Behind the Hospital Ward: In-Hospital Mortality of Type 2 Diabetes Mellitus Patients in Indonesia (Analysis of National Health Insurance Claim Sample Data)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction of BPJS Kesehatan Sample Claim Data
2.1.1. Sample Selection Steps
- Sub-population of participants who joined BPJS Kesehatan before 2022.
- Sub-population of participants who joined BPJS Kesehatan in 2022, consisting of new individuals who actively registered as BPJS Kesehatan participants in 2022 based on the master data from membership files until the end of 2022.
- Preparing the Sampling Frame:
- Gather all sampling units, which are participant families, into a sampling frame.
- The sampling frame is taken from the participant database as of 31 December 2022.
- Building StrataStrata are constructed based on the combination of two variables: primary healthcare and family category (three categories). Family categories: Category 1: Participants who have received health services at FKTP; Category 2: Participants who have received health services at FKRTL; Category 3: Families where no members have received health services. If each FKTP has members from all three categories, there will be a maximum of three strata.
- Selecting Family Samples
- Each stratum is randomly selected for a minimum of (N, 1) families, meaning one family unit is selected from each stratum.
- At this stage, the sampling process is completed and followed by filtering the complete (master) data for data selection based on the selected samples.
- Obtaining Participant Sample DataFiltering master participant data (database) using the family code criteria as the selected family code in step 3.
- Obtaining Service Claim Sample Data (from primary health care and hospital)Obtaining service data based on membership samples by filtering the service database using participant code criteria, including participant codes selected in step 4.
2.1.2. Weight
2.2. Research Design and Participants
2.2.1. Dependent Variable
2.2.2. Independent Variables
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics
- Patient Characteristics
- 2.
- Hospital Characteristic
- Patient Characteristics
- 2.
- Hospital Characteristics
3.2. In-Hospital Mortality Determinant
- Patient Characteristics
- 2.
- Hospital Characteristics
4. Discussion
4.1. Patient Characteristics:
4.1.1. Sex
4.1.2. Age
4.1.3. Employment Status
4.2. Complications, Comorbidities, and Case Severity
4.2.1. Complications
4.2.2. Comorbidities
4.2.3. Case Severity
4.3. Hospital Characteristics
4.3.1. Hospital Ownership
4.3.2. Hospital Location
4.4. Study Limitations
4.5. Future Research Directions
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
- Addressing gender disparities: Policies should focus on addressing gender-specific healthcare needs and improving access to healthcare services for female patients. Efforts should be made to understand and mitigate factors contributing to higher mortality rates among females.
- Targeted interventions for older patients: Healthcare policies should prioritize interventions aimed at managing age-related health deterioration, including the management of comorbidities and the provision of specialized care for older patients.
- Support for informal workers and subsidized groups: Policies should aim to improve healthcare access and quality for informal workers and subsidized groups, recognizing their higher risk of mortality and addressing barriers to healthcare utilization.
- Enhancing hospital levels and regions: Efforts should be made to strengthen healthcare infrastructure and services in regions with higher mortality rates, such as Sulawesi, Kalimantan, Sumatera, Papua, Nusa Tenggara, and Maluku. Additionally, attention should be given to improving the quality of care in higher-level hospitals (Classes A, B, and C) and specialist services hospitals to reduce mortality rates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Diabetes. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 21 March 2024).
- Care, D.; Suppl, S.S. Association American Diabetes Classification and diagnosis of diabetes: Standards of medical care in Diabetesd2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. What is diabetes? 2023. Available online: https://www.cdc.gov/diabetes/basics/diabetes.html (accessed on 21 March 2024).
