudi, S.; Harel, I.; Casey, K.M.; Dulken, B.W.; Kundaje, A.; Brunet, A. Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Res. 2019, 29, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Ogrodnik, M.; Evans, S.A.; Fielder, E.; Victorelli, S.; Kruger, P.; Salmonowicz, H.; Weigand, B.M.; Patel, A.D.; Pirtskhalava, T.; Inman, C.L. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 2021, 20, e13296. [Google Scholar] [CrossRef] [PubMed]
- Lepperdinger, G. Inflammation and mesenchymal stem cell aging. Curr. Opin. Immunol. 2011, 23, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Bektas, A.; Schurman, S.H.; Sen, R.; Ferrucci, L. Human T cell immunosenescence and inflammation in aging. J. Leukoc. Biol. 2017, 102, 977–988. [Google Scholar] [CrossRef] [PubMed]
- Baechle, J.J.; Chen, N.; Makhijani, P.; Winer, S.; Furman, D.; Winer, D.A. Chronic Inflammation and the Hallmarks of Aging. Mol. Metab. 2023, 74, 101755. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Teissier, T.; Boulanger, E.; Cox, L.S. Interconnections between inflammageing and immunosenescence during ageing. Cells 2022, 11, 359. [Google Scholar] [CrossRef]
- Ren, J.-L.; Pan, J.-S.; Lu, Y.-P.; Sun, P.; Han, J. Inflammatory signaling and cellular senescence. Cell. Signal. 2009, 21, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, F.; Prattichizzo, F.; Grillari, J.; Balistreri, C.R. Cellular senescence and inflammaging in age-related diseases. Mediat. Inflamm. 2018, 2018, 9076485. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Jin, R.; Chan, A.K.Y.; Wu, J.; Lee, T.M.C. Relationships between inflammation and age-related neurocognitive changes. Int. J. Mol. Sci. 2022, 23, 12573. [Google Scholar] [CrossRef] [PubMed]
- Juster, R.-P.; Perna, A.; Marin, M.-F.; Sindi, S.; Lupien, S.J. Timing is everything: Anticipatory stress dynamics among cortisol and blood pressure reactivity and recovery in healthy adults. Stress 2012, 15, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Slattery, M.J.; Grieve, A.J.; Ames, M.E.; Armstrong, J.M.; Essex, M.J. Neurocognitive function and state cognitive stress appraisal predict cortisol reactivity to an acute psychosocial stressor in adolescents. Psychoneuroendocrinology 2013, 38, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Sirgy, M.J. The Psychology of Quality of Life; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- World Health Organization. WHOQOL: Measuring Quality of Life. Available online: https://iris.who.int/handle/10665/63482 (accessed on 18 April 2024).
- Uchino, B.N.; de Grey, R.G.K.; Cronan, S.; Smith, T.W.; Diener, E.; Joel, S.; Bosch, J. Life satisfaction and inflammation in couples: An actor–partner analysis. J. Behav. Med. 2018, 41, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Wickrama, K.; Ralston, P.A.; O’Neal, C.W.; Ilich, J.Z.; Harris, C.M.; Coccia, C.; Young-Clark, I.; Lemacks, J. Linking life dissatisfaction to health behaviors of older African Americans through psychological competency and vulnerability. Res. Aging 2013, 35, 591–611. [Google Scholar] [CrossRef]
- Ironson, G.; Banerjee, N.; Fitch, C.; Krause, N. Positive emotional well-being, health Behaviors, and inflammation measured by C-Reactive protein. Soc. Sci. Med. 2018, 197, 235–243. [Google Scholar] [CrossRef]
- Costa-Cordella, S.; Arevalo-Romero, C.; Parada, F.J.; Rossi, A. Social support and cognition: A systematic review. Front. Psychol. 2021, 12, 637060. [Google Scholar] [CrossRef] [PubMed]
- Londhe, P.; Guttridge, D.C. Inflammation induced loss of skeletal muscle. Bone 2015, 80, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Moieni, M.; Eisenberger, N.I. Effects of inflammation on social processes and implications for health. Ann. N. Y. Acad. Sci. 2018, 1428, 5–13. [Google Scholar] [CrossRef]
- Muscatell, K.A.; Inagaki, T.K. Beyond social withdrawal: New perspectives on the effects of inflammation on social behavior. Brain Behav. Immun. Health 2021, 16, 100302. [Google Scholar] [CrossRef]
- de Almeida Roediger, M.; de Fátima Nunes Marucci, M.; Duim, E.L.; Santos, J.L.F.; de Oliveira Duarte, Y.A.; de Oliveira, C. Inflammation and quality of life in later life: Findings from the health, well-being and aging study (SABE). Health Qual. Life Outcomes 2019, 17, 26. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, A.C. Chronic inflammation and quality of life in older adults: A cross-sectional study using biomarkers to predict emotional and relational outcomes. Health Qual. Life Outcomes 2014, 12, 141. [Google Scholar] [CrossRef]
- White, K.; Lawrence, J.A.; Tchangalova, N.; Huang, S.J.; Cummings, J.L. Socially-assigned race and health: A scoping review with global implications for population health equity. Int. J. Equity Health 2020, 19, 25. [Google Scholar] [CrossRef]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tam, L.M.; Hocker, K.; David, T.; Williams, E.M. The Influence of Social Dynamics on Biological Aging and the Health of Historically Marginalized Populations: A Biopsychosocial Model for Health Disparities. Int. J. Environ. Res. Public Health 2024, 21, 554. https://doi.org/10.3390/ijerph21050554
Tam LM, Hocker K, David T, Williams EM. The Influence of Social Dynamics on Biological Aging and the Health of Historically Marginalized Populations: A Biopsychosocial Model for Health Disparities. International Journal of Environmental Research and Public Health. 2024; 21(5):554. https://doi.org/10.3390/ijerph21050554
Chicago/Turabian StyleTam, Lok Ming, Kristin Hocker, Tamala David, and Edith Marie Williams. 2024. "The Influence of Social Dynamics on Biological Aging and the Health of Historically Marginalized Populations: A Biopsychosocial Model for Health Disparities" International Journal of Environmental Research and Public Health 21, no. 5: 554. https://doi.org/10.3390/ijerph21050554
APA StyleTam, L. M., Hocker, K., David, T., & Williams, E. M. (2024). The Influence of Social Dynamics on Biological Aging and the Health of Historically Marginalized Populations: A Biopsychosocial Model for Health Disparities. International Journal of Environmental Research and Public Health, 21(5), 554. https://doi.org/10.3390/ijerph21050554