- International Diabetes Federation. IDF Diabetes Atlas; Boyko, E.J., Ed.; International Diabetes Federation: Brussels, Belgium, 2021; ISBN 9782930229980. [Google Scholar]
- DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I. Type 2 diabetes mellitus. Nat. Rev. Dis. Prim. 2015, 1, 15019. [Google Scholar] [CrossRef] [PubMed]
- Todkar, S. Diabetes mellitus the ‘Silent Killer’ of mankind: An overview on the eve of upcoming World Health Day. J. Med. Allied Sci. 2016, 6, 39. [Google Scholar] [CrossRef]
- Institute for Health Metrics and Evaluation. Health Data Indonesia; Institute for Health Metrics and Evaluation: Seattle, WA, USA, 2019. [Google Scholar]
- Farmaki, P.; Damaskos, C.; Garmpis, N.; Garmpi, A.; Savvanis, S.; Diamantis, E. Complications of the Type 2 Diabetes Mellitus. Curr. Cardiol. Rev. 2021, 16, 249–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, W.; Mak, I.L.; Chin, W.Y.; Yu, E.Y.T.; Lam, C.L.K.; Wan, E.Y.F. Trends of clinical parameters and incidences of diabetes mellitus complications among patients with type 2 diabetes mellitus in Hong Kong, 2010–2019: A retrospective cohort study. eClinicalMedicine 2023, 60, 101999. [Google Scholar] [CrossRef] [PubMed]
- Indonesia Ministry of Health. Buku Panduan Jaminan Kesehatan Nasional bagi Populasi Kunci; Kementerian Kesehatan Republik Indonesia: Jakarta, Indonesia, 2016.
- Indonesia Ministry of Health. Peraturan Menteri Kesehatan Republik Indonesia Nomor 28 Tahun 2014 tentang Pedoman Pelaksanaan Program Jaminan Kesehatan Nasional; Kementerian Kesehatan Republik Indonesia: Jakarta, Indonesia, 2014; pp. 1–44.
- BPJS Kesehatan. Data Sampel BPJS Kesehatan; BPJS Kesehatan: Central Jakarta, Indonesia, 2022.
- Kessler, I.I. Mortality experience of diabetic patients. A twenty-six year follow-up study. Am. J. Med. 1971, 51, 715–724. [Google Scholar] [CrossRef]
- Papazafiropoulou, A.; Tentolouris, N.; Bousboulas, S.; Sotiropoulos, A.; Tamvakos, E.; Peppas, T.; Kardara, M.; Pappas, S. In-hospital mortality in a tertiary referral hospital: Causes of death and comparison between patients with and without diabetes. Exp. Clin. Endocrinol. Diabetes 2010, 118, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Roche, M.M.; Wang, P.P. Sex differences in all-cause and cardiovascular mortality, hospitalization for individuals with and without diabetes, and patients with diabetes diagnosed early and late. Diabetes Care 2013, 36, 2582–2590. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, A.G.; Kirk, J.K.; Goff, D.C.; Wagenknecht, L.E. Excess mortality related to diabetes mellitus in elderly medicare beneficiaries. Ann. Epidemiol. 2004, 14, 362–367. [Google Scholar] [CrossRef]
- Das, S.; Mishra, R.K.; Jena, B.B.; Mishra, B.K.; Misra, K.C.; Sarangi, B. Mortality events amongst non insulin dependent diabetes mellitus patients in Orissa. J. Assoc. Physicians India 1991, 39, 519–520. Available online: http://europepmc.org/abstract/MED/1800491 (accessed on 21 March 2024).
- Walker, J. One-year mortality in patients with diabetes in Scotland 2004–2011: Influence of socioeconomic status and comorbidity. Eur. J. Public Health 2014, 24 (Suppl. 2), cku151-006. [Google Scholar] [CrossRef]
- Kim, N.H.; Kim, T.J.; Kim, N.H.; Choi, K.M.; Baik, S.H.; Choi, D.S.; Park, Y.; Kim, S.G. Relative and combined effects of socioeconomic status and diabetes on mortality: A nationwide cohort study. Medicine 2016, 95, e4403. [Google Scholar] [CrossRef] [PubMed]
- Bannier, K.; Lichtenauer, M.; Franz, M.; Fritzenwanger, M.; Kabisch, B.; Figulla, H.R.; Pfeifer, R.; Jung, C. Impact of diabetes mellitus and its complications: Survival and quality-of-life in critically ill patients. J. Diabetes Its Complicat. 2015, 29, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- Zhong, V.W.; Juhaeri, J.; Mayer-Davis, E.J. Trends in hospital admission for diabetic ketoacidosis in adults with type 1 and type 2 diabetes in England, 1998–2013: A retrospective cohort study. Diabetes Care 2018, 41, 1870–1877. [Google Scholar] [CrossRef] [PubMed]
- Getie, A.; Wondmieneh, A.; Bimerew, M.; Gedefaw, G.; Demis, A. Determinants of diabetes ketoacidosis among diabetes mellitus patients at North Wollo and Waghimra zone public hospitals, Amhara region, Northern Ethiopia. BMC Endocr. Disord. 2021, 21, 26. [Google Scholar] [CrossRef] [PubMed]
- Akimov, P.; Barinov, E.K.; Terekhina, N. Diabetic coma in the mortality of patients with diabetes mellitus. Russ. J. Forensic Med. 2023, 9, 41–48. [Google Scholar] [CrossRef]
- Kakusa, M.; Kamanga, B.; Ngalamika, O.; Nyirenda, S. Comatose and noncomatose adult diabetic ketoacidosis patients at the University Teaching Hospital, Zambia: Clinical profiles, risk factors, and mortality outcomes. Indian J Endocrinol Metab. 2016, 20, 199–205. [Google Scholar] [PubMed]
- Del Coco, L.; Vergara, D.; De Matteis, S.; Mensà, E.; Sabbatinelli, J.; Prattichizzo, F.; Bonfigli, A.R.; Storci, G.; Bravaccini, S.; Pirini, F.; et al. NMR-based metabolomic approach tracks potential serum biomarkers of disease progression in patients with type 2 diabetes mellitus. J. Clin. Med. 2019, 8, 720. [Google Scholar] [CrossRef] [PubMed]
- Sotirakopoulos, N.; Kalogiannidou, I.M.; Tersi, M.; Armentzioiou, K.; Sivridis, D.; Mavromatidis, K.S. Acid-base and electrolyte disorders in patients with diabetes mellitus. Saudi J. Kidney Dis. Transplant. 2012, 23, 58–62. Available online: https://api.semanticscholar.org/CorpusID:8775116 (accessed on 21 March 2024).
- Umair, M.; Salam, S.; Kazi, A.; Kaur, A.; Abrudescu, A.; Trandafirescu, T. Rhabdomyolysis and Acute Pancreatitis in Diabetic Ketoacidosis: A Case Report and Review of Literature. Open J. Endocr. Metab. Dis. 2021, 11, 161–164. [Google Scholar] [CrossRef]
- Gauci, R.; Hunter, M.; Bruce, D.G.; Davis, W.A.; Davis, T.M.E. Anemia complicating type 2 diabetes: Prevalence, risk factors and prognosis. J. Diabetes Complicat. 2017, 31, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Zhou, J.; Leung, K.S.K.; Wu, W.K.K.; Wong, W.T.; Liu, T.; Wong, I.C.K.; Jeevaratnam, K.; Zhang, Q.; Tse, G. Development of a predictive risk model for all-cause mortality in patients with diabetes in Hong Kong. BMJ Open Diabetes Res. Care 2021, 9, e001950. [Google Scholar] [CrossRef] [PubMed]
- Nseir, W.; Artul, S.; Nasrallah, N.; Mograbi, J.; Mahamid, M. Hospitalization and 1-year all-cause mortality in type 2 diabetic patients with chronic kidney disease at Stages 1 and 2: Effect of mild anemia. J. Diabetes 2016, 8, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Santosh, A.; Pasumarthy, P.; Krishna Murthy, M. Urinary Tract Infections:Incidence in Patients with Type 2 Diabetes Mellitus. Value Health 2018, 21, S113. [Google Scholar] [CrossRef]
- Nitzan, O.; Elias, M.; Chazan, B.; Saliba, W. Urinary tract infections in patients with type 2 diabetes mellitus: Review of prevalence, diagnosis, and management. Diabetes Metab. Syndr. Obes. 2015, 8, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Chiţă, T.; Timar, B.; Muntean, D.; Bădiţoiu, L.; Horhat, F.; Hogea, E.; Moldovan, R.; Timar, R.; Licker, M. Urinary tract infections in romanian patients with diabetes: Prevalence, etiology, and risk factors. Ther. Clin. Risk Manag. 2017, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- López-de-Andrés, A.; De Miguel-Díez, J.; Jiménez-Trujillo, I.; Hernández-Barrera, V.; De Miguel-Yanes, J.M.; Méndez-Bailón, M.; Pérez-Farinós, N.; Salinero-Fort, M.Á.; Jiménez-García, R. Hospitalisation with community-acquired pneumonia among patients with type 2 diabetes: An observational population-based study in Spain from 2004 to 2013. BMJ Open 2017, 7, e013097. [Google Scholar] [CrossRef]
- Hartz, A.J.; Krakauer, H.; Kuhn, E.M.; Young, M.; Jacobsen, S.J.; Gay, G.; Muenz, L.; Katzoff, M.; Bailey, R.C.; Rimm, A.A. Hospital characteristics and mortality rates. N. Engl. J. Med. 1989, 321, 1720–1725. [Google Scholar] [CrossRef]
- Kuhn, E.M.; Hartz, A.J.; Krakauer, H.; Bailey, R.C.; Rimm, A.A. The Relationship of Hospital Ownership and Teaching Status to 30- and 180-Day Adjusted Mortality Rates. Med. Care 1994, 32, 1098–1108. [Google Scholar] [CrossRef]
- Devereaux, P.J.; Choi, P.T.L.; Lacchetti, C.; Weaver, B.; Schünemann, H.J.; Haines, T.; Lavis, J.N.; Grant, B.J.B.; Haslam, D.R.S.; Bhandari, M. A systematic review and meta-analysis of studies comparing mortality rates of private for-profit and private not-for-profit hospitals. Cmaj 2002, 166, 1399–1406. [Google Scholar]
- Henderson, W.G.; Khuri, S.F.; Mosca, C.; Fink, A.S.; Hutter, M.M.; Neumayer, L.A. Comparison of risk-adjusted 30-day postoperative mortality and morbidity in Department of Veterans Affairs hospitals and selected university medical centers: General surgical operations in men. J. Am. Coll. Surg. 2007, 204, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Park, E.-C.; Kim, T.H.; Yoo, J.W.; Lee, S.G. Mortality, length of stay, and inpatient charges for heart failure patients at public versus private hospitals in South Korea. Yonsei Med. J. 2015, 56, 853. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, D.; Liu, Q.; Wang, W.; Sun, J.Y.; Wang, M.; Suo, M. Study on the prevalence of diabetes mellitus among acute coronary syndrome inpatients in a multiprovincial study in China. Zhonghua Liu Xing Bing Xue Za Zhi 2008, 29, 526–529. [Google Scholar] [PubMed]
- Turbow, S.D.; Uppal, T.S.; Haw, J.S.; Chehal, P.; Fernandes, G.; Shah, M.; Rajpathak, S.; Ali, M.K.; Narayan, K.V. Trends and demographic disparities in diabetes hospital admissions: Analyses of serial cross-sectional national and state data, 2008–2017. Diabetes Care 2022, 45, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Mulyanto, J.; Kunst, A.E.; Kringos, D.S. Geographical inequalities in healthcare utilisation and the contribution of compositional factors: A multilevel analysis of 497 districts in Indonesia. Health Place 2019, 60, 102236. [Google Scholar] [CrossRef] [PubMed]
- Laksono, A.D.; Wulandari, R.D.; Rohmah, N.; Rukmini, R.; Tumaji, T. Regional disparities in hospital utilisation in Indonesia: A cross-sectional analysis data from the 2018 Indonesian Basic Health Survey. BMJ Open 2023, 13, e064532. [Google Scholar] [CrossRef]
- Laksono, A.D.; Wulandari, R.D. The Border-Non-Border Areas Disparities in Hospital Utilization in Kalimantan Island, Indonesia. Med.-Leg. Updat. 2021, 21, 29–34. [Google Scholar]
No | Primary Healthcare ID | Family Categories | Population Size of Family | Number of Family Samples | pi (Likelihood of Being Selected) | wi (Weight) |
---|---|---|---|---|---|---|
1 | 1 | 1 | 150 | 1 | 0.067 | 150 |
2 | 1 | 2 | 400 | 1 | 0.025 | 400 |
3 | 1 | 3 | 6200 | 1 | 0.002 | 6200 |
4 | 2 | 1 | 200 | 1 | 0.050 | 200 |
5 | 2 | 2 | 500 | 1 | 0.020 | 500 |
6 | 2 | 3 | 5900 | 1 | 0.002 | 5900 |
Variable | Categories | n | % |
---|---|---|---|
Outcome Variable | |||
Hospital discharge status | Alive | 570.458 | 93.4 |
Dead | 40.351 | 6.6 | |
Patient Characteristic | |||
Sex | Male | 233.585 | 38.2 |
Female | 377.224 | 61.8 | |
Age | Maximum | 96 | |
Minimum | 30 | ||
Median | 57 | ||
Employment Status | Dependent Employment | 138.488 | 22.7 |
Independent Employment | 245.916 | 40.3 | |
Subsidized group | 226.405 | 37.1 | |
Insurance Class | Class 1 | 170.960 | 28.0 |
Class 2 | 117.192 | 19.2 | |
Class 3 | 322.657 | 52.8 | |
Comorbidities | |||
Disorders of fluid, electrolyte and | No | 547.921 | 89.7 |
acid–base balance (ICD10:E87) | Yes | 62.888 | 10.3 |
Anemia (ICD10:D64) | No | 584.956 | 95.8 |
Yes | 25.853 | 4.2 | |
Urinary tract infection (ICD10:N39) | No | 579.117 | 94.8 |
Yes | 31.692 | 5.2 | |
Pneumonia (ICD10:J18) | No | 588.484 | 96.3 |
Yes | 22.325 | 3.7 | |
Complication (diagnose on discharge) | |||
NIDDM without complications | (ICD10:E119) | 610.809 | 75.6 |
NIDDM with coma | (ICD10:E110) | 461.522 | 4.6 |
NIDDM with ketoacidosis | (ICD10:E111) | 28.316 | 3.7 |
NIDDM with multiple complications | (ICD10:E117) | 22.340 | 4.9 |
NIDDM with other specified complications | (ICD10:E116) | 30.001 | 7.3 |
NIDDM with unspecified complications | (ICD10:E118) | 44.696 | 3.9 |
Case Severity Level | Mild | 365.326 | 59.8 |
Moderate | 158.147 | 25.9 | |
Severe | 87.336 | 14.3 | |
Hospital Characteristic | |||
Hospital Ownership | Government | 247.086 | 40.5 |
Military/ Police | 36.557 | 6.0 | |
State-Owned Enterprise (BUMN) | 20.190 | 3.3 | |
Private | 306.976 | 50.3 | |
Hospital Level | A | 20.822 | 3.4 |
B | 183.581 | 30.1 | |
C | 286.724 | 46.9 | |
D | 109.223 | 17.9 | |
Specialist services | 10.459 | 1.7 | |
Hospital Region | Jawa and Bali | 374.397 | 61.3 |
Sumatera | 130.231 | 21.3 | |
Sulawesi | 45.196 | 7.4 | |
Kalimantan | 34.496 | 5.6 | |
Papua, Nusa Tenggara, Maluku | 26.489 | 4.3 | |
Hospital Location | City | 275.020 | 45.0 |
County | 335.789 | 55.0 | |
Length of Stay | Maximum | 46 | |
Minimum | 0 | ||
Median | 4 | ||
Case Claim (in USD) | Maximum | 1089 | |
Minimum | 147 | ||
Median | 300.09 |
Variables | Categories | Alive | Dead | ||
---|---|---|---|---|---|
n | % | n | % | ||
Patient Characteristic | |||||
Sex | Male | 218.898 | 93.7 | 14.687 | 6.3 |
Female | 351.560 | 93.2 | 25.664 | 6.8 | |
Employment Status | Dependent Employment | 133.291 | 96.2 | 5.197 | 3.8 |
Independent Employment | 231.128 | 94.0 | 14.788 | 6.0 | |
Subsidized group | 206.039 | 91.0 | 20.366 | 9.0 | |
Insurance Class | Class 1 | 162.408 | 95.0 | 8.552 | 5.0 |
Class 2 | 111.377 | 95.0 | 5.815 | 5.0 | |
Class 3 | 296.673 | 91.9 | 25.984 | 8.1 | |
Comorbidities | |||||
Disorders of fluid, electrolyte and | No | 514.034 | 93.8 | 33.887 | 6.2 |
acid–base balance (ICD10:E87) | Yes | 56.424 | 89.7 | 6.464 | 10.3 |
Anemia (ICD10:D64) | No | 546.275 | 93.4 | 38.681 | 6.6 |
Yes | 24.183 | 93.5 | 1.670 | 6.5 | |
Urinary tract infection | No | 540.756 | 93.4 | 38.361 | 6.6 |
(ICD10:N39) | Yes | 29.702 | 93.7 | 1.990 | 6.3 |
Pneumonia (ICD10:J18) | No | 550.000 | 93.5 | 38.484 | 6.5 |
Yes | 20.458 | 91.6 | 1.867 | 8.4 | |
Complication | |||||
NIDDM without complications | (ICD10:E119) | 441.214 | 95.6 | 20.308 | 4.4 |
NIDDM with coma | (ICD10:E110) | 21.549 | 76.1 | 6.767 | 23.9 |
NIDDM with ketoacidosis | (ICD10:E111) | 15.693 | 70.2 | 6.647 | 29.8 |
NIDDM with multiple complications | (ICD10:E117) | 25.938 | 86.5 | 4.063 | 13.5 |
NIDDM with other specified complications | (ICD10:E116) | 43.553 | 97.4 | 1.143 | 2.6 |
NIDDM with unspecified complications | (ICD10:E118) | 22.511 | 94.1 | 1.423 | 5.9 |
Case Severity Level | Mild | 351.991 | 96.3 | 13.335 | 3.7 |
Moderate | 149.082 | 94.3 | 9.065 | 5.7 | |
Severe | 69.385 | 79.4 | 17.951 | 20.6 | |
Hospital Characteristic | |||||
Hospital Ownership | Government | 223.843 | 90.6 | 23.243 | 9.4 |
Military/Police | 34.271 | 93.7 | 2.286 | 6.3 | |
State-Owned Enterprise (BUMN) | 20.025 | 99.2 | 165 | 0.8 | |
Private | 292.319 | 95.2 | 14.657 | 4.8 | |
Hospital Level | A | 18.962 | 91.1 | 1.860 | 8.9 |
B | 167.563 | 91.3 | 16.018 | 8.7 | |
C | 269.721 | 94.1 | 17.003 | 5.9 | |
D | 105.308 | 96.4 | 3.915 | 3.6 | |
Specialist services | 8.904 | 85.1 | 1.555 | 14.9 | |
Hospital Region | Jawa and Bali | 349.145 | 93.3 | 25.252 | 6.7 |
Sumatera | 123.454 | 94.8 | 6.777 | 5.2 | |
Sulawesi | 41.101 | 90.9 | 4.095 | 9.1 | |
Kalimantan | 31.043 | 90.0 | 3.453 | 10.0 | |
Papua, Nusa Tenggara, Maluku | 25.715 | 97.1 | 774 | 2.9 | |
Hospital Location | City | 260.406 | 94.7 | 14.614 | 5.3 |
County | 310.052 | 92.3 | 25.737 | 7.7 |
Variable | Categories | p Value | Odd Ratio (CI 95%) |
---|---|---|---|
Patient Characteristic | |||
Sex | Male | reference | |
Female | >0.05 | ||
Age | <0.05 | 1.03 (1.03–1.03) | |
Employment Status | Dependent Employment | reference | |
Independent Employment | <0.05 | 0.89 (0.86–0.93) | |
Subsidized group | <0.05 | 1.84 (1.75–1.94) | |
Insurance Class | Class 1 | reference | |
Class 2 | >0.05 | ||
Class 3 | >0.05 | ||
Complications | NIDDM without complications (ICD10:E119) | reference | |
NIDDM with coma (ICD10:E110) | <0.05 | 4.48 (4.32–4.64) | |
NIDDM with ketoacidosis (ICD10:E111) | <0.05 | 10.86 (10.46–11.28) | |
NIDDM with multiple complications (ICD10:E117) | <0.05 | 3.56 (3.42–3.70) | |
NIDDM with other specified complications (ICD10:E116) | <0.05 | 0.74 (0.69–0.78) | |
NIDDM with unspecified complications (ICD10:E118) | <0.05 | 1.74 (1.64–1.84) | |
Comorbidities | Disorders of fluid, electrolyte, and acid–base balance (ICD10:E87) | <0.05 | 1.04 (1–1.07) |
Anemia (ICD10:D64) | <0.05 | 0.53 (0.5–0.56) | |
Urinary tract infection (ICD10:N39) | <0.05 | 0.51 (0.48–0.53) | |
Pneumonia (ICD10:J18) | <0.05 | 0.30 (0.28–0.32) | |
Case Severity Level | Mild | reference | |
Moderate | <0.05 | 1.93 (1.84–2.01) | |
Severe | <0.05 | 10.49 (9.78–11.24) | |
Hospital Characteristic | |||
Hospital Ownership | Private | reference | |
Government | <0.05 | 1.27 (1.23–1.3) | |
Military/Police | <0.05 | 1.48 (1.4–1.57) | |
State–owned enterprises (BUMN) | <0.05 | 0.19 (0.16–0.22) | |
Hospital Level | D | reference | |
A | <0.05 | 2.60 (2.33–2.88) | |
B | <0.05 | 2.31 (2.21–2.4) | |
C | <0.05 | 1.53 (1.46–1.58) | |
Specialist Services | <0.05 | 4.39 (4.09–4.72) | |
Hospital Region | Jawa and Bali | reference | |
Sumatera | <0.05 | 1.27 (1.23–1.31) | |
Sulawesi | <0.05 | 2.36 (2.27–2.46) | |
Kalimantan | <0.05 | 1.75 (1.67–1.83) | |
Papua, NusaTenggara, Maluku | <0.05 | 0.42 (0.39–0.46) | |
Hospital Location | City | reference | |
County | <0.05 | 1.49 (1.44–1.52) | |
Length of Stay | <0.05 | 0.81 (0.8–0.81) | |
Case Claim (in USD) | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darmawan, E.S.; Permanasari, V.Y.; Nisrina, L.V.; Kusuma, D.; Hasibuan, S.R.; Widyasanti, N. Behind the Hospital Ward: In-Hospital Mortality of Type 2 Diabetes Mellitus Patients in Indonesia (Analysis of National Health Insurance Claim Sample Data). Int. J. Environ. Res. Public Health 2024, 21, 581. https://doi.org/10.3390/ijerph21050581
Darmawan ES, Permanasari VY, Nisrina LV, Kusuma D, Hasibuan SR, Widyasanti N. Behind the Hospital Ward: In-Hospital Mortality of Type 2 Diabetes Mellitus Patients in Indonesia (Analysis of National Health Insurance Claim Sample Data). International Journal of Environmental Research and Public Health. 2024; 21(5):581. https://doi.org/10.3390/ijerph21050581
Chicago/Turabian StyleDarmawan, Ede Surya, Vetty Yulianty Permanasari, Latin Vania Nisrina, Dian Kusuma, Syarif Rahman Hasibuan, and Nisrina Widyasanti. 2024. "Behind the Hospital Ward: In-Hospital Mortality of Type 2 Diabetes Mellitus Patients in Indonesia (Analysis of National Health Insurance Claim Sample Data)" International Journal of Environmental Research and Public Health 21, no. 5: 581. https://doi.org/10.3390/ijerph21050581
APA StyleDarmawan, E. S., Permanasari, V. Y., Nisrina, L. V., Kusuma, D., Hasibuan, S. R., & Widyasanti, N. (2024). Behind the Hospital Ward: In-Hospital Mortality of Type 2 Diabetes Mellitus Patients in Indonesia (Analysis of National Health Insurance Claim Sample Data). International Journal of Environmental Research and Public Health, 21(5), 581. https://doi.org/10.3390/ijerph21050581